1. [地质云]滑坡
柔性多杆件系统的动力学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性多体系统是由多个刚体和柔性体相互连接而组成的系统,在人们生产生活中应用广泛。随着高速机械、机器人和航天结构的发展,对包含整体运动和弹性变形的柔性多体系统的研究越来越重要。
    本硕士学位论文是参加与香港城市大学合作项目——柔性多体系统动力学问题研究的基础上完成的。中心内容是应用有限元和模态分析方法研究柔性多体系统的动力学响应。主要内容是
    1、采用拉格朗日乘子法导出了柔性多体系统的控制方程,发展了一种基于有限元法和模态分析的方法来研究柔性体的动力响应。
    2、在应用有限元方法时,通过连续梁的模态分析导出了形函数,该形函数称为精确模态形函数。进而采用精确模态形函数导出了欧拉-伯努利梁单元的质量矩阵和刚度矩阵。
    3、在用应变能求刚度矩阵时,使用了非线性几何关系,将刚度矩阵分为常规的线性刚度矩阵和非线性的几何刚度矩阵。本文的工作考虑了整体位移和弹性变形耦合,同时考虑了梁的纵向刚化效应。
    4、由于柔性多体系统快变的弹性变形和相对慢变的刚体运动相耦合,动力方程离散成一组非线性刚性微分代数方程组。为了求解这种方程组,本文基于欧拉积分法提出了一种的非线性积分方法,将柔性体的控制方程降为一阶。为了避免积分累积误差,引入违约修正来校正位移和速度。
    5、对旋转梁、双连杆机构和曲臂连杆机构进行了仿真计算,仿真结果和已有的结果对比表明,本文的方法是有效的,具有优越性,能保证较高的计算精度。
Flexible Multibody Systems (FMBS) is systems that consist of rigid bodies and flexible bodies. Due to the development of high speed machinery, robots and aerospace structures, the research of FMBS undergoing both gross motion and elastic deformation is getting more and more important.
    This thesis is based on the investigation on “Dynamics Response of Flexible Multibody Systems” which is a cooperative project with City University of Hong Kong. In this thesis, the Finite Element Method (FEM) and mode analysis are applied to FMBS. Major contents are as follows:
    1. A new method based on mode analysis is developed to investigate dynamic response of FMBS in this thesis and the governing equation for FMBS is derived by using the method of Lagrange multipliers.
    2. Comparing to the conventional FEM, the shape function, which is named Accurate Mode Shape Function, is derived from motion equations for continuous beams, and the mass and stiffness matrix for Euler-Bounerlli beam are derived using the Accurate Mode Shape Function.
    3. By applying quadratic strain-displacement relationship, the Stiffness matrix is divided into two matrices. One is conventional stiffness matrix; the other is geometric stiffness matrix which is non-linear. Not only the coupling of gross motion and elastic deformation, but also the stiffness effect of axial stiffening effect is taken into account.
    4. As motion equations for FMBS can be discretized into a set of non-linear Differential Algebraic Equations (DAEs), in this thesis, a non-linear numerical integration method based on Euler's method, which can reduce DAEs to first-order ones, is proposed to solve these DAEs. A position and velocity correction are introduced to avoid cumulate errors.
    5. Simulations on a rotating beam, a two-bar mechanism and a slider crank are used to verify the proposed method. The computing results of numerical examples show that efficiency of the present method.
引文
王毅,吴德隆。航天柔性多体动力学及其发展。导弹与航天运载技术,1995年第1期。
    Lowen, G.G. & Jandrasits, W. G., Survey of Investigations into the Dynamic Behavior of Mechanisms Containing Links with Distributed Mass and Elasticity, Mechanism and Machine Theory, Vol. 7, 1972, pp: 3~17.
    王其政,宋文滨。航天事故与动力学环境预示和控制技术研究述评。中国航天工业总公司第702所。
    Likins, P. W., Dynamic Analysis of a System of Hinge-Connected Rigid Bodies with Non-rigid Appendage. International Journal of Solids & Structures. Vol. 9(1973), pp: 1473~1483.
    Singh, R., Likins, P., Vandervoort, R., Interactive Design for Flexible Multibody System Control. Proc. IUTAM/IFTOMM Symposium on Dynamics of Multibody System, Udine, Italy, 1985.
    Ho, J. Y. L., Direct Path Method for Flexible Multibody Spacecraft Dynamics. AIAA Journal of Spacecraft & Rocket. Vol. 14, No. 2(1977), pp: 102~110.
    Boland, P., Stability Analysis of Interconnected Deformable Bodies with Closed-Loop Configuration. AIAA Journal. Vol. 13, No. 7(1975), pp: 864~867.
    Boland, P., Samin, J. C. & Williams, P. Y., Stability Analysis of Interconnected Deformable Bodies in Topological Tree. AIAA Journal. Vol. 12, No. 8(1974), pp: 1025~1032.
    Boland, P., Samin, J. G., Stability Analysis of Interconnected Deformable Bodies with Closed-Loop Configuration. AIAA Journal. Vol. 13(1975), pp: 864~867.
    Kane, T. R. & Levinson, D. A., Formulation of Equations of Motion for Complex Spacecraft. Journal of Guidance, Control & Dynamics. Vol. 3, No. 2(1980), pp: 99~112.
    Kane, T. R., Ryan, R. R. & Banerjee, A. K., Attached to Moving Base. Journal of Guidance, Control & Dynamics. Vol. 10, No. 2(1987), pp: 139~150.
    
    Haug, E. J., Wu, S. C. & Kim, S. S. Dynamics of Flexible Machines, A Variational Approach. Proc. IUTAM/IFTOMM Symposium on Dynamics of Multibody Systems, Udine, Italy, 1985.
    Wu S C., Haug E J, Kim S S. A variational approach to dynamics of flexible Multibody systems. Mechanical Structure and Machinery. 1989, 17(1): 3~32.
    E.J. Haug, W. Pan. Optimal inertia lumping from modal mass matrices for structural dynamics. Computer methods in applied mechanics and engineering. 163 (1998) 171~191.
    W. Pan and E.J. Haug. Flexible multibody dynamic simulation using optimal lumped inertia matrices. Computer methods in applied mechanics and engineering. 173 (1999) 189~200.
    Lu You Fang, A.A. Shabana and Om P. Agrawal. Application of perturbation techniques to flexible system dynamics. Computers & Structures. Vol. 27, No. 5, pp. 631~637, 1987.
    A.A. Shabana. Dynamics of Multibody System. John Wiley & Sons. 1989.
    Shabana A A. Constrained motion of deformable bodies. Int. J. Numerical Methods in Engineering. 1991, 32: 1813~1831.
    陆佑方。柔性多体系统动力学。北京:高等教育出版社。1996。
    J.T. Wang and R.L. Huston. Computational methods in constrained multibody dynamics: Matrix formalisms. Computers & Structures. Vol. 29, No. 2, pp. 331—338, 1988.
    Huston, R. L., Appl. Mech. Rev. No. 44, No. 3(1991), pp: 109~114.
    J.D. Connelly and R.L. Huston. The aynamics of flexible multibody systems: A finite segment approach – II. Example problems. Computers & Structures. Vol. 50, No.2, pp. 259~262, 1994.
    J.D. Connelly and R.L. Huston. The dynamics of flexible multibody systems: A finite segment approach – I. Theoretical aspects. Computers & Structures. Vol. 50, No.2, pp. 255~258, 1994.
    刘又午。多体动力学的休斯敦方法及其发展。中国机械工程第11卷第6期,2000年6月。
    
    王成国,梁国平。车辆动力学的多体有限元方法。中国铁道科学。第17卷第1期,1996年。
    陆佑方,袁冠民,王彬,齐朝晖。柔性多体系统动力学——理论和应用力学的一个活跃领域。力学与实践。第16卷第2期,1994年。
    Winfrey, R. C., Elastic Link Mechanism Dynamics. ASME, Journal of Engineering for Industry. Vol. 93(1971), pp: 268~272.
    Erdman, A. G. & Sandor, G. N., A General Method for Kineto-Elastodynamic Analysis and Synthesis of Mechanisms. ASME, Journal of Engineering for Industry, Vol. 94(1972), pp: 1193~1205.
    张策等著。弹性连杆机构的分析与设计。北京:机械工业出版社,1989。
    Thompson, B. S., Sung, C. K., Asurvey of Finite Element Techniques for Mechanism Design. Mechanism & Machine Theory, Vol. 21, No. 4(1986), pp: 351~359.
    Yoo, W. S., Haug, E. J., Dynamics of Flexible Mechanical Systems Using Vibration and Static Corrected Modes. Jour. of Mech. (1986), pp: 105~125.
    Schiehlen, W.O. & Kreuzer, E.J., Symbolic Computerized Derivation of Equations of Motion. Dynamics of Multibody Systems, IUTAM. Munich, Springer-Verlag, 1977.
    E. Kreuzer, W. Schiehlen, NEWEUL – Software for the Generation of Symbolical Equation of Motion. Multibody Systems Handbook, W. Schiehlen, editor, Berlin: Springer, 1990.
    王国强,张进平,马若丁编。虚拟样机技术及其在ADAMS上的实践。西安:西北工业大学出版社,2002。pp: 3.
    G. A. Macala, Symbod: A Computer Program for the Automatic Generation of Symbolic Equations of Motion for Systems of Hinge-Connected Rigid Bodies. AIAA Journal. 1983.
    Wittenburg, J., Wolz, U., MESA VERDE: A Symbolic Program for Nonlinear Articulated-Rigid-Body Dynamics. Proc. of 10th Design Engineering Division Conf. on Mechanical Vibration and Noise, Cincinnati (1985).
    J.C. Piedboeuf, Modelling Flexible Robots with Maple, MapleTech, vol.3, no.1, 1996.
    
    J.J. McPhee and C.E. Wells, Automated Symbolic Analysis of Mechanical System Dynamics, MapleTech, vol.3, no.1, pp.48-56, 1996.
    Orlandea, N., Chace, M.A. and Calahan, D.A. “A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems, Parts I and II.” Journal of Engineering for Industry, Vol. 99, August, 1977, pp. 773-784.
    凌复华等。常微分方程数值方法及其在力学中的应用。重庆:重庆大学出版社。1990年。
    Qin Zheng, Ye Shang-hui & Liu Ming-zhi. A New Numerical Method for Dynamics Equation. International Conference on EPMES-IV, Dalian, P.R.China, August, 1992.
    Simo, J. C. & Vu-Quoc, L., The Role of Non-linear Theories in Transient Dynamic Analysis of Flexible Structures. Journal of Sound and Vibration 119(3), 1987, 487~508.
    El-Absy, H. & Shabana, A. A., Geometric stiffness and stability of rigid body modes. Journal of Sound and Vibration 207(4), 1997, pp: 465~496.
    Wallrapp, O. & Schwertassek, R., Representation of Geometric Stiffening in Multibody System Simulation. International Journal for Numerical Methods in Engineering 32, 1991, pp: 1833~1850.
    S.S Kim & E.J Haug, A Recursive Formulation for Flexible Multibody dynamics, Part I: Open-loop System. Comput. Meths. Appl. Mech. Engrg. 71(1988), pp: 293~314.
    Wu, S. C. & Haug, E. J., Geometric Non-linear Substructureing for Dynamics of Flexible Mechanical Systems. International Journal for Numerical Methods in Engineering. 26, 1988, pp: 2211~2226.
    M. Berzeri & A. A. Shabana. Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate Formulation. Multibody System Dynamics. 7(2002), pp: 357~387.
    王建明、周学军、刘才山、刘又午。基于几何非线性及小变形条件的柔性多体系统动力学。振动工程学报。11(3),340~345(1998)。
    H.A. Elkaranshawy & M.A. Dokainish. Corotational Finite Element Analysis of
    
    
    Planar Flexible Multibody Systems. Computers & Structures. Vol. 56, pp: 1~14, 1995.
    E.M. Bakr & A.A. Shabana. Geometrically Nonlinear Analysis of Multibody Systems. Computers & Structures. Vol. 23, No. 6, pp: 739~751, 1986.
    袁赵鼎,费景高,刘德贵。刚性常微分方程初值问题的数值解法。北京:科学出版社,1987。
    Blajer W. A Geometric Unification of Constrained System Dynamics. Multibody System Dynamics. 1997, 1(1), pp: 3~21.