用户名: 密码: 验证码:
Ti_3SiC_2增强Cu基复合材料及金属/Ti_3SiC_2-SiC层状材料的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元化合物碳化硅钛(Ti_3SiC_2)是一种新型陶瓷材料,理论密度为4.53 g/cm~3,熔点超过3000℃,由于其兼具金属与陶瓷的双重特性而引起广泛关注。它象金属一样具有良好的导热、导电性,并对热震不敏感,高温下表现塑性行为,又象陶瓷一样具有高熔点、高屈服强度、耐腐蚀、抗氧化等性能,被认为是作为高温结构材料及电极材料最具应用前景的新型陶瓷材料之一。本文采用无压烧结制备出纯度较高的Ti_3SiC_2陶瓷材料,对其作为增强相在Cu基复合材料中的应用做了探索,并采用无压烧结和放电等离子烧结技术制备出(1-x)Ti_3SiC_2-xSiC (x=0-1)复合材料,在此基础上,采用放电等离子烧结制备出Ti、Mo、W/Ti_3SiC_2和Ti、Mo、W/(1-x)Ti_3SiC_2-xSiC层状复合材料,对Ti、Mo、W/Ti_3SiC_2层状材料的界面及高温热稳定性进行了研究。
     采用钛粉、硅粉、石墨粉为原料,无压烧结制备Ti_3SiC_2材料。由于硅熔点较低,在烧结过程中极易挥发,因此,原料中的硅含量对烧结产物的成分影响很大。实验结果表明,采用原始元素配比Ti_3Si_(1.1)C_2,烧结产物中杂质含量较少。无压烧结制备的Ti_3SiC_2块体经研磨过筛后可以得到颗粒度约10μm的Ti_3SiC_2粉末,采用化学方法对其进行镀铜,并和Cu粉混合后以温压、烧结工艺制备出不同Ti_3SiC_2含量的Cu基复合材料,并对其进行了轧制处理。结果表明Ti_3SiC_2含量为5 wt%的Cu基复合材料具有良好的力学性能,且当变形率为30%时,试样具有良好的力学性能和抗摩擦磨损能力,密度可达8.28 g/cm~3,抗拉强度为288MPa,电阻率为7.0×10~(-8)Ωm硬度可达HB106,摩擦系数为0.17。
     为探索金属-陶瓷的连接,本文选用Ti_3SiC_2陶瓷和适合作为耐高温、耐磨损和核装置材料的SiC陶瓷制备(1-x)Ti_3SiC_2-xSiC复合材料作为金属-SiC复合材料的中间过渡层。采用钛粉、碳化硅粉、石墨粉为原料,经1500℃无压烧结可以制备出(1-x)Ti_3SiC_2-xSiC复合材料,但其密度较低,采用放电等离子烧结技术可以制备出符合成分设计要求的(1-x)Ti_3SiC_2-xSiC复合材料,仅有极少量杂质相存在,且致密度均在95%以上,但烧结温度较高,且SiC含量不同,复合材料的最佳烧结温度也随之变化。采用钛粉、硅粉、石墨粉为原料,并用铝粉作为烧结助剂,以1300℃SPS烧结15 min可以制备出純净的0.9Ti_3SiC_2-0.1SiC复合材料和含有少量残存C的0.8Ti_3SiC_2-0.2SiC复合材料。随着设计成分中SiC含量的增加,复合材料密度、抗弯强度有所下降但维氏硬度和电阻率均有所提高。
     采用钛粉、钨粉、钼粉、硅粉、石墨粉为原料,添加Al粉作为烧结助剂,利用放电等离子烧结技术可以成功制备出Ti、Mo、W/Ti_3SiC_2层状复合材料,并对其抗弯强度和界面热稳定性进行了研究。实验结果表明Ti、Mo/Ti_3SiC_2层状复合材料致密度和抗弯强度均高于W/Ti_3SiC_2层状复合材料,Ti/Ti_3SiC_2层状复合材料界面中间过渡层为Ti/Ti+TiC/TiC+Ti_5Si_3C_x/Ti_5Si_3C_x/Ti_3SiC_2,Mo/Ti_3SiC_2层状复合材料界面中间过渡层为Mo/Mo_2C/MoSi_2/Ti_5Si_3C_x/Ti_3SiC_2,W/Ti_3SiC_2层状复合材料界面的中间过渡层为W与C的化合物。
     以Ti_3SiC_2、Ti_3SiC_2-SiC和Ti、Mo、W/Ti_3SiC_2层状材料的制备为基础,采用放电等离子烧结技术制备出Ti、Mo、W/(1-x)Ti_3SiC_2-xSiC多层层状复合材料。过渡层界面都较平直和清晰,界面结合紧密,且没有明显的孔洞、裂纹出现。
Ternary compound titanium silicon carbide (Ti_3SiC_2) is a new class of ceramic material,it has a density of 4.53 g/cm~3 and high melting point of 3000℃, and it combines the meritsof metals and ceramics. Like metals, it has good thermal and electrical conductivities, goodthermal shock resistance. Like ceramics, it has high melting point, high yield strength,excellent corrosion and oxidation resistance, so it is deemed as one of the Most perspectivenew ceramic materials which can be used as structural material for high-temperatureapplications and also as electrode materials. In this work, high purity Ti_3SiC_2 and Ti_3SiC_2particulate reinforced copper matrix composite were fabricated by pressureless sintering.(1-x)Ti_3SiC_2-xSiC composites were also prepared by using pressureless sintering and sparkplasma sintering (SPS). Based on these results, Ti、Mo、W/Ti_3SiC_2 and Ti、Mo、W/(1-x)Ti_3SiC_2-xSiC layered materials were also prepared. Interface thermal stability of Ti、Mo、W/Ti_3SiC_2 layered materials at elevated temperatures were studied also.
     Powder mix of Ti、Si、C were used to prepare bulk Ti_3SiC_2 by pressureless sintering, theSi content of the starting powder has strong influence on the phase constituent of the sinteredsample, due to the low melting point of Si, which melt and vaporize at high temperature.Results show that when Ti, Si and C powders were mixed with a stoichiometric Molar ratio of3:1.1:1, the sintered samples contain less impurity, TiC, a non-preferable impurity wasavoided. The grinded Cu coated Ti_3SiC_2 with an average particles size of around 10μm wasmixed with Cu powder to fabricate Ti_3SiC_2 particulate reinforced copper matrix composite bywarm compaction, sintering and rolling process. Results showed that sintered composite with5 mass% Ti_3SiC_2 has a good mechanical properties, the rolled composite with 30%deformation has a density of 8.28 g/cm~3, an ultimate tensile strength of 288 MPa, an electricalresistivity of 7.0×10~(-8)Ωm, a hardness of HB 106 and a friction coefficient of 0.17.
     (1-x)Ti_3SiC_2-xSiC composite were used as the interlayers for metal-ceramic composite.Powder made of Ti、SiC、C were used, after pressureless sintering at 1500℃(1-x)Ti_3SiC_2-xSiC composites were fabricated, but the density of the sample is quite low.However, (1-x)Ti_3SiC_2-xSiC composites with relative density higher than 95% were preparedby using spark plasma sintering, but the sintering temperature increased with decreasing SiCcontents. Starting powder mix of Ti, Si, C and Al were used to fabricate pure0.9Ti3SiC-0.1SiC composite and 0.8Ti_3SiC_2-0.2SiC composite (with a little C impurity) byspark plasma sintering at 1300℃for 15 min. Experimental results showed that both the density and flexural strength of the sample decreased with increasing SiC contents, however,the Vickers hardness and electrical resistivity increased with increasing SiC contents.
     Ti、Mo、W/Ti_3SiC_2 layered composite were successfully prepared by spark plasmasintering using powders of Ti, Mo, W, Si, C as starting materials and Al as sintering aids. theflexural strength and thermal stability of the sample were studied. Results show that thedensity and the flexural strength of the Ti、Mo/Ti_3SiC_2 composite are both higher than that ofthe W/Ti_3SiC_2 composite. After annealing, The intermediate layers formed at Ti/Ti_3SiC_2 areTi/Ti+TiC/TiC+Ti_5Si_3C_x/Ti_5Si_3C_x/Ti_3SiC_2, the intermediate layers formed at Mo/Ti_3SiC_2 areMo/Mo_2C/MoSi_2/Ti_5Si_3C_x/Ti_3SiC_2, the intermediate layers formed at W/Ti_3SiC_2 compositeare compounds of W and C.
     Based on the above fabrication techniques, Ti、Mo、W/(1-x)Ti_3SiC_2-xSiC layeredcomposite were synthesized by spark plasma sintering. Neat and Clean interfaces wereformed without noticeable micro-cracks and pores.
引文
[1] Bever M.B., Shen M. The Morphology of polymeric alloys [J]. Materials Science andEngineering, 1974, 15(2-3): 145-157
    [2] Bhanumurthy K., Schmid-Fetzer R. Interface reaction between silicon carbide andmetals (Ni, Cr, Pd, Zr) [J]. Composites, 2001, A32: 569-574
    [3] Ruhle M., Evans A.G., AshbyM F., etal. M etal - Ceramic Inter-faces [M]. Oxford:PergaMon Press, 1990
    [4] Ernst F. Metal - Oxide Interfaces [J]. Materials Science and Engineering R, 1995, 14:97– 156
    [5] Finnis M.W. The Theory of Metal - Ceramic Interface [J]. Journal of Physics:Condensed Matter, 1996(8): 5811– 5836
    [6] Ye H.Q (叶恒强). Interfacial Structures and Characteristics(材料界面结构与特性) [M].Beijing: Science Press, 1998
    [7] Padture N.P., Gell M., Jordan E.H. Thermal Barrier Coatings for Gas-Turbine EngineApplications [J]. Science, 2002, 296:280-284
    [8] Eduardo S., Cannon R.M., Tomsia A.P. High-Temperature Wetting and the Work ofAdhesion in Metal/Oxide Systems [J]. Annual Review of Materials Research, 2008, 38:197– 226
    [9] Martinelli A.E and Drew R.A.L. Microstructural development during diffusion bondingofα-silicon carbide to Molybdenum [J]. Mater. Sci. Eng, 1995, A191: 239-247
    [10] Hinoki T., Snead L.L and Blue C.A. Development of refractory arMored silicon carbideby infrared transient liquid phase processing [J]. Nuclear Mater, 2005, 347: 207-216
    [11] Viala J.C., Peillon N., Bosselet F., Bouix J. Phase equilibria at 1000℃in the Al-C-Si-Tiquaternary system: an experimental approach [J]. Materials Science and Engineering1997, A229: 95-113
    [12]武安华,葛昌纯,李江涛,曹文斌.面向等离子体SiC/C功能梯度材料的研究[J].材料工程, 2002, 6: 25-28
    [13] Ge C., Zhou Z., Ling Y. New progress of metal-based functionally graded plasma-facingmaterials in China [J]. Materials Science Forum, 2003, 423-425: 11-16
    [14]凌云汉,白新德,周张键,李江涛,葛昌纯.面向等离子体W/Cu FGM的抗热冲击性能[J].稀有金属材料与工程, 2004, 8: 819-822
    [15] Carpenter D. Comparison of Pellet-Cladding Mechanical Interaction for Zircaloy andSilicon Carbide Clad Fuel Rods in Pressurized Water Reactors. 2006
    [16]史永谦.核能发电的优点及世界核电发展动向[J].能源工程, 2007, 1: 1-6
    [17]王杨卫,王富耻,于晓东,马壮.梯度陶瓷金属装甲复合材料研究进展[J].兵工学报2007, 8(2): 209-214
    [18]韩辉,李军,焦丽娟,李楠.陶瓷-金属复合材料在防弹领域的应用研究[J].材料导报, 2007, 21(2): 34- 37
    [19] Swab J.J. Advances in ceramic arMor. Editor, Proceedings of the 29th InternationalConferences on Advanced Ceramic and Composites, Cocoa Beach, Florida, USA (2005)
    [20] Garnier J., Chu H and Thinnes G. Protecting Our Soldiers. Idaho National LaboratoryTechnologies Factsheets (2007)
    [21] Constantinidis G., Kornilios N., Zekentes K., Stoemenos J., di L. Cioccio. Hightemperature ohmic contacts to 3C-SiC grown on Si substrates by chemical vapordeposition [J]. Materials Science and Engineering, 1997, B46: 176-179
    [22] Getto R., Freytag J., Kopnarski M., Oechsner H. Characterization of sputtered titaniumsilicide ohmic contacts on n-type 6H-silicon carbide [J]. Materials Science andEngineering, 1999, 61: 270-274
    [23]李世波.新型层状陶瓷材料Ti_3SiC_2[J].材料导报, 2001, 15(9): 26-29
    [24] Morozumi S., Endo M and Kikuchi M. Bonding mechanism between silicon carbideand thin foils of reactive metals [J]. J. Mater. Sci. 1995, 20: 3976-3982
    [25] MiyaMoto Y. Functionally Graded Material manufacture Properties [J]. AmericanCeramic Society, 1997, 54(3): 567
    [26] Wang R.G., Pan W., Chen J., et al. Fabrication and characterization of machinableSi_3N_4/ h-BN functionally graded materials [J]. Materials Research Bulletin, 2002, 37(7) :1269-1277
    [27]曹文斌,武安华,李江涛等. SiC/C功能梯度材料的制备[J].北京科技大学学报,2001, 23(1): 32-34
    [28] Jung Y.G., Ha C.G., Shin J.H., et al. Fabrication of functionally graded ZrO_2/ NiCrAlYcomposites by plasma activated sintering using tape casting and it’s thermal barrierproperty [J]. Materials Science and Engineering A, 2002, 323(31): 110– 118
    [29] Yeo J.G., Jung Y.G., Choi S.C. Design and microstructure of ZrO_2/ SUS316functionally graded materials by tape casting[J]. Materials Letters, 1998, 37(6): 304-311
    [30] Jeitschko W., Nowotny H. The crystal structure of Ti_3SiC_2-a new complex carbide [J].Monatash Chem, 1967, 98(2): 329-337
    [31] DuMont A.L., Bonnet J.P., Chartier T, et al. MoSi_2/Al_2O_3 FGM: elaboration by tapecasting and SHS [J]. Journal of the European Ceramic Society, 2001, 21 (13): 2353–2360
    [32] Choy K.L. Chemical vapour deposition of coatings [J]. Progress in Materials Science,2003, 48(2):57-110
    [33] Paidey S., Deevi S.C. Single layer and multilayer wear resistant coatings pf (Ti,Al)N [J].Mater Sci Eng, 2003, 342(2):58
    [34]张幸红,韩杰才,盆世运等.梯度功能材料制备技术及其发展趋势[J].宇航工艺材料工艺, 1999, 2: 1
    [35] Velhinho A., Sequeira P D., Martins Rui., et al. X-ray toMographic imaging of Al/SiCfunctionally graded composites fabricated by centrifugal casting [J]. NuclearInstruments and Methods in Physics Research Section B: Beam Interactions withMaterials and Atoms, 2003, 200: 295-302
    [36] Rodriguez C., Estemur M.H.K. Processing and microstructural characterization offunctionally gradient Al A359/ SiC composite [J]. Journal of Materials Science , 2002,37(9): 1813-1821
    [37]谭银元.离心铸造过共晶Al-Si合金自生梯度复合材料及其阻尼性能[J].中国有色金属学报, 2002, 12(2): 353-357
    [38]杨伟群,李树杰.陶瓷一金属的连接工艺[J].航空制造工程. 1998, 1: 1719
    [39]刘联宝,电真空器件的钎焊与陶瓷一金属封接[M].北京:国防工业出版社.1978.160-168
    [40]高陇桥.陶瓷一金属材料实用封接技术[M].北京:化学工业出版社. 2005: 7—9
    [41]王仲礼.陶瓷与金属的焊接技术[J].焊接技术, 1996, 25(5): 17—1
    [42] Piekoszewski J.,Krajewski A.,Pmke~F.,et al,Brazing of alumina ceramics Mod ifiedby pulsed plasma beams combined with arc PVD treatment [J]. Vacuum, 2003, 70(2):307—312
    [43]张永清,赵彭生.利用化学镀实现Al_2o,陶瓷与金属的连接[J].焊接技术, 1999,28(2): 16—17
    [44]陈峥.陶瓷/陶瓷和陶瓷/金属部分瞬间液相连接的界面反应,模型和接头强度研究[D].浙江:浙江大学, 1997
    [45] Vegter R. H., et al. Diffusion bonding of Zirconium to silicon nitride using Nickelinterlayer [J]. Journal of Material science, 1998, 33: 4525-4530
    [46] Treheux D., et al. Metal-ceramic solid state bonding: Mechanisms and mechanics [J].Scripta Metallurgucalet Materialia, 1994, 31(8): 1055-1060
    [47] Iino Y.Partial transient liquid—phase metals layer technique ofceramic—metalbonding [J]. J. Mater. Sci. ktL, 1999, 10(2): 104~106
    [48] Chen Z., Lou H.Q., Li Z.Z. Partial transient liquid-phase bonding of Si_3N_4 with Ti/ Cu/Ni multi-interlayers [J]. J Mater Sci Lett, 1997, 16: 2026
    [49] Zhai Y. Transient liquid-phase insert metal bonding of Al_2O_3 and AISI_3O_4 stainless stell[J]. Mater Sci, 1997, 32: 1399
    [50] Ceccone G., Nicholas M G., Peteves S D. An evaluation of the partial transient liquidphase bonding of Si_3N_4 using Au coated Ni-22Cr foils [J]. Acta Mater, 1996, 44 (2):657
    [51] MatsuMoto H., Locatelli M R., Nakashima K. Wettability of Al2O3 by liquid Cu asinfluenced by additives and partial transient liquid-phase bonding of Al2O3 [J]. MaterTrans J IM, 1995, 36 (4): 555
    [52]张利,李树杰,张建军等. SiC陶瓷连接工艺及焊料反应产物研究[J].稀有金属材料与工程, 2003, 32(3): 224-227
    [53]张建军,李树杰,张艳.用Ti/Ag粉坯连接的SiC陶瓷界面[J].中国有色金属学报,2004, 14(3): 455-459
    [54]刘洪丽,李树杰.用有机聚合物连接碳化硅陶瓷及陶瓷基复合材料.硅酸盐学报,2004, 32(10): 1246-1251
    [55] Goto, T., Hirai T. Chemically vapor deposited Ti_3SiC_2 [J],MatRes Bull, 1987, 22: 1195
    [56] Goto T., Horai T. Chemically Vapor Deposited Ti_3SiC_2[J]. Mat. Res. Bull., 1987,22:1195
    [57] Lin T.C., Hon M.H. Synthesis and microstructure of the Ti_3SiC_2 in SiC matrix grown bychemical vapor deposition [J]. Ceramics International, 2008, 34: 631-638
    [58] Racaul T.C., Langlais F., Bernard C. On the chemical vapor deposition of Ti_3SiC_2 fromTiCl_4-SiCl_4-CH_4-H_2 gas mixtures:partⅠa therModynamic approach [J]. J. Mater. Sci.,1994, 29(19): 5023-5040
    [59] Racaul T.C., Langlais F., Naslain R. On the chemical vapour deposition of Ti_3SiC_2 fromTiCl_4-SiCl_4-CH_4-H_2 gas mixtures partⅡan experimental approach [J]. J. Mater. Sci,1994, 29(15): 3941-3948
    [60] Yeh C.L., Shen Y.G. Effects of SiC addition on formation of Ti_3SiC_2 byself-propagating high-temperature synthesis [J]. Journal of Alloys and Compounds,2008, 461: 654-660
    [61] Lis J., Pampuch R., Stobierski L., et al. Sinterable Ceramic Powders Prepared by SHS,Their Densifications and Final Products [J]. Trans. Mater. Res. Soc, 1994, 14A:603-608
    [62] Li H, Chen D., Zhou J., et al. Synthesis of Ti_3SiC_2 by pressureless sintering of theelemental powders in vacuum [J]. Materials Letters, 2004, 58: 1741-1744
    [63] Sun Z.M., Zhang Y., Zhou Y.C. Synthesis of Ti_3SiC_2 powders by a solid-liquid reactionprocess [J]. Scripta Materialia, 1999, 41(1): 61-66
    [64] Radhakrishnan R, Williams J.J., Akinc M. Sythesis and High-temperature Stability ofTi_3SiC_2 [J]. Journal of Alloys and Compounds, 1999, 285: 85-88
    [65] Gao N.F., Li J.T., Zhang D. Y. MiyaMoto. Rapid synthesis of dense Ti_3SiC_2 by sparkplasma sintering [J], J Eur Ceram Soc. 2002, 22 2365–2370.
    [66] Arunajatesan S., Carim A H. Synthesis of Ti_3SiC_2 [J]. J Am Ce2ram Soc, 1995, 78(3):667
    [67] Barsourn M.W., EI– Raghy T. Synthesis and characterization of a remarkable ceramic:Ti_3SiC_2 [J]. J Am Ceram Soc, 1996, 79(7): 1953
    [68] Zhu J.Q., Mei B.C., Chen Yl. Preparation of Ti_3SiC_2 with Aluminum by Means of SparkPlasma Sintering [J]. J. M ater. Sci. Ed. 2003, 18(1): 37-40
    [69]朱教群,梅柄初,陈艳林以铝为助剂结合等离子烧结制备Ti_3SiC_2[J].无机材料学报, 2003, 18(3): 700-704
    [70] Li S.B., Xie J.X., Zhang L.T., et al. In situ synthesis of Ti_3SiC_2/SiC composite bydisplacement reaction of Si and TiC [J]. Materials Science and Engineering A, 2004,381: 51-56
    [71] Li S.B., Xie J.X., Zhang L.T., et al. Mechanical properties and oxidation resistance ofTi_3SiC_2/SiC composite synthesized by in situ displacement reaction of Si and TiC [J].Materials Letters, 2003, 57: 3048-3056
    [72]罗惠果,倪东惠,郑军君,等.放电等离子烧结制备SiC/ Ti_3SiC_2复合材料[J].热加工工艺, 2010, 39(2): 43-46
    [73] Zhang J.F., Wu T., Wang L.J., et al. Microstructure and properties of Ti_3SiC_2/SiCnanocomposites fabricated by spark plasma sintering [J]. Composites Science andTechnology, 2008, 68: 499-505
    [74] Wu E., Riley D.P., Kisi E.H., et al. Reaction kinetics in Ti_3SiC_2 synthesis studied bytime-resolved neutron diffraction [J]. Journal of the European Ceramic Society, 2005,25: 3503-3508
    [75] Tang K., Wang C., Huang Y., et al. A study on the reaction mechanism and growth ofTi_3SiC_2 synthesized by hot-pressing [J]. Materials Science and Engineering A, 2002,328: 206-212
    [76]松山晋作.集电装置材料的演变-受电弓滑板和接触网导线[J].国外机车车辆工艺,2003(3): 1-8
    [77]戴利民,丁新华,林吉忠.铝包覆浸金属碳滑板材料受流磨损性能的试验研究[J].铁道机车车辆, 2002 ( 3): 22-24
    [78]郭斌,金永平,于斌,等.粉末冶金受电弓滑板材料的设计及其性能研究[J].机械工程材料, 2004, 28(3): 31-34
    [79] 1st technical report of the Craft European Project no. BRE2-CT94-1485, 1995: 50–67
    [80]黄培云.粉末冶金原理.第2版.北京:冶金工业出版社, 1997
    [81] Capus J., Pickering S., Weaver A. Hocganaes offers higher density at lower cost [J].Metal Powder Report, 1994, 49(7-8): 22-24
    [82] Rutz H.G., Hanejko F.G. High density processing of high perfor—Monce ferrousmaterials [J]. The International of Powder Metallurgy, 1995. 3l(1): 9-l7
    [83]张双益,李元元,徐铮等.温压技术及其致密化机制的研究进展[J].材料科学与工程, 1999, 17(4): 96-100
    [84] Izhevskyi V A., Genoval L.A., Bressiani J.C., et al. Review article: silicon carbide.structure, properties and processing [J]. Ceramica, 2000, 46(297): 4-14
    [85] Barsoum M.W., El-RAGHY T.J. Synthesis and characterization of remarkable ceramic:Ti_3SiC_2 [J]. Jour Am Ceram Soc, 1996, 79 (7): 1953-1956
    [86] Zhou W.B., Mei B.C., Zhu J.Q. Fabrication of high-purity ternary carbide Ti_3SiC_2 byspark plasma sintering technique [J]. Mater Letters, 2005, 59(12):1547-1551
    [87] Zhu J.Q., Mei B.C., He L.P., et al. Synthesis of Ti_3SiC_2 by spark plasma sintering(SPS)of elemental powders [J]. Transactions of Nonferrous Metals Society of China, 2003,13(1): 46-49
    [88] Gao N.F., MiyamaMoto Y., Zhang D. Dense Ti_3SiC_2: Prepared by reactive HIP [J].Journal of Materials Science, 1999, 34(10): 4385-4392
    [89] Snead L.L., Nozawa T., Katoh Y., et al. Handbook of SiC properties for fuelperformance Modeling [J]. Journal of Nuclear Materials, 2007, 371 (1-3): 329–377
    [90]钱耀川,丁华东,傅苏黎.陶瓷-金属焊接的方法与技术[J].材料导报, 2005,19(11):98-100
    [91] Zhang H.B., Zhou Y.C., Bao Y.W., et al. Intermediate phases in synthesis of Ti_3SiC_2and Ti_3Si(Al)C_2 solid solutions from elemental powders [J]. Journal of the EuropeanCeramic Society, 2006, 26(12): 2373-2380
    [92] Zou Y., Sun Z.M., Tada S., et al. Synthesis of single-phase Ti_3SiC_2 with the assistanceof liquid phase formation [J]. Journal of Alloys and Compounds, 2007, 441(1-2):192-196
    [93] Zhang J.F., Wang L.J., et al. High temperature oxidation behavior and mechanism ofTi_3SiC_2–SiC nanocomposites in air [J]. Composites Science and Technology, 2008,68(6): 1531-1538
    [94] Liang B.Y., Jin S.Z., Wang M.Z. Low-temperature fabrication of high purity Ti_3SiC_2 [J].Journal of Alloys and Compounds, 2008, 460(1-2): 440-443
    [95] Zhang J., Wang L., Jiang W., et al. Effect of TiC content on the microstructure andproperties of Ti_3SiC_2-TiC composites in situ fabricated by spark plasma sintering [J].Materials Science and Engineering A, 2008, 487(1-2): 137-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700