用户名: 密码: 验证码:
高粱幼苗水分胁迫诱导表达差异cDNA的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是能够引起植物发生水分胁迫的一种最重要的环境因子,它极大限度地制约着植物生长和作物产量。改善和提高植物的抗旱性研究是植物抗逆性研究的重要内容。随着分子生物学技术的发展,通过基因工程改良植物的抗旱能力被广大科研工作者认为是一种快捷、有效的方法。
     差异显示反转录聚合酶链式反应,简称DDRT-PCR。因其操作简单、快速、灵敏性高、易重复等优点,自1992年由Liang和Pardee发明以来,已成为分子生物学领域一种强有力的工具,被广泛地用来分离差异表达的基因。
     在当前的研究中,我们采用了mRNA差异显示技术和银染技术,对经过用19.5%(ψ=-0.7MPa)PEG-6000溶液处理不同时间而诱导表达的高粱基因进行分离,共得到差异表达的cDNA片段53条。方法是:用19.5%(ψ=-0.7MPa)PEG-6000溶液来处理高粱幼苗,用去离子水培育幼苗做对照,提取的总RNA经反转录后进行PCR扩增,扩增的PCR产物最后经6%的变性聚丙烯酰胺凝胶电泳分离,银染染色后可观察到清晰的条带。所回收的53条差异带,其中包括6个完全诱导表达片段,42个上调表达片段和5个下调表达片段。经Reverse Northern.验证后,得到阳性表达的cDNA片段13个。当用单个随机引物对上述13个片段进行再次扩增时,全部表现为阴性。得到的13个阳性cDNA片段克隆并测序,通过与GenBank中的EST数据库比对,结果发现,10个cDNA片段与已知序列有较高的同源性,3个为未知基因序列。其中,受水分胁迫处理诱导表达信号增强的cDNA片段T_(11)A—AP_3与损伤的二色高粱叶片cDNA克隆同源性100%,与氧化胁迫的二色高粱叶片和根cDNA克隆同源性100%,与酸碱处理的二色高粱根cDNA克隆同源性100%,与水杨酸处理的二色高粱苗期cDNA克隆同源性100%;T_(11)G—AP_3-2与氧化胁迫的二色高粱叶片和根cDNA克隆同源性100%;T_(11)G—AP_4与脱落酸、铁缺乏和盐胁迫诱导的二色高粱苗期cDNA克隆同源性100%。另外7个受水分胁迫处理诱导表达的cDNA片段序列与水杨酸处理的二色高粱苗期cDNA、损伤的二色高粱叶片cDNA、氧化胁迫的二色高粱叶片和根cDNA、酸碱处理的二色高粱根cDNA、盐胁迫诱导的二色高粱苗期cDNA、干旱胁迫诱导的二色高粱开花前cDNA、干旱胁迫诱导的二色高粱开花后cDNA、二色高粱光生长cDNA、铁缺乏诱导的二色高粱苗期cDNA同源性高达95%以上。另外3个差异片段与已知序列同源性非常低,推测可能为新的基因序列,其序列全长及其功能鉴定有待于进一步的工作。
Drought is one of the most important environmental factors that cause osmotic stress and dramatically limit plant growth and crop productivity. It's an important branch of plant research on stress resistance to enhance or improve the capability of drought and water deficit—tolerance in plant. With the advance of molecular biological technique, bioengineering becomes a rapid efficient method of improving plant resistance to drought, water deficit, on the viewpoint of many researchers.Differential display reverse transcription polymerase chain reaction (DDRT-PCR), one of the most widely employed techniques to identify differential gene expression, has become a powerful tool in the area of molecular genetics since 1992 when the technique was invented by Liang and Pardee. The technique is simple, time-saving, sensitive and reproducible.In present research, we adopted both mRNA differential display and silver staining techniques to isolate grain sorghum cDNA induced by 19.5%(-0.7MPa)PEG-6000, total 53 differential expression cDNA fragments were obtained. Sorghum seedling in 19.5% PEG-6000 (polyethylene glycol, MW=6000, V= -0.7MPa) solution was used as treatment sample, and sorghum seedling in dH_2O as control sample. Differential expression of mRNA between treatment sample and control sample was analysed by DDRT-PCR. The PCR amplification products were separated by 6% denaturing polyacrylamide gels. Distinct bands were visualized by silver staining. A total of 53 differential expression cDNA fragments had been detected, including 6 absolute expression fragments induced by water stress, 42 enhanced expression fragments, 5 inhibited expression fragments. After further certified with reverse northern dot blot, thirteen fragments are proved to be positive. When amplified by single arbitrary primer, all of the above fragments appeared negative. These fragments were cloned in the pGEM?-T Easy Vector . Through sequencing and then querying EST database of GenBank, we can find that ten of them have high homologous sequences while the other 3 have poor. Of these ten fragments, T_11A—AP_3 was 100% homologous to wounded leaves Sorghum bicolor cDNA clone . Oxidatively-stressed leaves and roots Sorghum bicolor cDNA clone. Acid- and alkaline-treated roots Sorghum bicolor cDNA clone and Salicylic acid-treated seedlings Sorghum bicolor cDNA clone. T_11G—AP_3-2 was 100% homologous to Oxidatively-stressed leaves and roots Sorghum bicolor cDNA clone. T_11G—AP_4 was 100% homologous to Abscisic acid-treated seedlings Sorghum bicolor cDNA clone. Iron-deficient seedlings Sorghum bicolor cDNA clone and Salt-stressed seedlings Sorghum bicolor cDNA clone. Other seven fragments were more than 95% homologous to the Sorghum bicolor cDNA clone induced by Abscisic acid-treated 、 wounded 、 Oxidatively-stressed 、 Acid- and alkaline-treated、 Salt-stressed、 Drought-stressed before flowering、 Light Grown and Iron-deficient. The others there were low homologous to EST library and were supposed novel genes, whose functions need further study. Therefor, it most probably be a novel gene, and there is still much work to do for its full length and its function identification.
引文
1 程宁辉,高燕萍,杨金水.水稻杂种一代与亲本幼苗基因表达差异的分析.植物学报,1997,39(4):379~382
    2 程艳军,郭士伟,高东迎,陶澜,刘蔼民.mRNA差异显示法分离与水稻籼粳亚种间杂交稻低温敏感不育性相关的cDNA片段.江苏农业学报,2004,20(3):140~143
    3 程志强,董海涛,吴玉良,等.水稻受白叶枯病菌诱导抗性相关基因片段的克隆.农业生物技术学报,2000,8(1):45~48
    4 崔大祥等.差异表达基因克隆技术的新进展.国外医学遗传学分册,1999,22(5):228~230
    5 单雷,赵双宜,权太勇,夏光敏.小麦与高冰草体细胞杂种耐盐新品系的盐胁迫应答cDNA差异表达分析.高技术通讯,2004,7:29~33
    6 董海涛,董继新,何祖华,等.水稻受稻瘟病菌诱导的转座类似蛋白新基因RLM2的分离与鉴定.农业生物技术学报,2001,9(2):113~118
    7 董海涛,何祖华,吴玉良,等.水稻抗稻瘟病近等基因系mRNA差别显示分析.农业生物技术学报,1998,6(3):223~228
    8 董继新,董海涛,何祖华,等.一个水稻与稻瘟病菌(Magnaporthe grisea)互作相关新基因的克隆.农业生物技术学报,2001,9(1):41~44
    9 董继新,董海涛,吴玉良,等.用PCR差别筛选法分离和克隆水稻受稻瘟病菌诱导的cDNA片段.中国农业科学,1999,32(3):8~13
    10 顾克余,罗林广,苏昌潮,翟虎渠.水稻叶绿体基因组中一个编码psbL和psbJ基因cDNA的克隆与分析.植物学报,2001,43(2):210~212
    11 顾克余,翟虎渠,张红生.水稻杂种一代及其亲本分蘖期根系基因的差异表达.南京农业大学学报,2000,23(1):1~4
    12 郭宾会,高双成,景蕊莲.小麦苗期水分胁迫诱导差异表达cDNA的研究.生物技术通报,2003,(2):20~25
    13 郭房庆,周建明,汤章城.NaCl胁迫下小麦突变体和野生型叶片中一些有机溶质累积和基因表达差异.植物生理学报,1999,25(3):263~268
    14 郭继虎,景蕊莲,王金胜.小麦种子水分胁迫萌发的基因差异表达.山西农业大学学报,2003,23(1):23~27
    15 郭晶心,周乃元,马荣才,曹鸣庆.结球白菜结球莲座期和包心期叶片mRNA差异表达研究农业生物技术学报.2003,11(5):456~460
    16 何文兴,徐莺,唐琳,魏琴,李静,陈放.川草2号老芒麦atpA基因的克隆及其调控表达.生物化学与生物物理进展,2005,32(1):67~74
    17 黄旭,龚蓁蓁,徐竹筠,唐锡华.mRNA差异显示法分离水稻抗稻瘟病相关cDNA克隆.江苏农业学报,2000,16(2):124~126
    18 黄旭,龚蓁蓁.mRNA差异显示技术及其在植物基因工程中的应用.走向21世纪的分子生物学.北京:科学出版社,2000,364~366
    19 金红建,王兰州.斑马鱼ILF2基因的电子克隆分析.中国计量学院学报,2003,14(1):70~73
    20 景蕊莲,昌小平.小麦抗旱种质资源的遗传多样性.西北植物学报,2003,23(3):410-416
    21 景蕊莲.作物抗旱研究的现状和思考.干旱地区农业研究,1999,17(2):79~83
    22 康国斌,许勇,雍伟东,葛磊,王丽萍,张海英,王永健,种康.低温诱导的黄瓜ccrl8基因的cDNA克隆及其表达特性分析.植物学报,2001,43(9):955~959
    23 孔凡晶,陈孝,马有志,辛志勇.利用差异显示技术克隆小麦抗白粉病相关基因的研究.麦类作物学报,2004,24(1):11~14
    24 黎裕.作物抗旱鉴定与指标.干旱地区农业研究.1993,11(1):91~99
    25 李常银,杨谦,王晓飞,孙野青.抗稻瘟病新基因pihitl的克隆与功能研究.高技术通讯,2004,10:21~26
    26 李竑,沈思师,许智宏.水稻eIF3大亚基eIF3a编码基因的克隆及其表达模式分析.实验生物学报,2003,36(1):54~60
    27 李子银,陈受宜.mRNA差异显示阳性克隆的快速筛选与鉴定.高技术通讯,1999,8:44~48
    28 刘强,赵南明,Yamaguch-ShinozakiK等.DREB转录因子在提高植物抗逆性中的作用.科学通报,2000,45(1):11~16
    29 刘秀珍,李传友,孙兰珍,刘宝申,隋新霞,宋伟.用DDRT-PCR技术对太谷核不育小麦基因差别表达的研究.西北植物学报,2003,23(12):2163~2166
    30 陆海,张建秋,张玉玲,苟小军.一种优化的mRNA差异显示技术分析白刺盐碱胁迫表达相关基因研究.成都大学学报(自然科学版),2004,23,(2):1~6
    31 马德钦,吕文,汤岚,骆爱玲,梁铮.菠菜甜菜碱醛脱氢酶基因克隆和序列分析.生物工程学报,1996,12(1):65~70
    32 马尚耀,严福忠,成惠娟.高粱的研究与现状.内蒙古农业科技,2002,6:8~9
    33 马月萍,戴思兰.mRNA差别显示技术及其在植物基因研究中的应用.北京林业大学学报,2003,25(2):81~84
    34 毛爱军,王台,宋艳茹.用差异显示反转录PCR银染技术研究植物基因表达的差异.生物化学与生物物理进展,2001,28(5):736~739
    35 孟凡荣,倪中福,吴利民,谢晓东,王章奎,孙其信.不同优势小麦正反杂交种子与亲本自交种子发育前期基因表达差异.作物学报,2005,31(1):119~123
    36 牛吉山,于玲,陈佩度.小麦3个被白粉菌诱导基因表达的分析.植物生理与分子生物学学报,2002,28(1):65~68
    37 山仑,黄占斌,张岁岐编著.节水农业.北京:清华大学出版社,2000:12~13
    38 唐犁,施教耐.水分胁迫对芦花磷酸烯醇式丙酮酸羧化酶表达水平及特性的影响.植物生理学报,1997,23(2):192~198
    39 田振东,柳俊,谢从华,宋波涛.DDRT-PCR与反向Northern杂交技术结合分离马铃薯mRNA差异表达片段.农业生物技术学报,2003,11(5):545~546
    40 王西平,刘振中,秦宝福,赵明德.mRNA差异显示技术及其在植物生理研究中的应用.西北农业大学学报,2000,28(6):197~202
    41 王振英,郑坚瑜.用mRNA差别显示方法分析黑麦盐胁迫下应答基因cDNA片段的表达特性.作物学报,2001,27(6):851~856
    42 谢晓东,倪中福,孟凡荣,吴利民,王章奎,孙其信.小麦杂交种与亲本发育早期种子的基因表达差异及其与杂种优势关系的初步研究.遗传学报,2003,30(3):260~266
    43 熊建华,陈学峰,张义平,朱英国,李阳生.红莲型杂交水稻红莲优6号及其亲本苗期与分蘖期根系基因表达差异分析.中国水稻科学,2004,18(2):94~98
    44 杨红,李颖,关国华,李秀玉.棉枯萎病菌异核体及其不同表型分离子在基因转录水平上的差异.遗传学报,2004,31(2):166~170
    45 叶纨芝,曹家树,曾广文.mRNA差别显示技术及其应用.生物技术,1998,9(4):25~30
    46 仪慧兰,梁爱华,陈芳.盐胁迫诱导的大麦基因差异性表达.植物生理学通讯,2002,38(5):440~442
    47 殷奎德,张兴梅,刘世强,李乐攻.冷胁迫诱导、咖啡因抑制的水稻根新基因片段的分离及表达分析.生物工程学报,2002,18(4):468~471
    48 印莉萍,刘维仲,刘祥林.DD-PCR分析铁高效和铁低效小麦品种基因表达的差异.首都师范大学学报,2000,21(2):58~63
    49 于福同,张爱民,陈受宜,张福锁.一个高亲和力水稻根系磷转运蛋白候选基因片段的克隆.遗传学报,2001,28(2):144~151
    50 袁宝玉.小麦品种抗旱性鉴定方法比较研究.干旱地区农业研究,1998,16(4):98~102
    51 张弛,陈受宜.利用DDRT-PCR技术分析在盐胁迫下水稻耐盐突变体中特异表达的基因.中国科学(B),1995:25(8):840~847
    52 张毕莉,邓昊,张瑞芳等.人类TECTB基因的电子克隆.遗传学报.2003,30(4):317~320
    53 张立平,吴平,祝金明.利用DD-PCR技术分析水稻铝诱导基因的表达差异.中国农业科学,1997,30(5):71~74
    54 张林刚,邓西平.小麦抗旱性生理生化研究进展.干旱地区农业研究,2000,18(3):87~92.
    55 张树珍,王自章.植物耐旱的分子基础及植物耐旱基因工程的研究进展.生命科学研究2001,3:134~140
    56 张晓红,王国英,胡剑,赵君.玉米幼苗胚根和胚芽基因表达的差异及差异条带的克隆.农业生物技术学报,2000,8(4):345~348
    57 张秀海,黄丛林,沈元月,曹鸣庆.植物抗旱基因工程研究进展.生物技术通报,2001,4:21~25
    58 张义平,陈学峰,熊建华,朱英国.红莲优6号杂交水稻与亲本三系不同发育时期幼苗叶片基因表达差异分析.武汉植物学研究,2003,21(1):27~30
    59 张正斌,山仑.作物抗逆性共同机理研究进展.作物杂志,1997,4:10~12
    60 张正斌.植物对环境胁迫的整体抗逆性的若干问题探讨.西北农业学报,2000,3:112~116
    61 赵大中,陈民,种康.运用差异显示法分离冬小麦春化作用相关cDNA克隆.科学通报,1998,43(9):965~968
    62 赵恢武,刘晗,于海源,胡鸢雷,高音,林忠平,李振宇.耐旱植物厚叶旋蒴苣苔BDN1脱水素基因的克隆及表达特性分析.科学通报,2000,45(15):1648~1654
    63 赵锦荣,阎小君,苏成芝.差异显示反转录PCR技术研究进展.生物化学与生物物理进展,2000:27(1):28~32
    64 周建明,朱群,白永延.稻瘟病侵染诱导的水稻早期反应基因cDNA片段克隆与序列分析.植物生理学报,1999,25(2):115~120
    65 周建明,朱群,白永延.水分胁迫诱导表达的小麦基因的cDNA片段克隆和序列分析.科学通报,1998,43(22):2419~2422
    66 朱志华,王環,昌小平,景蕊莲.渗透调节在小麦抗旱鉴定和育种中的应用.作物品种资源,1995,3:36~39
    67 Bachem C W B, Hoeven van der R S, Brujin S M. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tube development. Plant Jour, 1996, 9 (5): 745~753
    68 Bauer D, et al. Identification of galactose-inducible DNA sequence from sacchromyces cerevisiae by differential plaque filter hybridization. Cell, 1979, 16: 443~452
    69 Bauer D, Muller H, Reich J. Identification of differentially expressed mRNA species by an improved display technique. Nucleic Acids Res, 1993: 21 (18): 4272~4280
    70 Benito E P, Prins T, van Kan J A. Application of differential display RT-PCR to analysis of gene expression in a plant-fungus interaction. Plant Mol Biol, 1996:32 (5): 947~957
    71 Bertioli D J, Schlichter U H, Adams M J. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res, 1995, 23 (21): 4520~4523
    72 Birghram L A, Woo H H, Nicoll S M. Differential expression of protein and mRNAs from border cells and root tips of pea. Plant Physiol, 1995, 109:457~463
    73 Boschi E, Vergara M. A protocol for nonradioactive differential display test on carrot auxin-resistant mutants. Plant Mol Biol Rep, 1998, 16:88
    74 Bowler L D. Representational difference analysis of cDNA. Methods Mol Med, 2004, 94: 49~66
    75 Brouquisse R, Wiegel P, Rhodes D, et al. Evidence for a ferredox in dependent cholinemono oxygenase from spinach chloroplast stroma. Plant Physiol, 1989, 90:322~329
    76 Callard D, Axelos M, Mazzolini L. Novel molecular makers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol, 1996, 112:705~715
    77 Champoux M C, Wang G, Sarkarung S, Mackill D J, Toole J C O, Huang N, and McCouch S R. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor. Appl. Genet, 1995, 90:969~981
    78 Chen X F, Wang B Y, Wu R. A gibberllin stimulated ubizuitin conjugating enzyme gene is involved in alpha-amylase gene expression in rice aleurone. Plant Mol Biol, 1995, 29 (4): 787~795
    79 Dlatchenko L, Lany F C, Campbell A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Sci. USA, 1996, 93: 6025~6030.
    80 Dure L, Crouch M. Developmental biochemistry of cotton seed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 1981, 20:4162~4168
    81 Feng Y J et al. In Silico cloning of full length cDNA of cry-phonectria parasitica ubiquitin conjugated enzyme gene (CpUBC). China Journal of bioinformatics, 2004, 2 (2): 5~9
    82 Fladung M, Deutsch F, et al. T-DNA and transposon tagging in aspen. Plant Biol (Stuttg), 2004, 6(1): 5~11.
    83 Grosset J, Meyer Y, Chartier Y et al. Tobacco mesophyll protoplasts synthesize 1, 3-β-glucanase, dhitinases and "osmotins" during in vitro culture. Plant Physiol, 1990, 92:520~527
    84 Gulick P, Dvorak J. Gene induction and repressing by salt treatment in roots of the salinity sensitive Chinese Spring wheat and the salinity-tolerant Chinese Spring×Elotrigia elongatum amphiploid. Proc Natl Acad Sci USA, 1987, 84:99~103
    85 Hamino M, Miura H, Tabei Y. Analysis of differentially expressed mRNAs during the early development stage of strawberry fruit by differential display technique. Journal of the Japanese Sociely for HorticμLtural Science, 1998, 67:559~561
    86 Hannappel U, Balzer H J, Canal N W. Direct isolation of cDNA sequence from specific chromosomal regions of tomato genome by the differential display technique. Mol Gen Genet, 1995, 249: 19~24
    87 Heck G R, Perry S E, Nichols K W. AG115, a MADs domain protein expressed in developing embryos. Plant Cell, 1995, 7 (8): 1271~1282
    88 Heikkla J J, Papp J E T, Schultz G A et al. Induction of heat shock protein messenger RNA in maize mesocotyls by water stress, abscisic acid and wounding. Plant Physiol, 1984, 76: 270~274
    89 Hong S W, Jon J H, Kwak J M et al. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt and cold treatments in Arabidopsis thaliana. Plant Physiol, 1997, 113:1203~1212
    90 Hubank M, Schatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res, 1994, 22 (25): 5640~5648
    91 Ingram J, Bartels D. The molecular basis of dehydration tolerance in plant. Ann Rev Plant Physiol Plant Mol Biol, 1996, 47:377~403
    92 Johal G S, Bridgs S P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 1992, 258:985~987
    93 Jones D A, Thomas C M, et al. Isolation of the tomato lf-9 for resistance to cladosporium fulvum by transposon tagging. Science, 1994, 266:789~793
    94 Joshi C P, Kumar S, Nguyen H T. Application of modified differential display technique for cloning and sequencing of the 3' region from three putative members of wheat HSPP70 gene family. Plant Mol Biol, 1996, 30:641~646
    95 Knaap E van der, Kende Hans. Identification of a gibberellin-induced gene in deepwater rice using differential display of mRNA. Plant Mol Biol, 1995, 28:589~592
    96 Lamar E E, Palmer E.Y-encoded, spcies-specific DNA in mice: evidence that the chromosome exists in two polymorphic for ms ininbred strains. Cell, 1984, 37:171~177
    97 Larosa P C, Chen Z, Nelson D E et al. Osmotin gene expression is posttranscriptionally regulated. Plant Physiol, 1992, 100:409~415
    98 Lawrence G J, et al. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RSP2 and tobacco viral resistance gene N. Plant Cell, 1995, 7:1195~1206
    99 Lebreton C, Lazic-Jancic V, Steed A, Pekic S, and Quarrie S A. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp.Bot, 1995, 46: 853~865.
    100 Lee S W, Tomasetto C, Sager R. Positive selection of candidate tumor-suppressor genes by subtraction hybridization. Proc Nalt Acad USA, 1991, 88 (7): 2825
    101 Li F S, Barnathan E S, Kariko K. Rapid method for screening and cloning cDNAs generated indifferential mRNA display: application of Northern blot for affinity capturing of cDNAs. Nucleic Acids Res, 1994, 22: 1764~1765.
    102 Li Y, Chan P H. Identification of the pro-oncogene stathmin/op18 mRNA in the brain of mitochondrial Mn-superoxide dismutase-difecient mice by a modified differential display PCR. Brain Res Mol Brain Res, 1998, 155 (2): 277~284
    103 Liang P, Zhu W, Zhang X. Differential display using one-base ancored oligo-dT primers. Nucleic Acids Res, 1994, 22 (25): 5763~5764
    104 Liang Peng, Averboukh L, Pardee A B. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res, 1993,21 (14): 3269~3275
    105 Liang Peng, Pardee A B. Differential display of eukaryotic messenger RNA by means of thepolymerase chain reaction. Sci, 1992, 257: 967~970
    106 Lilley J M, Ludlow M M, McCouch S R, and Toole J C O. Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp. Bot. 1996, 47:1427~1436
    107 Lisit-syn N, Wigler M. Cloning the differences between two complex genomes. Sience, 1993, 259: 946~951.
    108 Liu Q, Kaμga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K and Shinozaki K. Two transcription factors DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellμLar signal transduction pathways in droμght-and low-temperature- respective gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1~17.
    109 Miele G. Elimination of false positives generated throμgh PCR-reamplification of differential display cDNA. Biotechniques, 1998, 25 (1): 138~144
    110 Neill S J and Burnett E C. RegμLation of gene expression during water deficit stress. Plant Growth Regulation, 1999, 29: 23~33.
    111 Nemoto Y, Sasakuma T, Kawakam I, N. Isolation of novel early salt-responding genes from wheat (Triticum aestivun L.) by differential display. Theor Appl. Genet, 1999, 98 (5): 673~678
    112 Nuccio M L, Thomas T L. ATS1 and ATS3: two novel embryo-specific genes in Arabidopsis thaliana. Plant Mol Biol, 1999, 39:1153~1163
    113 Oghara Y, Aizawa Y, Kzwakami N, Mural K. Cloning of cDNA specifically expressed in wheat spikelets at the heading stage, as identified by the simple differential display method. Plant science, 1998, 135:49~62
    114 Opsahl F H G, Dewnff E L, Dumas C. Z mest, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant Jour, 1997, 12 (1): 235~246
    115 Peters W, Knaab E van der, Kende H. The level of a mRNA with sequence similarity to the old yellow enzyme-NADPH dehydrogenases increase in chenopodium rubrum cells in response to cytokinin. Plant Mol Biol, 1996, 149 (12): 233~236
    116 Qin Qing-ming, ZHANG Quan, ZHAO Wen-sheng, et al. Identification ofa lectin gene induced in rice in response to magnaporthe grisea infection. Acta Botanica Sinica, 2003, 45 (1): 76~81
    117 Ray J D, Yu L, McCouch S R, Champoux MC, Wang G, and Nguyen HT. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 627~636.
    118 Rebrikov D V, Desai S M et al. Suppression subtractive hybridization. Methods Mol Biol, 2004, 258: 107~134.
    119 Roux C, Bilang J, Theunissen B H, Perrot-Rechenmann C. Identification of new early auxin marker in tobacco by mRNA differential display. Plant Mol Biol, 1998, 37:385~389
    120 Russell P. Two isoforms of NP24: A thaumatin-like protein in tomato fruit. Phytochem, 1997, 44 (7): 1241~1245
    121 Sachin Chatururvedi. India tries for drought tolerance. Biotechnology and Development Monitor, 1999, 18:8
    122 Schwartz S H, Tan B C, Gage D A, Zeevaart J A D, and McCarty D R. Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 1997, 276:1872~1874.
    123 Seehaus K, Tenhaken R. Cloning of genes by mRNA differencial display induced during the hypersensitive recection of soybean after inoculation with pseudom on as syringae pv.glacinea. Plant Mol. Bio, 1998, 38: 1225~1234.
    124 Sharma Y K, Davis K R. Isolation of a novel Arabidopsis ozone-induced cDNA by differential display. Plant Mol Biol, 1995, 29:91-98
    125 Shinozaki K, Yamaguchi-shinozaki K. Gene expression of and signal transduction in water-stress response. Plant Physiol, 1997, 115:327~334
    126 S.N.Mμgo, M. Banziger, G.O. Edmeades prospects of using ABA in selection for drought tolerance in cereal crops. Plant Physiol, 1992, 4 (2): 112~116
    127 Sompayrac L, Jane S, Bum T C. Overcoming limitation of the mRNA differential display technique. Nucleic Acids Res, 1995, 23 (22): 4738~4739
    128 Steven D Tanksley, Martin W Ganal and Gregory B Martin. Trends in Genetics, 1995, 11 (2):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700