用户名: 密码: 验证码:
姜黄素对2型糖尿病大鼠肾脏改变的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的糖尿病肾病(diabetic nephropathy, DN)是一种以血管损害为主的肾小球病变,是糖尿病(diabetes mellitus, DM)常见慢性并发症之一,也是导致终末期肾病(end-stage renal disease, ESRD)的主要原因之一。目前大量实验发现“氧化应激-炎症-氧化应激”这一恶性循环导致的血管内皮功能不全在糖尿病血管并发症发病机制中占有重要地位。姜黄素是一种植物来源的抗氧化剂,具有广泛的生物活性,在肾脏它能发挥抗纤维化的作用,其对肾脏炎症病变的影响及其机制尚不十分清楚。本实验构建2型糖尿病大鼠模型,通过姜黄素给药干预,观察姜黄素对实验动物肾组织形态学变化以及单核巨噬细胞浸润的影响、测定其对核因子κB(nuclear factorκB, NFκB)、Toll样受体2(Toll-like receptor 2, TLR2 )、骨桥蛋白(osteopontin, OPN)表达的影响,初步探讨其对糖尿病肾病治疗作用机理,为其应用于DN临床治疗提供了理论依据。
     方法40只清洁级SD雄性大鼠,体重200~250g,随机分为假手术组和手术组。手术组大鼠切除左侧肾脏,术后2周手术组大鼠随机分为单切组及实验组。实验组大鼠用于造模,选造模成功大鼠,再随机分为2组,糖尿病组、姜黄素治疗组。确定成模后第2天,姜黄素治疗组以姜黄素200mg/kg/d灌胃,同时其余三组每日以1%羧甲基纤维素钠灌胃。给药后6周处死所有大鼠,取右肾组织进行病理染色,在光镜下观察肾组织形态学变化;免疫组化方法检测CD68、NFκBp65蛋白的表达;并用RT-PCR方法检测肾组织OPN和TLR2mRNA的表达。
     结果(1)肾组织PAS染色显示:糖尿病组肾小球基底膜增厚,ECM增多,系膜区扩张,肾小球内可见单核细胞浸润;与之相比,姜黄素治疗组上述病变明显减轻。对各组系膜区面积/肾小球面积的比值进行比较发现:假手术组与单切组间比较差异无显著性;与假手术组和单切组相比,糖尿病组比值明显增加(p<0.01),姜黄素治疗比值低于糖尿病组(p<0.05)。(2)免疫组化结果显示:糖尿病组NF-κB /p65蛋白胞核内表达增加,CD68阳性细胞数增多,与假手术组和单切组相比有统计学意义(p<0.01)。与糖尿病组相比,姜黄素治疗组上述表达减轻(p<0.05)。(3)RT-PCR结果显示:各组大鼠肾组织中TLR2mRNA均有不同程度的表达,假手术组和单切组间比较差异无显著性,糖尿病组、姜黄素组表达明显增多(p<0.01),且两组间比较差异无显著性。与假手术组和单切组相比,糖尿病组OPNmRNA表达明显上调(p<0.01);与糖尿病组相比,姜黄素组表达减少(p<0.05)。
     结论(1)姜黄素可以明显改善糖尿病大鼠的肾脏病理变化,减少肾组织中巨噬细胞的浸润,延缓肾纤维化进程;(2)姜黄素能抑制NF-κB /p65蛋白核转导,抑制肾组织中OPNmRNA的表达,但对TLR2的表达没有抑制作用;(3)姜黄素缓解糖尿病肾病肾组织炎性病变的作用可能与其下调OPNmRNA的表达进而抑制NFκB p65的核转导有关,对TLR2介导的NFκB激活姜黄素没有抑制作用。
Objective: Diabetic nephropathy (DN) is a glomerulonephritis with main and characteristic vascular lesion and a common chronic complication of diabetes mellitus which is a key protopathy resulting in end-stage kidney disease. It has been shown that oxidative stress-inflammation-oxidative stress which is a vicious circle leads to endothelial dysfunction (ED) which plays a critical role in the vascular complications associated with diabetes. Curcumin is a vegetal antioxidant possessing extensive biological activity and renoprotective for alleviating renal fibrosis, but its effect on inflammation in kidney and the underlying mechanisms are still unclear. In this study, we construct a rat model of Type 2 diabetes mellitus and observe the effect of curcumin on inflammation and expression of CD68, NFκB, TLR2, OPN in DN kidneys. On the basis of those data we try to illustrate the possible mechanism underlying that and provide some evidence for its prospective use in treatment of DN.
     Method: Forty Sprague-Dawley male rats weighed 200 to 250g and were randomly divided into sham operation group (SHAM) and operation group. The operation group rats underwent unilateral nephrectomy. Two weeks after uninephrectomy four group, these uninephrectomized rats were randomly divided into uninephrectomy control group (1/2Nx) and model group. Model group rats were used to construct models of Type 2 diabetes mellitus (T2DM). Those successful model rats were divided into DM group and curcumin-administration group (DM+Cur). After identification, DM+Cur rats were fed sodium carboxymethycellulose solid containing curcumin (200mg·kg-1·d-1) and other rats fed sodium carboxymethycellulose solid with same concentration. The rats were killed six weeks later and renal tissues were examined by microscope. Immunohistochemistry was applied to determine the protein expressions of CD68 and NFκBp65, the mRNA expressions of OPN and TLR2 were detected semiquantitatively with reverse transcription-polymerase chain reaction.
     Results: (1) PAS staining of the renal tissue revealed that thickening of glomerular basement membrane, mesangial cell hyperplasia, expansion of mesangial matrix, infiltration of monocyte in DM group. Comparied with it, the lesion in DM+Cur group was attenuated. To mention the area ratios of mesangial region vs the whole glomerular there was no significant difference between SHAM group and 1/2Nx group. The ratios in DM group were significantly elevated (p<0.01), while in DM+Cur group were lower than in DM group (p<0.05). (2) Immunohistochemistry showed in comparison with control group there were more NF-κBp65 protein expressed in nuclei and more CD68 positive cells in DM group. Compared with DM group, the expression and positive cells were deceased (p<0.05). (3) Renal expressions of TLR2 mRNA were significantly increased in DM group and DM+Cur group in comparison with control group (p<0.01), but there was no difference between them. OPN mRNA expression was significantly elevated in DM group than in control group, while the expression of DM+Cur group decreased (p<0.05).
     Conclusion: (1) We observed that in rat model of T2DM, curcumin improved the histological lesion and prevent the development of glomerular fibrosis. (2) Curcumin can inhibit the NF-κBp65 transduction into nuclei and over expression of OPN, which may consequently result in moderate infiltration of monocyte, but not suppress TLR2mRNA expression. (3) Curcumin may alleviate the inflammational process by inhibiting NFκBp65 transduction into nuclei and down-regulating OPN mRNA expression.
引文
1. Young J S. Anti-tumor promoting potential of selected spice ingredients with antioxidant anti-inflammatory activities: a short review. Food Chem Toxicol 2002, 40: 1091-1097.
    2. R.A.Sharma, A.J.Gescher, W.P.Steward. Curcumin: The story so far. Eur J Cancer 2005, 41: 1955-1968.
    3.李新建,刘晓城.姜黄素调节小鼠免疫功能的研究.中国组织化学与细胞化学杂2005, 14 (2): 132-135.
    4. Mori H, Niwa K, Zhang Q, et al. Cell proliferation in cancer prevention; effects of preventive agents on estrogen-related endometrial carcinogenesis model and on an in vitro model in human colorectal cells. Mutat Res Fund Mol Mech 2001, 480: 201-207.
    5. Tirkey N, Kaur G, Vij G, et al. Curcumin, a diferuloylmethane, attenuates cyclosporine- induced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacol 2005, 15; 5-15.
    6. Farombi EO, Ekor M. Curcimin attenuates gentamicin-induced renal oxidative damage in rats. Food Chem Toxicol 2006, 44 (9): 1443-8.
    7. Pari L, Murugan P. Tetrahydrocurcumin: effect on chloroquine-mediated oxidative dam- age in rat kidney. Basic Clin Pharmacol Toxicol 2006, 99 (5): 329-34.
    8. Jones EA, Shoskes DA. The effect of mycophenolate mofetil and polyphenolic bioflavo- noids on renal ischemia reperfusion injury and repair. J Urol 2000, 163 (3): 999-1004.
    9. Sharma S, Kulkarni SK, Chopra K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol physiol 2006, 33 (10): 940-5.
    10.宁勇,刘晓城.姜黄素对糖尿病大鼠早期肾纤维化的影响.现代医学2004, 32 (2): 77-80.
    11. Melvin R.H, Adam W-C, James R.S. Renal redox stress and remodeling in metabolic syndrome, type 2 diabetes mellitus, and diabetic nephropathy: paying homage to thepodocyte. Am J Nephrol 2005; 25: 553-569.
    12. Juan F.N and Carmen M-F. The role of TNFαin diabetic nephropathy: pathogenic and therapeutic implications. Cytokine &Growth Factor Reviews 2006; 17 (6): 441-450.
    13.郭啸华,刘志红,李恒,等.实验性2型糖尿病大鼠模型的建立.肾脏病与透析移植杂志, 2000,9(4):351-355.
    14. Aoyama I, Shimokata K, Niwa T. An oral adsorbent downregulates renal expression of genes that promote interstial inflammation and fibrosis in diabetic rats. Nephron, 2002; 92:635-651.
    15. Usui HK, Shikata K, Sasaki M, et al. Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes 2007, 56 (2): 363-72.
    16. Okada K, Wangpoengtrakul C, Tanaka T, et al. Curcumin and especially tetrahydrocur- cumin ameliorate oxidative stress-induced renal injury in mice. J.Nutr, 2001, 131: 2090- 2095.
    17. Shishodia S, Potdar P, Gairola CG, et al. Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-κB activation through inhibition of IkappaBalpha kinase i- n human lung epithelial cells: correlation with suppression of COX-2,MMP-9 and cycl- in D1. Carcinogenesis 2003, 24: 1269-1279.
    18. Priyadarsini KI, Maity DK, Naik GH, et al. Role of phenolic O-H and methylene hydro- gen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med. 2003, 35: 457-484.
    19. Naveen T, Gaganjit K, Garima V, et al.Curcumin, a diferuloylmethne attenuates cyclos- porine- induced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacol. 2005, 5:15-20.
    20. Dickinson DA, Moellering DR, Iles KE, et al. Cytoprotection against oxidative stress a- nd the regulation of glutathione synthesis. Biol Chem., 2003, 384: 527-537.
    21. Sivaram P, Uday S. Role of oxidative stress and inflammation in the origin of Type 2 d- iabetes- a paradigm shift. Expert Opin.Ther. Targets 2004, 8 (5): 1-8.
    22. Mizuno M, Sada T, Kato M, et al. The effect of angiotensinⅡreceptor blockade on an end- stage renal failure model of type 2 diabetes. J Cardiovasc Pharmacol. 2006, 48 (4): 135-42.
    23. Nobuyuki K, Satoshi T, Tomoaki I, et al. Attenuation of renal fibrosis by curcumin in rat obstructive nephropathy. Urology. 2006, 67 (2): 440-446.
    24. Carlos G, Jesus E. Transcription factor-κB and renal disease. Kidney Int. 2001, 59: 415- 424.
    25. Wang Y, Rangan GK, Tay YC, et al: Induction of monocyte chemo attractant protein-1 by nuclear factorκB in proximal tubule cells. J Am Soc Nephrol 1999, 10:1204-1213.
    26. Chuang TH, Ulevitch RJ. Identification of hTLR10: a novel human Toll-like receptor pr -eferentially expressed in immune cells. Biochim. Biophs. Acta., 2001,1518(1-2):157- 161.
    27. Matzinger P. An innate sense of danger. Semin.Immunol. 1998, 10 (5): 399- 415.
    28. Hans-Joachim A, Bernhard B, Detlef S. Signaling Danger: Toll-like receptor and their p -otential roles in kidney disease. J Am Soc Nephrol 2004, 15: 854-867.
    29. Stefan F, Ralph A.K, Todd B. Role of TLR-2 in the activation of nuclear factor-κB by o -xidative stress in cardiac myocytes. J.Biol.Chem. 2001 276 (7): 5197-5203.
    30. Yang R.B, Mark M.R, Gurney A.L, et al. Singaling events induced by lipopolysacchari- de- activated Toll-like Receptor 2. J.Immunol 1999, 163: 639-643.
    31. Matsuguchi T, Musikacharo T, Ogawa T, et al. Gene expressions of Toll-like receptor- 4, is induced by LPS and inflammatory cytokines in mouse macrophages. J Immunol. 2000, 165 (10): 5767-72.
    32. Aoyama I, Shimokata K, Niwa T. An oral adsorbent downregulates renal expression of genes that promote interstial inflammation and fibrosis in diabetic rats. Nephron 2002, 92:635-651.
    33. Yuansheng X, Minoru S, Shinichi N, et al. Expression, roles, receptors, and regulation o -f osteopontin in the kidney. Kidney Int 2001, 60: 1645-1657.
    34. Hsieh TJ, Chen R, Zhang SJ, et al. Upregulation of osteopontin gene expression in diab- etic rat proximal tubular cells revealed by microarray profiling. Kidney Int 2006, 69 (6): 1005-15.
    35. Chhhinder P.S, Sarojini A.P, Daniel B, et al. Hypoxia and high glucose cause exaggera- ted mesangial cell growth and collagen synthesis: role of osteopontin. Am J Physiol R- enal Physiol 2001, 280 (4): F667-F674.
    36.陈丽,刘晓城,宁勇.姜黄素对糖尿病大鼠肾脏病变的作用及对肾脏Smad7表达的影响.华中科技大学学报(医学版)2004, 33 (4): 438-444.
    37. Tharaux PL, Chatziantoniou C, Fakhouri F, et al. AngiotensinⅡactivates collagenⅠgene through a mechanism involving the MAP/ER kinase pathway. Hypertension. 2000, 36(3): 330-6.
    38. Premanand C, Rema M, Sameer MZ, et al. Effects of curcumin on proliferation of hum- an retinal endothelial cells under in vitro conditions. Invest Ophthalmol Vis Sci 2006,47 (5): 2179 -84.
    39. Murugan P, Pari L. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in stre -ptozotocin-nicotinamide-induced diabetic rats. Basic Clin Pharmacol Toxicol. 2006 Au -g ; 99(2): 122-7.
    40. Bidder M, Shao JS, Charlton-K N, et al. Osteoponton transcription in aortic vascular s- mooth muscle cells is controlled by glucose-regulated upstream stimulatory factor and activator pro tein-1 activities. J Biol Chem 2002, 277: 44485-44496.
    41. Hiroshi Y, Masahiko I, Akihiko H, et al. Progression of diabetic nephropathy enhances the plasma osteopontin level in type 2 diabetic patients. Endocrine Journal 2004, 51 (5): 499-504.
    42. Philip Y. Wai, M.D., Paul C. Kuo, M.D., M.B.A The Role of Osteopontinin Tumor Me- tastasis. J Surg Res 2004, 121: 228-241.
    43. Das R, Mahabeleshwar GH, Kundu GC. Osteopontin stimulates cell motility and nucl- ear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Ch- em. 2003, 278 (31): 28593-606.
    1. Melvin R. Hayden, Adam Whaley-Connell, James R. Sowers. Renal redox stress and remodeling in metabolic syndrome, type 2 diabetes mellitus, and diabetic nephropathy: paying homage to the podocyte. Am J Nephrol 2005; 25: 553-569.
    2. Yokoyama H, Okudaira M, Otani T, et al. Higher incidence of diabetic nephropathy in type 2 than in type 1 diabetes in early-onset diabetes in Japan. Kidney Int 2000; 58: 302-311.
    3. Sivaram P, Uday S. Role of oxidative stress and inflammation in the origin of Type 2 diabetes-a paradigm shift. Expert Opin.Ther. Targets 2004; 8(5):1-8.
    4. Hayden MR, Tyagi SC. Is type 2 diabetes mellitus a vascular disease (atheroscleropathy) with hyperglycemia a late manifestation? Cardiovascular Diabetology 2003; 2: 2.
    5. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404(6779): 787-790.
    6. E. Nigel Wardle. Cellular oxidative processes in relation to renal disease. Am J Nephrol 2005; 25: 13-22.
    7. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47-95.
    8.吴人亮主编.基础病理学.第一版.北京:科学出版社, 2004, 139.
    9. Pfeilschifter J, Eberhardt W, Beck KF, et al. Redox signaling in mesangial cells. Nephron Exp Nephrol 2003; 93: e23-26.
    10. Chiarugi P, Cirri P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 2003; 28: 509-513.
    11. Dalton TP, Shertzer HG, Puga AA. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 1999; 39: 67-99.
    12. J. Pickup, M. Mattock, G. Chusney, et al. NIDDM as a disease of the innate immune system: association of acute phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997; 40: 1286–1292.
    13. J. Pickup and M. Crook. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 1998; 41: 1241–1248.
    14. Juan F.N and Carmen M-F. The role of TNFαin diabetic nephropathy: pathogenic and therapeutic implications. Cytokine &Growth Factor Reviews 2006; 17 (6): 441-450.
    15. Sasser JM, Sullivan JC, Yomamoto T, et al. Endothelin A receptor blockade reduces diabetic renal injury via an anti-inflammatory mechanism. J Am Soc Nephrol 2007; 18 (1): 143-54.
    16. Michele DV, Alessandra M, Anna MR, et al. Is podocyte injury relevant in diabetic nephropathy?– Studies in patients with type 2 diabetes. Diabetes 2003; 52: 1031-1035.
    17. Nagata M, Kriz W. Glomerular damage after uninephrectomy in young rats.Ⅱ. Mechanical stress on podocytes as a pathyway to sclerosis. Kidney Int 1992; 42: 148-160.
    18. Miner JH. A molecular look at the glomerular barrier. Nephron Exp Nephrol 2003; 94: e119-e122.
    19. Gloy J, Henger A, Fischer KG, et al. AngiotensinⅡmodulates celluar function of podocytes. Kidney Int Suppl 1998; 67: s168-s170.
    20. Hisashi M, Yoshihiro M, Kazutomo S, et al. Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by Pioglitazone. Diabetes 2006; 55: 2747-2756.
    21.管娜,丁洁,张敬京等.肾病综合征患儿肾小球中nephrin、podocin、α-actinin及WT1的表达.肾脏病与透析移植杂志2002; 11(3): 205-210.
    22. Mike N, Shigetaka Y, Shigeru S, et al. Enhanced aldostreone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol 2006; 17: 3438-3446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700