用户名: 密码: 验证码:
四角切圆煤粉炉炉内燃烧及配风的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锅炉热态性能试验以及风量配比试验是火力发电厂的重要试验之一,它对运行人员及时、准确地了解锅炉设备的实际运行特性,维持燃料高效、清洁燃烧,保证设备及运行人员的安全及其新机组的性能鉴定有着重要的意义。
     然而,炉内的燃烧过程非常复杂,进行热态性能试验存在着工作量大、工况调整困难、测量方法复杂等局限,使炉内各物理量细节信息的获取具有很大难度。随着计算机技术、计算传热学、计算燃烧学和燃烧理论模型的不断发展,以及计算流体力学商业软件功能的逐渐增强,数值模拟已经成为研究锅炉炉内燃烧过程的行之有效的手段。
     本文利用计算流体力学软件Fluent,对某公司热电厂CG-220/9.81-M型四角切向燃烧锅炉原始设计工况炉内流动、传热及燃烧过程进行了数值模拟,通过对模拟结果的分析,验证了本课题所建物理、数学模型及数值方法的合理性。同时,对不同二次风配风方式、过量空系数、煤粉浓淡比以及不同负荷工况进行了数值模拟。
     模拟计算结果表明:二次风均等配风、正宝塔配风、倒宝塔配风三种配风方式中,正宝塔配风时高温火焰位于燃烧区的中心位置,切圆燃烧状况良好,火焰不贴壁,且平均壁面热负荷较高,为满负荷运行最佳配风方式;随着过量空系数增大,炉内整体温度水平有所降低,燃烧切圆直径和高温区面积逐渐减小,因氧的增多,增加了燃料型NOx的生成;随着负荷降低,炉内整体温度水平降低,壁面平均热流密度降低,炉膛出口平均温度和速度以及平均NO质量浓度降低;煤粉浓淡比的变化对炉内温度场和NOx的生成有重要的影响,选择合适的浓淡比,不仅能使炉内具有较好的温度场分布,而且能减少NOx的生成量。
     本文研究为锅炉冷、热态性能试验的实施及设计提供了一种辅助手段,并对四角切圆煤粉炉的炉内燃烧过程的优化配风、煤粉流浓淡配比、变负荷运行以及NOx预测提供了重要而有意义的参考依据。
Boiler's hot tests and the amount of wind allocated proportion experiment are one of the most important experiments for a heat power plant. They are of importance for operators to know a boiler's operating characteristic accurately and duly, to keep fuel combusting high-powered and cleanly, to ensure the security of boiler and operators, to checkup the performance of new unit.
     However, the combustion process is very complex in the boiler. Hot test has some limitations, such as a great amount of workload, difficulty of function adjust, complexity of measure, which leads to many difficulties in obtaining the detail about boiler's parameters. With the fast development of computer technology, computation heat transfer theory, computation combustion study and the model of combustion theory as well as the commercial software's gradual enhancement of computation hydromechanics, the numerical simulation already became the effective method in researching the boiler internal combustion process.
     In the dissertation, according to FLUENT, CFD software, the flowing, transferring heat and burning process of the internal boiler in the original designing condition of CG-220/9.81-M tangential firing boiler in a certain power plant are analyzed and simulated. Based on the analyses, the rationality of the physical and mathematic model and the numerical method in this dissertation is validated. At the same time, the conditions in different air distribution mode, the different excess air coefficients, the different rich-lean ratio of pulverized coal air flow and load are numerical simulated.
     The results of the simulation indicate that: in the full load condition, Normal pagoda type distribution wind is the best in the Equal, Normal pagoda type and Waist drum type distribution wind. Because in this air distribution, the high temperature flame is in the middle of the burning area, the combustion of the tangential circle is in order, the flame cannot stick to the wall and the heat load of the average wall is higher.; Along with the increasing of the excess air coefficient, the whole temperature level in the boiler reduces a little and the diameter of tangential circle and the area of high temperature reduce gradually. The NOx creating of fuel type increases because of the oxygenous increasing; Along with the reducing of the load, the whole temperature level in the boiler, the average heat flow density of the wall, the average temperature and velocity in the outlet as well as the average NOx mass concentration all reduce; The change of rich-lean ratio of the pulverized coal air flow has very important influence to the temperature field in the boiler and NOx's creating. As a result choosing the appropriate rate cannot only get a better distribution of the temperature field in the boiler, but also can reduce the formation amount of NOx.
     The study of this dissertation, offer an assistant means of boilers'cool and hot test. Meanwhile, they also provide a significant reference basis of optimizing the air distribution of boiler, choosing the rich-lean ratio of the pulverized coal air flow, operating in different load conditions and forecasting the NOx.
引文
[1]国家计委、科技部联合印发.中国的能源概况和能源需求预测.2002.5.
    [2]孙学信.燃煤锅炉燃烧试验技术与方法.中国电力出版社,2002.
    [3]郑友取,樊建人,查旭东,孙平,岑可法.切向燃烧锅炉炉内NOx生成的数值模拟.动力程,2000.20(3).pp689-692.
    [4]李文艳.电站锅炉煤粉燃烧过程及结渣的数值模拟:(博士学位论文).华北电力学,2002.pp3-9.
    [5]D.B.Spalding.Mathematical Models of Turbulent Flames,A Review,Comb.Sci.and Tech.Specialissueon Turbulent.Reactive Flow.1976.13.pp1-25.
    [6]Crowe,C.t,Sharma,M.P and Stock,D.E.The particle source-in-cell(PSI-cell) model for gas droplet flows.Trans.ASME.J.Fluids.Eng.1977.p325.
    [7]Partankar,S.V..Numerical heat transfer and fluid flow.McGraw,1980.
    [8]A.S.Abbes,F.C.Lockwood.Prediction of A Corner-fired Utility Boiler.Twenty-first Symposium(Int.) on Combustion.1986.8.
    [9]R.K.Boyd.J.H.Kent.Three-dimensional Furnace Computer Modeling.In 21st Symp on Combustion.The Combustion Institute.1986:265-274.
    [10]Gills.P.A,Three-dimensional Computational Fluid Dynamics Modeling in Industrial Furnace,Ph.D.thesis.Dept.1989,chen.Eng.BYU.
    [11]Walsh,Peter M.Xie,Jianyang,Douglas,Robert E,Battista,Joseph J.Zawadzki,Edward A.Unburned carbon loss from pulverized coal combustors.Fuel.1994.73(7).pp1074-1081.
    [12]Mann,A.P.Kent,J.H.Computational study of heterogeneous char reactions in a full-scale furnace.Combustion and Flame.1994.99(I).pp147-156.
    [13]Zhou Huaichun,Han caiyuan.Simulation study on dynamic analysis of stability of tangential combustion process.Part 1.Model establishment.Proceedings of the Chinese Society of Electrical Engineering.1994.14(2).pp20-24.
    [14]Li Wenyan,Wang yaqin,Sun Shaoxing.Three-dimensional full simulation of turbulent flow,combustion and heat transfer processes in boiler combustion chamber.Proceedings of the Chinese Society of Electrical Engineering.1994.14(2).pp1-6.
    [15]Epple,B.Schneider,R.Schnell,U.Hein,K.Computerized analysis of low-NOx coal-fired utility boilers.Combustion Science and Technology.1995.108(4-6).pp383-401.
    [16]Nann,A.P.Moghtaderi,B.Kent,J.H.Computational modeling of aslag-reduction strategy in a wall-fired furnace.Journal of the Institute of Energy.1995.68(477).pp193-198.
    [17]Rizk,Tony,Fuller,R.Lee.Impact of secondary air distribution on NOx generation rate in large utility boilers.Industrial and Environmental Applications of Fluid Mechanics American Society of mechanical Engineers,Fluids Engineering Division(publication)FED.1995.221 ASME,New York,NY,USA.pp63-73.
    [18]Su,Sy,Chang,J-Hwan,Ho,Wu-chi.Numerical simulations of coal-fired swirl rectangular combustor American Society of Mechanical Engineers,Heat Transfex Division,(Publication) HTD.1998.357(2).ASME,Fairfield,NJ,USA.pp85-92.
    [19]Lockwood,F.C.Mahmud,T.Yehia,M.A.Simulation of pulverized coal testfurnace performance.Fuel.1998.77(12).pp1329-1337.
    [20]Fortsch,Dieter.Kluger,Frank,Schnell,Uwe,Spliethoff,Hartmut,Hein,Klaus R.G.Kinetic model for the prediction of N O emissions from staged combustion of pulverized coal.Symposium(International) on Combustion.1998.2.pp3037-3044.
    [21]樊建人等 气固两相流动的湍流脉动扩散数学模型及其应用.应用力学报,1990.7(1)pp51-56.
    [22]岑可法等数值试验(CAT)在大型电站锅炉设计及调试中应用的前景-基础理论.浙江大学学报,1992.26(1)pp111-119.
    [23]岑可法等数值试验(CAT)在大型电站锅炉设计及调试中应用的前景-应用实例.浙江大学学报,1992.26(2).pp237-245.
    [24]周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1989.
    [25]李力,周力行,李荣先,张健.用双流体-轨道模型模拟四角喷燃模型炉内三维湍流两相流动和煤粉燃烧.空动力学学报,2001.19(1).pp30-38.
    [26]徐通模等.可调煤粉浓度的调峰型燃烧器.中国专利,942055160.0.
    [27]孙保民.W 火焰炉内流动传热燃烧数值计算和流动的试验研究:(博士学位论文).北京:清华大学.1994.
    [28]刘向军.四角切向燃烧锅炉炉内燃烧过程的数值研究:(博士学位论文).北京:清华大学.1997.
    [29]梁晓宏.W型火焰煤粉锅炉燃烧过程,污染物生成的数值模拟及冷态流场试验研究:(博士学位论文).浙江:浙江大学,1997.
    [30]孙平.600MW电站锅炉炉内多相流动、传热、燃烧过程及炉内偏差、污染、结渣的数值试验研究:(博士学位论文).浙江:浙江大学,1999.
    [31]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004.9.
    [32]韩占忠,王敬,兰小平.流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.
    [33]A.M.Eaton etal,Componets,formulations,solutions,evaluation,and application of comprehensive combustion models,Progress in Energy and Combustion Science 25(1999)387-436.
    [34]Annual Energy Review 1997.DOE/EIA-0384(97),US Department of Energy,Energy Information Agency,Washington,DC,1998.
    [35]Marzio Piller,Enrico Nobile,J.Thomas,DNSstudy of turbulent transport at low Prandtl numbers in a channel flow.Journal of Fluid Mechanics,(458):419-441,2002.
    [36]J.G.Wissink.DNS of separating low Renolds number flow in a turbine cascade with incoming wakes.International Journal of Heat and Fluid Flow,24(4):626-635,2003.
    [37]P.Moin,Progress in large eddy simulation of turbulence flows.AIAA paper,97-15761,1997.
    [38]W.P.Jones,B.E.Launder,Ground effects on pressure fluctuations in the atmospheric boundary layer.J.Fluid Mesh,86:491-511,1978.
    [39]王应时.燃烧过程数值模拟.北京:科学出版社,1986.
    [40]Obieglo A,Gass J,Poulikskos D.Comparative study of modeling a hydrogen nonpremixed turbulent flame.Combustion and Flame.2000,122:176-194.
    [41]Zaichik L I,Pershukov V A,Kozelev M V.Modeling of dynamics,heat transfer,and combustion in two-phase turbulent flows:2 Flows with heat transfer and combustion.Experimental Thermal and Fluid Science,1997,15:311-322.
    [42]A.OBIEGLO,J.GASS,D.POULIKAEOS.Comparative Study of Modeling a Hydrogen Nonpremixed Turbulent Flame.Combustion and Flame.2000o 122:176-194.
    [43]曾汉才,大型锅炉高效低NOx燃烧技术的研究.锅炉制造,2003,3(1):1-11.
    [44]向军等.锅炉氮氧化物排放特性试验研究.中国电机工程学报,2000(20):80-84.
    [45]任建兴等.火电厂氮氧化物的生成和控制.上海电力学院学报,2002(18):19-24.
    [46]徐明厚等.燃煤锅炉燃烧过程与NOx排放的模型与数值计算.工程热物理学报,2001(22)249-253.
    [47]Menguc PP,Webb BW.Radiative heat transfer.In:Smoot LD,editor.Fundamentals of coal combustion for clean and efficient use.Amsterdam:Elsevier.1993.p375.
    [48]刘向军等.四角切向燃烧煤粉锅炉炉膛内空动力场的数值研究.工程热物理学报,1998(19).
    [49]李勇、刘志友、安亦然.介绍计算流体力学通用软件-Fluent.水动力学研究与进展,2001(16).
    [50]刘松、朱珍锦、唐必光、张长鲁,炉膛煤粉颗粒运动轨迹数值模拟.华中电力,2003(13).
    [51]龚光彩、梅炽、周萍,煤粉锅炉燃烧工况的数值模拟及其优化研究.湖南大学学报,2001(28).
    [52]何泓、樊建人等四角切向燃烧锅炉三维贴体坐标的生成及流场的模拟.动力工程,2000(20).
    [53]陶文铨.数值计算方法.西安:西安交通大学出版社,2004.
    [54]吴治永,李文彦等.某新型旋流燃烧锅炉的数值模拟.现代电力,2004,21(1):11-16.
    [55]潘维,池作和,斯东波,阮涛,岑可法.四角切圆燃烧锅炉炉膛网格生成方法的研究.动力工程.2005.25(3).DD110-115.
    [56]Owen S J,Staten M L,Canann S A,et al.Q2Morph:an indirect approach to advancing front quad meshing[J].Int.J.for Numer.Meth.In Eng,1999(44):1371-1340.
    [57]岑可法 锅炉燃烧试验研究方法及测量技术水利电力出版社1995.
    [58]刘霞,400t/h四角切圆煤粉炉分级燃烧技术降低NOx排放的研究与数值模拟东南大学硕士学位论文,2004.
    [59]肖理生.大型贫煤锅炉高效低NOx分级燃烧技术的实验研究与数值模拟:(博士学位论文).武汉:华中理工大学,2000.
    [60]郭菁,电站锅炉煤粉燃烧过程及其NOx生成的数值模拟:(硕士学位论文).北京:华北电力大学,2003.
    [61]郑友取等.切向燃烧锅炉炉内NOx生成的数值模拟.动力工程,2000(20):689-694.
    [62]叶江明.电厂锅炉原理及设备(第二版).中国电力出版社,2004(1):109-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700