用户名: 密码: 验证码:
超浓乳液法制备双亲性胶体粒子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
这个课题的主要目的是通过超浓乳液聚合的方法制备具有疏水核/亲水壳的双亲性胶体粒子。核的主要组成成分是聚苯乙烯(PS),壳的主要组成成分是聚丙烯酰胺(PAM)。
     这种核壳粒子的主要特点是核壳聚合物间没有共聚物过渡层,仅仅是嵌套在一起,从而最大限度地保持了二者的特性及粒子的双亲性。更重要的是,通过控制条件,可以获得网孔形态的壳层(图2)。壳层孔的存在使得粒子具有双亲性:亲水性的壳层使得这种粒子对水有亲和力;壳层孔的存在使得疏水性的核能够与外界接触,从而使粒子对有机溶剂也有亲和力。这种双亲性体现在粒子具有相应的吸水率和吸油率。
     在本实验中,双亲性核壳粒子的制备是分开的两步。首先,用超浓乳液聚合的方法,制备出疏水性聚苯乙烯核:将苯乙烯、二乙苯、过氧化羟基异丙苯(CHPO)、乙苯、偶氮二异丁腈(AIBN)混合均匀作为分散相,水作为连续相,十二烷基硫酸钠(SDS)为乳化剂,配成超浓乳液,加热聚合,使苯乙烯转化率达到100%,得到乙苯溶胀的聚苯乙烯胶体粒子(图1)。然后,在聚苯乙烯胶体粒子表面包覆聚丙烯酰胺壳:取一定量的聚苯乙烯胶体粒子作为分散相,丙烯酰胺(AM)、N,N’—亚甲基双丙烯酰胺(DAM)、硫酸亚铁(FS)的水溶液作为连续相。核粒子表面层的CHPO首先与FS反应,产生自由基,引发AM聚合。生成的聚丙烯酰胺在交联和缠结的共同作用下,粘附在核的表面形成壳层(图2、3)。
     研究发现,丙烯酰胺聚合的温度、反应时间、引发剂的用量、丙烯酰胺的用量及其交联剂DAM的用量对壳层的形态都有着显著的影响。
    
    北京化工大学硕士学位论文
     这种双亲性核壳粒子的亲油性是壳层的网孔形态决定的。壳层孔的存在使得
    疏水性聚苯乙烯核可以与外界接触。同时,有机溶剂(例如柴油)也可以通过孔
    进入粒子内部,从而使粒子具有一定的吸油率。由于壳层是由亲水性的聚丙烯酞
    胺构成的,粒子对水也有亲和力。显然,壳层越厚,吸水率越高,吸油率越低。
    所以,粒子的吸水吸油率既可以表征粒子的双亲性,也可以印证壳层的形态。其
    次,扫描电镜、红外、溶礼悬浮测试也是有效的定量表征手段。
     这种双亲粒子可被广泛应用于药物缓释及催化剂载体等领域。譬如药物传递
    与释放:我们知道,细胞膜是疏水性的,细胞核是亲水性的,兼具疏水性和亲水
    性的载体粒子可以顺利地通过细胞膜,进入细胞内部释放出药物分子。
     超浓乳液聚合是九十年代发展起来的新技术,现己广泛应用于制备互穿聚合
    物网络、自增容合金、分离膜。但对于超浓乳液聚合的机理,迄今为止,没有进
    行过系统的研究。在总结前人研究的基础上,论文的第五部分对户dBN引发的苯
    乙烯超浓乳液聚合的机理做一些初步的探讨,得出了一些经验性的规律。
    关键词:超浓乳液,胶体粒子,核壳,双亲性
Amphiphilic particles can be prepared by jointing hydrophilic polymer chains and hydrophobic chains. The jointing methods include blocking, grafting, and random copolymerization. The amphiphilic particles prepared by these methods contain hydrophilic and hydrophobic chains combined by chemical bonds. The jointing portions, however, are neither hydrophilic nor hydrophobic. Thus, the amphiphilicity of the particles is reduced. In order to overcome this shortcoming, a novel and simple method to prepare amphiphilic colloidal particles with hydrophobic core/hydrophilic shell is proposed.In the first step, the individual polystyrene (PS) colloidal particles (Fig. 1) were obtained by using a concentrated emulsion as precursor. Divinyl benzene (DVB) was employed as a crosslinker, and AIBN, an initiator. Sodium dodecyl sulfate (SDS) was used as the emulsifier and water as the continuous phase.Subsequently, amphiphilic monomer, acrylamide (AM) was introduced into the polymerized concentrated emulsion with N, N -methylenebisacrylamide (DMA) as its crosslinker, water as a diluent and Ferrous Sulfate (FS) a reductant initiator. FS and Cumene Hydroperoxide (CHPO), which was introduced into the PS core particles during the first step, formed an ox-reduction initiator system. CHPO diffused into the surface of the PS core, reacted with the FS in the continuous phase, and released free radicals. Under the proper conditions, polyacrylamide shells could encapsulate PS cores, and the shells possessed a porous (Fig.2) or wrinkle structure (Fig.3).A notable feature of the work is that no copolymer jointing portions exist. The hydrophobic cores were just encapsulated by hydrophilic shells.
    
    The porous shell (Fig.2) ensured the hydrophobic cores accessible to the outside media. As a result, such particles could be dispersed in both water and organic solvents. That is to say, they were compatible with both polar and nonpolar solvents.Scanning electron microscope (SEM) photographs confirmed the shell structure. The amphiphilicity of the particles was characterized by their water and diesel oil absorbabilities.It was found that polymerization recipes and reaction conditions, such as the amount of ox-reduction initiator, diluent, hydrophilic monomer, DAM and the temperature of polymerization could adjust the structure and thickness of the hydrophilic shells.The stability of the concentrated emulsions was studied. Other monomer, such as methyl methacrylate, was also employed.Such amphiphilic colloidal particles can be used widely in drug delivery and catalytic processes.
引文
(1) Yoshida Ryo, Sakai Kiyotaka, Okano Teruo, Sakurai Yasuhisa, Drug release profiles in the shrinking process of thermoresponsive poly(N-isopropylacrylamide-co-alkyl methacrylate) gels, Ind. Eng. Chem. Res., 1992, 31(10), 2339-2345
    (2) Sung Cynthia, Raeder J E, Merrill E W, Drug partitioning and release characteristics of tricyclic antidepressant drugs using a series of related hydrophilic-hydrophobic copolymers, J Pharm Sci, 1990, 79, 829
    (3) Hong Liang, Ruckenstein Eli, Metal carbonyl anion loaded molecular reservoir particles-application to the catalytic synthesis of two styrene oxide derivatives, J Mol. Catalysis, A:Chem. 1995,101(2), 115-125
    (4) Sharon Lee, Rudin Alfred, The mechanism of core-shell inversion in two-stage latexes, J Polym Sci, Part A: Polym Chem, 1992, 30(5), 865-871
    (5) Iwhan Cho, Kyung-Woo Lee, Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene, J Appl Polym Sci, 1985, 30(5):1903-1926
    (6) Lee D I, Ishikawa T, The formation of "inverted" core-shell latexes, J Polym Sci: Polym Chem Ed, 1983, 21(1):147-154
    (7) M Narkis, M Silverstein, Polymer/polymer composites consisting of interpenetrating network-domain latex particles, J Elastomers Plastic, 1986, 18(3):136-146
    (8) Victoria Dimonie, Mohamed S. El-Aasser, Andrew Klein, John W. Vanderhoff, Core-shell emulsion copolymerization of styrene and acrylonitrile on polystyrene seed particles, J Polym Sci: Polym Chem Ed, 1984, 22(9):2197-2215
    (9) S Muroi, H Hashimoto, K Hosoi, Morphology of core-shell latex particles, J Polym Sci: Polym Chem Ed, 1984, 22:1365-1372
    (10) Barrett K E J (Ed). Dispersion Polymerization in Organic Media, New York, Interscience, 1975
    (11) 曹同玉,刘庆普,胡金生,聚合物乳液合成原理性能及应用,第1版,北京,化学工业出版社,1997,415-419
    (12) Aleksandra Gasperowicz, Mary la Kolenaowicz, Tadeusz Skowronshi, Grafting of styrene onto poly(butyl acrylate) in emulsion, Polymer, 1982, 23(6):839-842
    (13) Sperling Leslie H, Grates J A, Lorenz J E, Thomas D A, Noise damping with methacrylate/acrylate latex interpenetrating polymer networks, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem, 1975, 16(l):274-279
    (14) Masayoshi Okubo, Mashiro Seike, Tsunetaka Matsumoto, Studies on suspension and emulsion. LX. composite polymer emulsion film with temperature-sensitive properties, J Appl Polym Sci, 1983, 28(l):383-390
    (15) Masayoshi Okubo, Seitaro Yamaguchi, Tsunetaka Matsumoto, Mophology of composite polymer emulsion particles consisting of two kinds polymers between which ionic bonding intermolecular interaction operates, J Appl Polym Sci, 1986, 31(4): 1075-1082
    
    (16) S Yamaguchi, The preparation of magnetic and dielectric emulsions, Kobunshi Ronbunshu, 1976,33 (11):663
    (17) Eliseeva V I, Gerasimova A S, Frantsuz Z S, Titova N V, Afanas'eva N V, Borisova T I, Regulation of structure and morphology of a polymer during latex polymerization of monomer mixtures, Vysokomol Sodin, Ser A, 1984,26:1382
    (18) Michael J. Devon, John L. Gardon, Glen Robert, Alfred Rudin, Effects of core-shell latex morphology on film forming behavior, J Appl Polym Sci,1990, 39:2119-2128
    (19) Eliseeva, Morphology and phase structure of latex particles. Their influence on the properties of latexs and films, Prog Org Coatings,1985,13(3-4):195-221
    (20) Blankenship Robert M, Kowalski A, Core-sheath polymer particles containing voids, the resulting product and its use, US Patent 4594363 (1986)
    (21) M Silverstein, Y Talmon, M Narkis, Microstucture of polyacrylate/polystyrene two-stage latices, Polymer, 1989, 30(3):416-423
    (22) 潘祖仁,高分子化学,第1版,北京,化学工业出版社,1997,77
    (23) Jamois D, Tessier M, Marechal E. Preparation of Amphiphilic Polyisobutylenes-b-polyethylenamines by Mannich Reaction. I. Synthesis and Charaterization of Phenoligoisobutylenes, J Polym Sci, Part A: Polym Chem, 1993, 31:1923-1939
    (24) Jamois D, Tessier M, Marechal E. Preparation of Amphiphilic Polyisobutylenes-b-polyethylenamines by Mannich Reaction. II. Study of Mannich Reaction on Model Systems, J Polym Sci, Part A: Polym Chem, 1993, 31:1941-1958
    (25) Jamois D, Tessier M, Marechal E. Preparation of Amphiphilic Polyisobutylenes-b-polyethylenamines by Mannich Reaction. III. Synthesis of Polyisobutylenes-b-polyethylenamines, J Polym Sci, Part A: Polym Chem, 1993,31: 1959-1966
    (26) Kanaoka S, Sawamoto M, Higashimura T. Star-Shaped Polymers by Living Cationic Polymerization. 5. Core-Functionalized Amphiphilic Star-Shaped Polymers of Vinyl Ethers with Hydroxyl Groups: Synthesis and Host-Guest Interaction, Macromolecules, 1993, 26: 254-259
    (27) Uyama H, Honda Y, Kobayashi S. Synthesis and Emulsion Copolymerization of Amphiphilic Poly (2-Oxazoline) Macromonomer Possessing a'Vinyl Ester Group, J Polym Sci, Part A: Polym Chem, 1993, 31: 123-128
    (28) Mori H, Hirao A, Nakahama S, Senshu K. Synthesis and Surface Characterization of Hydrophilic-Hydrophobic Block Copolymers Containing Poly (2, 3-dihydroxypropyl methacrylate), Macromolecules, 1994, 27:4093-4100
    (29) Kanaoka S, Sueoka M, Sawamoto M, Higashimura T. Star-Shaped Polymers by Living Cationic Polymerization. VII. Amphiphilic Graft Polymers of Vinyl Ethers with Hydroxyl Groups: Synthesis and Host-Guest Interaction, J Polym Sci, Part A: Polym Chem, 1993, 31:2513-2521
    
    (30) Zhu L M, Gunnarsson O, Wesslen B. An Amphiphilic Graft Copolymer as a Surface-Modifying Additive for Poly (methyl methacrylate), J Polym Sci, Part A: Polym Chem, 1995, 33:1257-1265
    (31) Kapellen K K, Stadler R. Synthesis and Charaterization of Amphiphilic Comb-Polymers via Ring-Opening Metathesis Polymerization of exo, exo-5,6-bis(alkoxymethyl)-7-oxabicyclo[2.2.1]hept-2-enes, Polym Bull, 1994, 32:3-10
    (32) Bo G, Wesslen B, Wesslen K B. Amphiphilic Comb-Shaped Polymers from Poly (ethylene glycol) Macromonomers, J Polym Sci, Part A: Polym Chem, 1992, 30: 1799-1808
    (33) Kimura T, Tanji K, Minabe M. Grafting of Hydrophobic Oligostyrene onto Hydrophilic 6,6-Type Polyamide, Polymer J, 1992, 24:1311-1315
    (34) Ruckenstein E, Hong L. Polymers with Hydrophilic and Hydrophobic Polymeric Side Chains, Macromolecules, 1993, 26:1363-1368
    (35) Akashi M, Chao D, Yashina E, Miyauchi N. Graft Copolymers Having Hydrophobic Backbone and Hydrophilic Branches Obtained by the Copolymerization of Poly (ethylene Glycol) Macromonomer with Methyl Methacrylate, J Appl Polym Sci, 1990, 39:2027-2030
    (36) Murayama S, Kuroda S, Osawa Z. Hydrophobic and Hydrophilic Interpenetrating Polymer Networks (IPNs) Composed of Polystyrene and Poly (2-hydroxyethyl methacrylate): 2. Gradient Composition in the IPNs Synthesized by Photopolymerization, Polymer, 1993, 34 (18): 3893-3898
    (37) Blezer R, Lindhout T, Keszler B, Kennedy J P. Amphiphilic Networks. VIII. Reduced in Vitro Thromboresistance of Amphiphilic Networks, Polym Bull, 1995, 34: 101-107
    (38) Park D, Keszler B, Galiatsatos V, Kennedy J P, Ratner B D. Amphiphilic Networks. 9. Surface Characterization, Macromolecules, 1995, 28:2595-2601
    (39) Ruckenstein E, Park J S. Hydrophilic-Hydrophobic Polymer Composites, J Polym Sci, Part C: Polym Lett Ed, 1988, 26:529-536
    (40) Fitch Robert M, Latex particle nucleation and growth, ACS Symp. Ser. 1981, 165(Emulsion Polym. Emulsion Polym.), 1-29
    (41) Hansen F K, Ugelstad John, Particle formation mechanisms(in emulsion polymerization), Emulsion Polym.,1982, 51-92, Edited by Piirma Irja, Academic: New York, N.Y.
    (42) Ugelstad John, EL-Aasser M S, Vanderhoff J M, Emulsion polymerization. Initiation of polymerization in monomer droplets, Polymer Letters, 1973, 11:505
    (43) Ugelstad John, Hansen F K, Lange S, Emulsion polymerization of styrene with sodium hexadecyl sulfate-hexadecanol mixtures as emulsifiers. Initiation in monomer droplets, Makromol Chem, 1974, 175:507
    (4
    
    (44) Ugelstad John, Swelling capacity of aqueous dispersions of oligomer and polymer substances and mixtures thereof, Makromol Chem, 1978, 179:815
    (45) Ugelstad John, Mark P C, Hansen K H. Kinetics and Mechanism of Vinyl Chloride Polymerization, Pure Appl Chem, 1981, 53:323-363
    (46) Ugelstad John, Moerk P C, Hansen F K, Kaggerud K H, Ellingsen T, Kinetics and mechanism of vinyl chloride polymerization, Pure Appl. Chem, 1981, 53(2):323-363
    (47) Chou Y T, EL-Aasser M S, Vanderhoff J W. Polymer Colloids, New York: Plenum, 1980
    (48) Lissant K J. The geometry of high-internal-phase-ratio emulsions, J Colloid Interface Sci, 1966, 22:462
    (49) Lissant K J. A study of medium and high-internal-phase-ratio water/polymer emulsions, J Colloid Interface Sci, 1973, 42 (1): 201
    (50) Lissant K J. Structure of high-internal-phase-ratio emulsions, J Colloid Interface Sci, 1974, 47:416
    (51) Princen H M, Highly concentrated emulsions. I cylindrical systems, J Colloid Interface Sci, 1979, 71 (1): 55
    (52) Princen H M, Aronson M P. Highly concentrated emulsions. Ⅱ real systems, J Colloid Interface Sci, 1980, 75 (1): 246
    (53) Princen H M. Rheology of foams sand highly concentrated emulsions, J Colloid Interface Sci, 1983, 91:160
    (54) Ruckenstein E, Kyu-jun Kim, Polymerization in gel-like emulsions, J of Appl Polym Sci, 1988, 36, 907-923
    (55) Ruckenstein E, Fuming Sun. A new concentrated emulsion polymerization pathway, J of Appl Polym Sci, 1992, 46:1271
    (56) 杜中杰.丙烯腈及其共单体的室温引发浓乳液聚合方法研究.[学位论文].北京:北京化工大学,1997
    (57) Ruckenstein E, Li H. The concentrated emulsion approach to toughened polymer composites: a review, Polym Composites, 1997, 18 (3): 320
    (58) Ruckenstein E, Hangquan Li. Semiinterpenetrating polymer network latexes via concentrated emulsion polymerization, J of Appl Polym Sci, 1995, 55: 961
    (59) Ruckenstein E, Jun Seo Park. Hydrophilic-hydrophobic polymer composites, J of Appl Polym Sci, Part C Polym Lett, 1988, 26:529
    (60) 黄皓浩.浓乳液法制备自增容合金.[学位论文].北京:北京化工大学,1997
    (61) 刘茉娥.膜分离技术.北京:化学工业出版社,1998
    (62) Zhang S M, Drioli E. Pervaporation membranes, Sep Sci Tech, 1995,30:1-31
    (63) Hickey P J, Juricic F P, Slater C S. The effect of process parameters on the pervaporation of alcohols through organophilic membranes, Sep Sci Tech, 1992,27: 843-861
    
    (64) Hino T, Ohya H, Hara T. Removal of halogenated organics from their aqueous solutions. In: Proceedings of 5th Intl. Conf. On PV Processes in the Chem Industry, Heidelberg, Germany, March 115,1991:423-435
    (65) Lee Y M, Bourgeois D, Belfort G. Sorption, diffusion, and pervaporation of organics in polymer membrane. J. Membrane Sci., 1989,44:161-181
    (66) Karlsson H O E, Tragardh G. Pervaporation of dilute organic-waters mixtures. J. Membrane Sci., 1993,76:121-146
    (67) 方军,黄继才,郭群晖.有机物优先透过的渗透汽化分离膜.膜科学与技术,1998,18:1-6
    (68) Boddeker K W, Bengtson G, Pingel H. Pervaporation of isomeric butanols. J. Membrane Sci., 1990, 54:1-2
    (69) Yu N, Shigehiro M, Kiyohide M. Chemical Modification of Poly(substituted-acetylene), J. Applied. Poly. Sci., 1989, 37:1259-1267
    (70) Blume I, Wijmans J G, Baker R W. The separation of dissolved organics from water by pervaporation, J. Membrane Sci., 1990, 49:253-286
    (71) Shinsuke T, Hidedi Y, Shoji T. Pervaporation of ethanol/water mixtures using novel hydrophobic membranes containing polydimethylsiloxane, J. Membrane Sci., 1992,75:93-105
    (72) Baker R W, Cussler E L, Eykamp W. Membrane separation system noyes data cooperation 1991
    (73) Hans O E, Karlsson, Gun T. Pervaporation of dilute organic-waters mixtures, J. Membrane Sci., 1993, 76:121-146
    (74) Eli Ruckenstein, Kyu-Jun K. Polymerization in gel-like emulsions, J. Appli. Poly. Sci., 1988,36:907-923
    (75) Hans O E, Karlsson, Gun T. Pervaporation of dilute organic-waters mixtures, J Membrane Sci. 1993,76: 121-146
    (76) Masayoshi Okubo, Akira Yamada, Tsunetaka Msatsumoto, Estimation of mophology of composite polymer emulsion particles by the soap titration method, J Polym Sci, Polym Chem Ed, 1980, 18( 11 ):3219-3228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700