用户名: 密码: 验证码:
氟磷酸亚铁钠正极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子二次电池是20世纪90年代发展起来的新型二次电池,因其优异的性能,发展十分迅速,已广泛用于国民经济建设与生活的各个方面。作为一种新型能源,目前锂离子电池仍存在价格较高、安全性不足等问题。而钠离子电池因具有成本低、安全性能高等独特的优势,是一很有潜力的替代品。钠离子电池的优异性能在很大程度上取决于正、负极材料的选择和制备,在当前负极材料的研究取得良好进展的前提下,获得钠离子嵌入/脱嵌性能良好的正极材料成为该类电池发展的一个关键。本文将借助X-射线衍射、扫描电镜、透射电镜、差热分析以及电化学测试等方法,系统研究多种制备法对所合成的钠离子二次电池正极活性材料氟磷酸亚铁钠的微结构以及循环可逆容量、循环伏安性能、交流阻抗谱的影响。
     首先采用固相法制备了氟磷酸亚铁钠粉体,研究了不同煅烧温度对合成材料显微结构和电化学性能的影响,结果表明750℃下合成材料体现出较好的电化学性能,首次放电容量为60mAh/g,循环20次后,容量下降为51.1mAh/g。随后采用在材料表面覆碳的方法对氟磷酸亚铁钠进行改性,结果表明当掺碳量为5%时,电池的首次放电比容量为111mAh/g,第20次的放电比容量为102.1mAh/g。比较了固相法和溶胶凝胶法合成的氟磷酸亚铁钠粉体的电化学性能,结果表明溶胶凝胶法合成的正极电化学性能明显优于固相法合成的正极电化学性能:首次放电比容量达到了91mAh/g,20次循环后放电比容量为81.71mAh/g。本文还探索了利用溶胶凝胶法在模板中合成氟磷酸亚铁钠纳米线,发现该法制备的材料初次放电容量高达119mAh/g,循环20次后的放电比容量为110mAh/g。
Lithium-ion battery is a new type of secondary batteries developed during 1990’s. Rapid progresses have been made in the research on lithium ion batteries due to its superior properties for recent years. As a new energy sources, lithium ion battery has the problem of high price and security trouble, while sodium ion battery prevails over it due to its low cost and excellent security performance, so sodium ion battery will be an attractive potential substitution for lithium ion battery. As we know the excellent performance of sodium ion battery depends deeply on the different type and preparation of anode/cathode material. While the effective research on anode material has already been done, study of cathode material with good electrochemical performance has become a key factor. In this thesis, The physical properties of a series of Na2FePO4F cathode materials synthesized by various routes are instigated and discussed in the light of structural (XRD), thermal (DTA) analyses and particle size distribution. Their microstructures were studied by transmission electron microscope (TEM) and scan electron microscope (SEM). The electrochemistry property were evaluated with cells containing the synthesized Na2FePO4F as positive electrode.
     The Na2FePO4F cathode materials for sodium ion battery were prepared by solid state reaction and the influence of synthesizing temperature and morphology on the electrochemical performance of Na2FePO4F powders in sodium ion batteries were systematically studied. The results indicate that Na2FePO4F synthesized at 750℃exhibited good electrochemical performance, whose first specific discharge capacity is 60mAh/g, after 20 times cycling, the average specific discharge capacity is 51.1mAh/g. Then we prepared Na2FePO4F cathode material coated with carbon by solid-state reaction. As cathode material, the first discharge capacity is 111mAh/g and the capacity reduces to 102.1mAh/g after 20 cycles. Ultrafine Na2FePO4F powders synthesized by a sol-gel process also shows a good electrochemical performance. Obviously, it is better than the material prepared by solid-state process: the first discharge capacity is 91mAh/g, after 20 cycles the specific capacity is around 81.71mAh/g. Besides, we tried to prepare arrays of nanowires using AAO
引文
[1] M.M.Doeff. Electrochemical Insertion of Sodium into Carbon[J], J. Electrochem. Soc., 1993, 140: 2169~2172.
    [2] P.Thomas, J.Ghanbaja, D.Billand. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte[J], Electrochim. Acta, 1999, 45: 423~430.
    [3] P.Thomas, D.Billand. Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties[J], Electrochim. Acta, 2000,46: 39~47.
    [4] Alcantara R., Fernandez M. F. J., Lavela P., et al. Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells[J], Carbon, 2000, 38: 1031~1041.
    [5] D.A.Stevens and J.R.Dahn. High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries[J], J.Electrochem. Soc., 2000: 1271~1273.
    [6] R.Alcantara, M.Jaraba, P.Lavela. NiCo_2O_4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries[J], Chem. Mater., 2002, 14: 2847~2848.
    [7] Delmas C., Brconnier J.J., Fouassier C., et al. Electrochemical intercalation of sodium in sodium cobalt oxide(NaxCoO_2) bronzes[J], Solid State Ionics, 1981, 3: 165~169.
    [8] A.Meni Boure, C.Delmas. Electrochemical intercalation and deintercalation of NaxMnO_2 bronzes[J], J. Solid State Chemistry, 1985, 57: 323~331.
    [9] J.Barker, M.Y.Saidi, J.L.Swoyer. A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4F[J], Electrochemical and Solid-State Letters, 2003, 6: A1~A4.
    [10] Y.Uebou, S.Okada J.Yamaki. Electrochemical Insertion of Lithium and Sodium into (MoO_2)_2P_2O_7[J], Power Sources, 2003, 115: 119~124.
    [11] GuoBingKun. 化学电源-电池原理制造技术[M], Changsha: Central South Industry University Press, 2000: 314~354.
    [12] 封伟, 韦玮, 吴洪才. 可溶导电聚苯胺的合成及其性能研究[J], 功能高分子学报, 1998, 11(2): 237~240.
    [13] 李念兵, 张胜涛. 高分子固体电解质研究进展[J], 材料导报, 2000, 14(6): 55~58.
    [14] 王标兵, 顾利霞. 高分子固体电解质(SPE)研究进展[J], 材料导报, 2000, 14(7): 45~49.
    [15] 娄永兵, 剧金兰. EAA 高分子固体电解质的制备与性能研究[J], 功能材料, 2000, 31(3):319~320.
    [16] 张升水, 邓正华. 聚氧化乙烯-聚磷酸钠共混物的钠离子导电性[J], 高分子材料科学与工程, 1992, 2: 68~71.
    [17] 方鹏飞, 李光远. 含 NaI 的环氧树脂-PEO 互穿网络高分子固体电解质的离子电导研究[J], 功能高分子学报, 1998, 11(1): 237~240.
    [18] Pupon R., Papka B.L., Influence of ion pairing on cation transport in the polymer electrolytes formed by poly(ethylene oxide) with sodium tetrofluoroborate and sodium tetrahydroborate[J], J. Chem. Soc., 1982, 104: 6247~6251
    [19] 张雄伟, 黄锐. 高分子复合导电材料及其应用发展趋势[J], 功能材料, 1994, 25(6): 492~499.
    [20] J.Plichta, Edward, K.Behl Wishvender. Method of making a flexible solid electrolyte for use in solid state cells[P], USP:5264308, 1993.
    [21] Hartwig. Process for the production of thermodynamically stable ion conductor materials[P], USP:4386020, 1983.
    [22] 杨萍华, 张振军. 硫酸钠基固体电解质材料的改性研究[J], 硅酸盐学报, 1994, 22(4): 387~391.
    [23] 温兆银, 陈昆刚. 固体电解质材料制备及应用[P], CNP:90102900, 1990.
    [24] A.Lundblad, B.Bergman. Synthesis of LiCoO_2 starting from carbonate precursors I. The reaction mechanisms[J], Solid State Ionics, 1997, 96: 173~181.
    [25] Y.Nishi. Lithium Ion Batteries: Fundamentals and Performance[M], Ed by M.Wakihara, O.Yamamoto, 1998.
    [26] 刘恒,孙红刚,周大利等,改进的固相法制备磷酸铁锂电池材料[J],四川大学学报(工程科学版), 2004, 36(4): 74~77
    [27] 张静,刘素琴,黄可龙. LiFePO_4:水热合成及性能研究[J],无机化学学报,2005, 21: 433~436.
    [28] A.K.Padhi, K.S.Nanjundaswamy, J.B.Goodenough. Phospho-olivines as Positive Electrode Materials for Rechargeable Lithium Batteries[J], J. Electrochem. Soc., 1997, 144(4): 1188~1194.
    [29] Akira Kinoshita, Katsunori Yanagida, Atsushi Yanaia, et al. Electrochemical Characteristics of LiNi_1-xCoxO_2 as Positive Electrode Materials for Lithium Secondary Batteries[J], J Power Sources, 2001, 102: 283~287.
    [30] Sang Ho Park, Yang-Kook Sun, Ki Soo Park, et al. Synthesis and ElectrochemicalProperties of Lithium Nickel Oxysulfide Material for Lithium Secondary Batteries[J], Electrochimica Acta, 2002, 47: 1721~1726.
    [31] 邓斌,阎杰,张朝帅. LiCoO_2 掺杂稀土元素研究[J], 电池, 2003, 33(2): 74~76.
    [32] 彭正顺. 钕、掺杂的正极材料尖晶石型 LiMn_2O_4 的制备及性能[J], 中国稀土学报, 2000, 18(1): 48~51.
    [33] 廖春发,陈子平. 锂离子电池正极材料 LiMn_2O_4 掺杂及对其性能的影响[J], 南方冶金学院学报, 2004, 25(2): 22~27.
    [34] 万传云,努丽艳娜,江志裕. 掺稀土的 LiM_(0.02)Mn_(1.98)O_4 锂离子电池正极材料[J], 高等学校化学学报, 2002, 23(1): 126~128.
    [35] Kalyani P., Kalaiselvi N., Renganathan N.G., et al. Studies on LiNi0.7Al0.3-xCoxO2 Solid Solutions as Alternative Cathode Materials for Batteries[J], Materials Research Bulletin, 2004, 39: 41~54.
    [36] Guilmard M., Pouillerie C., Croguennec L., et al. Structural and Electrochemical Properties of LiNi_(0.7)Co_(0.15)Al_(0.15)O_2[J], Solid State Ionics, 2003, 160: 39~50.
    [37] 赵方辉,应皆荣,何向明等. LiNi_(0.8)Co_(0.2)O_2 表面包覆 MgO 及其性能[J],电源技术, 2003, 27(1): 14~16.
    [38] 应皆荣,万春荣,姜长印. 用溶胶凝胶法在表面包覆 SiO_2[J],电源技术, 2001, 25(6): 401~404.
    [39] 卢俊彪,唐子龙,张中太等. LiFePO_4 材料的制备与电池性能的研究[J],无机材料学报, 2005, 20(3): 666~670.
    [40] H.Huang, S.C.Yin, L.F.Nazar. Approaching theoretical capacity OF A LiFePO4 at room temperature at high rates[J], Electrochem. Solid-State Lett., 2001, 10(4): A170~A172.
    [41] A.K.Hjelm, E.Tom. Electrochemical Investigation of LiMn_2O_4 Cathodes in Gel Electrolyte at Various Temperature[J], Electrochimica Acta, 2002, 48: 17~179.
    [42] Y.Aishiui, F.Roger. Novel High Rate Lithium Intercalation Cathode Materials[J], Journal of the Electrochemical Society, 2002, 149(2): A99~A102.
    [43] 徐茶清, 田彦文, 翟玉春. 锂离子正极材料 LiMn_2O_4 的研究现状[J], 材料与冶金学报, 2002, 1(4): 243~251.
    [44] M.Michael. Spinel Electrodes for Lithium Batteries[J], J. Am. Ceram Soc., 1999, 82(12): 3347~3354.
    [45] 彭正顺,马洁,邸静等. 溶胶-凝胶-酯化法制备 LiMn_2O_4 超细粉及其电化学性质的研究[J], 功能材料, 1999, 30(4): 379~381.
    [46] Lee Yun-sung, Sun Yang-kook. Synthesis of Spinel LiMn2O4 Cathode Material Prepared by an Adipic Acid-assisted Sol-gel Method, Solid State Ionics[J], 1998, 109: 285~294.
    [47] M.M.Doeff, R.Finones, H.Yaoqin. Electrochemical Performance of Sol-Gel Synthesized LiFePO4 in Lithium Battery[A], 11th International Meeting on Lithium Battery(IMLB)[C], Momterey, CA, USA, 2002.
    [48] F.Keller, M.S.Hunter, D L.Robinson. Structural features of oxide coatings on aluminum[J], J. Electrochem. Soc., 1953, 100(9): 411~419.
    [49] Wood G.C., J.P. O'Sullivan. Electron-Optical Examination of Sealed Anodic Alumina Films: Surface and Interior Effects[J], J. Electrochem. Soc., 1969, 116(10): 1351~1357.
    [50] 杨文彬,朱世富,赵北君. 纳米孔阵列阳极氧化铝膜的制备与形貌观测[J],四川大学学报(自然科学版), 2002, 39(6): 1061~1064.
    [51] 徐源,G.E.Thompson, G.C.Wood. 多孔型铝阳极氧化膜孔洞形成过程的研究[J],中国腐蚀与防护学报, 1989, 9: 1~3.
    [52] 马胜利,徐可为,葛利玲,井晓天. 多孔型铝阳极氧化膜显微形貌与结构[J],材料保护, 1999, 32(8): 6~7.
    [53] 马胜利,井晓天. 铝及铝合金阳极氧化膜结构及其应用[J],兵器材料科学与工程, 1998, 21(4): 54~57.
    [54] M.Konno, M.Shindo, S.Sugawara, et al. A composite palladium and porous aluminum oxide membrane for hydrogen gas separation[J], J. Membr. Sci., 1988, 37: 193~197.
    [55] H.Masuda, K.Fukuda. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J], Science, 1995, 268: 1466~1468.
    [56] H.Masuda, F.Hasegwa, S.Ono. Self-ordering of cell arrangement of anodic porous alumina. formed in sulfuric acid solution[J], J. Electrochem. Soc. 1997, 144: 127~130.
    [57] H.Chik, J.M.Xu. Nanometric superlattices:non-lithographic fabric-cation, materials, and prospects[J], Materials Science and Engineering, 2004, 43: 103~138.
    [58] 徐洮,陈建敏,赵家政. 铝阳极氧化膜的扩孔处理[J],材料保护, 1994, 27(9): 18~22.
    [59] Yang Shaoguang , Zhu Hao , Yu Dongliang, et al. Preparation and magnetic property of Fe nanowire array[J], J. Mag. Mag. Mater., 2000, 222: 97~100.
    [60] Strijkers G.J., Dalderop J.H.J., Broekstee M.A.A., et al. Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina [J], J. Appl. Phys., 1999, 86 (9): 5141~5145.
    [61] Whitney T.M., Jiang J.S., Searson P.C., et al. Fabrication and magnetic properties of arraysof Ni metallic nanowires[J], Science, 1993, 261(3): 1316~1319.
    [62] P.Hoyer, N.Baba, H.Masuda. Small quantum-sized CdS particles assembled to form a regularly nanostructured porous film[J], Applied Physics Letters, 1995, 66 (20): 2700~2702.
    [63] H.Masuda, M.Satoh. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask[J], Jpn J. Appl. Phys., 1996, 35: 126~129.
    [64] Takashi Kyotani, Li-fu Tsai, Akira Tomita. Preparation of ultrafine carbon tubesin. nanochannels of an anodic aluminum oxide film, Chem. Matter.[J], 1996, 8: 2109~2113.
    [65] Wang Xingyan, Wang Xianyou, Huang Weiguo, et al. Sol-gel Template Synthesis of Highly Ordered MnO2 Nanowire Arrays[J], Journal of Power Sources, 2005, 140: 211~215.
    [66] N.C.Li, C.R.Martin. A High Rate, High Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis[J], J. Electrochem. Soc., 2001, 148(2): A164~170.
    [67] Li N.C., Patrissi C.J., Che G.L., et al. Rate Capabilities of Nanostructured LiMn2O4 Electrodes in Aqueous Electrolyte[J], J. Electrochem. Soc., 2000, 147(6): 2044~2049.
    [68] N.C.Li, C.R.Martin, B.Scrosati. A High-Rate, High-Capacity, Nanostructured Tin Oxide Electrode for Lithium-Ion Battery Applications[J], Electrochemical And Solid State Letters, 2000, 3(7): 316~318.
    [69] C.J.Patrissi, C.R.Martin. Sol-Gel-Based Template Synthesis and Li-Insertion Rate Performance of Nanostructured Vanadium Pentoxide[J], J. Electrochem. Soc., 1999, 146(9): 3176~3180.
    [70] G.Maurin, Ch.Bousquet, F.Henn, et al. Electrochemical Intercalation of Lithium into multiwall carbon nanotubes[J], Chem. Phys. Lett., 1999, 312(1): 14~18.
    [71] Gao B., Kleinhammes A., Tang X.P., et al. Electrochemical intercalation of single-walled carbon nanotubes with lithium[J], Chem. Phys. Lett., 1999, 307: 153~157.
    [72] LI A.P., F.Müller, A.Birner, et al. Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina[J], J. Appl. Phys., 1998, 84(11): 6023~6026.
    [73] 吴俊辉,邹建平,朱青等. 硫酸溶液中形成多孔质阳极氧化铝膜的结构模型[J],化学物理学报, 1999, 12(1): 1~4.
    [74] XIAO Z.L., Catherine Y.Han, U.Welp, et al. Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes[J], Nano Lett., 2002, 2(11): 1293~1297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700