1. [地质云]滑坡
N型ZnO高温电极制备及NaCo_2O_4第一性原理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源危机的加剧,半导体温差发电作为一种新兴能源技术在废热利用等方面的应用再次引起人们的关注,而在温差发电技术及其器件的研究中,高温电极的设计及制备是其重点也是其难点之一。基于上述背景,本研究进行了有关余热温差发电器件高温电极的理论、设计及制备工艺方面的研究。
     本文首先简要综述了氧化物热电材料的研究现状,介绍了影响材料热电性能的主要因素及提高材料热电性能的途径;并对温差发电器件的基本原理、金属半导体接触理论及金属半导体焊接工艺也进行了论述。讨论了ZnO基体材料制备的工艺过程和相关性能的测试原理及测试方法。在此基础上进行了N型Zn0电极基体制备的研究,提出了一种新的电极基体制备工艺—复合烧结工艺(热压烧结+高温烧结);并通过实验研究确定了合适的复合烧结工艺参数。实验结果表明,复合烧结工艺是可行的,可成功地制备出具有一定结构强度和良好热电性能的块体材料,有利于降低电极基体的热导率,从而提高其热电性能。
     文中进行了有关高温电极设计及制备方面的理论分析及工艺研究。以Ag基合金浆料为电极材料,采用烧渗法,初步制备出N型ZnO基高温电极,所制备的电极具有良好的电学性能和良好的结合力,并形成了良好的欧姆接触。通过实验研究烧结工艺和退火处理对电极性能的影响,确定了合适的高温电极制备工艺。
     在第五章中,本文首先简要综述了NaCo2O4电子结构第一性原理分析的理论模型及CASTEP软件的特点及功能,搭建了理想及掺杂(掺Ca及掺Ni)NaCo2O4晶体结构的理论模型,采用GGA交换关联近似,先优化晶体结构模型,再在此基础之上计算了Na占位(1)时和Na占位(2)时的理想NaCo2O4晶体的能带结构、总态密度及分波态密度及掺杂(掺Ca及掺Ni)NaCo2O4晶体的能带结构、总态密度及分波态密度。结果显示,NaCo2O4电子态结构具有典型的半导体特征,具有较低的能隙,其导电性主要来源于Co-3d和O-2p轨道,导带主要由Co-3d和O-2p构成,价带主要由Co-3d构成。Co-3d的高的态密度主要集中在费米能级附近,不仅使载流子浓度增加,而且也使声子增多,因此,通过掺杂等手段改变Co原子的占据态,改变其在费米能级附近的态密度,可以增大NaCo2O4的热电系数。分别用Ca替位Na和用Ni替位Co。Ca替位Na后,与Na的态密度分布基本保持一致,对导带和价带的贡献不大,分布在很宽的区域内,不会带来导电性能的提升。Ni替位Co后,电子结构仍保持半导体结构特征,Ni主要在费米能级附近原子贡献能量,使材料中的载流子浓度增加,有助于提高材料的导电性,因此应主要通过掺杂改变Co原子的占据态,改变其在费米能级附近的态密度的方式来增大NaCo2O4的热电系数。这一结论对于NaCo2O4的掺杂改性研究提供依据具有一定的指导作用。
With the increasing of energy crisis and Global Warming, The application of thermoelectric power generation in waste heat utilization has caused for c oncern again, the design and preparation of high temperature electrode is one of the difficulties and focus in research of Temperature power generation tec hnology. On this basis,Theory、design and preparation of High-temperature electrode of waste heat thermoelectric power generation was researched.
     This paper briefly reviews the status of Oxide Thermoelectric Materials. T he main factors affect thermoelectric properties and ways to improve the ther moelectric properties of materials introduced; basic principles of thermal powe r generation devices, metal semiconductor contact theory and the welding pro cess discussed too.
     The preparation of ZnO substrate、Principles and Methods of performance test discussed. On this basis above, a new preparation process of N- type Zn O substrate:combined sintering process (hot-pressing+sintering) was offered.
     The appropriate complex sintering process parameters identified by experimen t. Experimental results show that the composite sintering process is feasible a nd the ZnO bulk materials with a certain structural strength and good thermal properties can be successfully prepared by composite sintering process, it hel p to reduce the thermal conductivity of the materials, thereby enhancing the t hermoelectric properties.
     Theoretical Analysis and preparation Technology of high-temperature electr odes were researched in the paper. N-type ZnO-based high-temperature electro de with Ag alloy as the electrode material successfully prepared by burn-osm osis, The prepared electrode with good electrical properties and good adhesi on and well ohm contact. The appropriate preparation of high-temperature ele ctrode was determine by Sintering and annealing experiment.
     In the fifth chapter, the paper briefly summarizes theoretical model for the analysis of first principles of NaCo2O4 electronic structure and reasons for s elect the CASTEP software package as computational tools.theoretical model of ideal and doped (Ca-doped and doped Ni) NaCo2O4 was Build. By GGA exchange-correlation approximation used, to Optimization of the crystal struct ure model firstly, then on this basis the ideal and doped (Ca-doped and dope d Ni) NaCo2O4 crystal band structure, total density of states and partial densi ty of states were calculated. The results showed that NaCo2O4 has electronic state structure of a typical semiconductor characteristic, has a lower energy g ap. Its conductivity comes mainly from Co-3dand O-2p orbital, Conduction ba nd mainly composed by Co-3d and O-2p, the valence band mainly constituted by the Co-3d.The high Co-3d density of states concentrated near the Fermi 1 evel, not only to increase the carrier concentration, but also to increased phon on. Thus, by means of doping change the occupy state of Co atoms, change it's density of state near the Fermi level; the pyroelectric coefficient of NaCo 2O4 can be increased. Na were replaced by Ca, Ni substituted Co-bit, After Na substituted by Ca density of states Remained the same as Na, has small contribution in Conduction band and valence band, Distributed over a wide ar ea, will not bring improvement of conductivity. Ni substituted Co, electronic structure remains semiconductor structure, Ni mainly contribute atomic energy near the Fermi level, increase material's carrier concentration, Help to impro ve the conductivity of materials. Should be primarily through the the way of change the occupy state of Co atoms, change density of states near fermi le vel to increase the pyroelectric coefficient of NaCo2O4.This conclusion provid es has a guiding role in NaCo2O4’s modification of the doping.
引文
[1]. Xuan X.C,D.Li. Optimization of acombined thermionic-thermoelectric generator[J] Journal of Power Source,2003,115:167-170.
    [2]. Lingen Chen, Jianzheng Gong,Fengrui Sun.Effect of heat transfer on the perfor-mance of thermoelectric generators[J]. Journal of Power Source,2002,41:95-99.
    [3]. J.Esarte, G.Min, D.M.Rowe.Modelling heat exchangers for thermoelectric generato-rs[J]. Journal of Power Source,2001,93:72-76.
    [4]. Jianlin Yu, Hua Zhao.A numerical model for thermoelectric generator with the parallel-plate heat exchanger[J] Journal of Power Source,2007,172:428-434.
    [5].李红星,赵新兵,李伟文.新型热电材料研究进展[J].材料导报,2002,16:20-23.
    [6].李玲玲,张丽鹏,于先进.热电材料的研究进展[J].山东陶瓷,2007,30:19-22.
    [7]. Shiota I,Hashimoto M,Ohashi O,et all.Liquid phase diffusion bonding of PbTe system[C].In:proceeding of FGM'97,1997:171-176
    [8]. Dashevsky Z,Gelbstein Y,Edry Y,et all.Optimization of thermoelectric in graded materials[C].In:proceeding of the 22th International conference on thermoelectrics. IEEE,2003:421-424
    [9]. T.Muto, K.Tokuda, T.Iton, K.Kitagawa. Fabrication of segmented p-type AgSbTe2 /Sb2Te3/Bi0.4Sb1.6Te3 thermoelectric module and its performance[C].In:24th Interna-tional conference on thermoelectrics.IEEE,2005:524-527.
    [10].T.M.Tritt,G.s.Nolas,G.A.Slack,etc all.Low-temperature transport properties of the filled and unfilled IrSb3 skutterudite system[J].J Appl Phys,1996,79(11):8412-84 17.
    [11].Takahata.K,Iguchi.Y, Tanaka D,Itoh T,Terasaki I.Low thermal conductivityof the layered oxide (Na,Ca)Co2O4[J].Phys.Rev B,2000,61(19):12551-12555.
    [12].Masset, A.C.Michel C.Maignan.Misfit-layered cobaltite with an anisotropic giant magnetoresistance:Ca3Co4O9[J].Phys Rev B,2000,62:166-175.
    [13].Terasaki, I.Sasago.Y. Large thermoelectric power of NaCo2O4 single crystals.[J]. Phys.Rev B,1997,56(20):12685-12687.
    [14].Funahashi, R Matsubara, Sodeoka S.Thermoelectric properties of BiSr2Co2Ox pol ycrystalline material[J],App Phys Lett,2000,76:2385-2387.
    [15].Tomaya N,Miko I,Shigeru K etal.Thermoelectric properties of (Nai_yMy)xCo2O4 (M=K,Sr,Na,Sm and Yb;y=0.01-0.35)[J].Journal of Compounds,2003,(348):263-26 9.
    [16].Yakabe H,Fujita K,Nakamura K.Thermoelectric properties of NaxCoO2-δ(x=0.5) system;focusing on partially substituting effects[C].In:Proceeding of 17th Internati-onal Conference on Thermoelectric.IEEE,1998:551-558
    [17].Iton T,Kawata Transport Properties in(Na,Ca)Co2O4 Ceramics[C].In:17th Internati-onal Conference on Thermoelectric.IEEE,1998:595-597.
    [18].Kawata T,Iguchi Y,Iton T.Na-site Substitution Effect on the Thermoelect-ric Pro-pertities of NaCo2O4[J].Physical Review B,1999,60(15):10 584- 10 587.
    [19].Mrotzek K,Miiler E,Plewa J.Influence of partial substitution of Co by Pb on the microstructure and thermoelectric properties of NaxCo1-yPbyO2[C].In:Proceeding of 22th International Conference on Theemoelectric.IEEE,2003:219.
    [20].Ohtaki M, Tsubota T, Eguchi K,et al.High-temperature thermoelectric propertites of (Zn1-xAlx)O[J].J Appl Phys,1996,79(3):1816-1818.
    [21].Yoo Y Z,Jin Z W,Chikyow T. S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method [J].Appl Phys Lett,2002,81(20):3798-3800.
    [22].Lingen Chen, Jun Li, Fengrui Sun,Chih Wu.Performance optimization of a two stage semiconductor thermoelectric-generator[J].Applied Energy,2005,82(4):300-31 2.
    [23].Lingen Chen,Jianzheng Gong,Fengrui Sun,Chih Wu.Effect of heat transfer on the performance of thermoelectric generators[J].Int.J.Therm.Sci,2002,41:95-99.
    [24].Funahashi R, Mihara T.Thermoelectric modules for high temperature waste heat [J]. Materials Research Society Symposium Proceedings,2006,8:493-498.
    [25].Scott A, Christopher A,Apblett and Terrence L.Aselage.Improving power density and efficiency of miniature radioisotopic thermoelectric generators[J]. Journal of Power Sources,2008,180(1):657-663.
    [26].Till Huesgen,Peter Woias,Norbert Kockmann. Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sensors and Actuat-ors A:Physical,2008,145-146:423-429.
    [27].Aigner R, Lauterbach C, Sturm T F, Franosch M,Wachutka G. Micromachined CMOS thermoelectric generators as on-chip power supply[J], Sensors and Actua-tors A:Physical.2004,114:362-370.
    [28].Lin,Zheshuai,Bristowe,Paul D.A first principles study of the properties of Al:ZnO and its adhesion to Ag in an optical coating[J].Journal of Applied Physics,2009,106(1):013520-013520-10
    [29].M.Topsakai, S.Cahangirov, E.Bekaroglu. First-principles study of zinc oxide hon-eycomb structures[J].Phys.Rev.B,2009,80(23):235119.
    [30].H.J Xiang, Jinlong Yang.Piezoelectricity in ZnO nanowires:A first-principles stu-dy[J].Applied Physics Letters,2006,89(22):223111-223111-3.
    [31].Qiang Wang,Qiang.S,Puru Jena.First-principles study of magnetic properties in V-doped ZnO[J].Applied Physics Letters,2007,91(6):0633116-0633116-3.
    [32].孙宜华,李晨辉,熊惟浩.ZnO基半导体的研究紧张—点缺陷、掺杂及接触.材料导报,2008,22(10):1-4.
    [33].钱耀川,丁华东,傅苏黎.陶瓷一金属焊接的方法与技术[J],材料导报,2005,19(11):98-104.
    [34].孙德超,柯黎明邢丽,刘鸽平.陶瓷与金属梯度过渡层的自蔓延高温合成[J],焊接学报,2000,21(3):44-46.
    [35].D.Singh.Electronic Structure of NaCo2O4[J],Physical Review B,2000,61(20):1339 7-13402.
    [36].李瑜煜,张仁元.热电材料热压烧结技术研究[J].材料导报,2007,21(7):126-129
    [37].李瑜煜,张仁元.N型热电材料ZnO热压烧结工艺研究[J].兵器材料科学与工程,20 08,31(5):37-40.
    [38].张富春.ZnO电子结构与属性的第一性原理研究[D],兰州:西北大学,2006
    [39].Sham L.Density function theory and computational material physic[M],Kluwer Academi Publishers,1996.
    [40].李震宇.新材料物性的第一性原理研究[M].合肥:中国科学技术大学,2004
    [41].Weitao Yang.Direct Calculation of electron Density in Density-Function Theory: Implementation for benzene and a tetrapeptide,Phys Rev A[J],1991,44(11):7824-7826.
    [42]. De Heer,W A.The physics of simple metal clusters:Experimential aspects and simple model[J],Rev Mod Phys,1993,65(3):611-676.
    [43].Yasuhiro Ono,Ryuji Ishikawa,Yuzuru Miyazaki.Crystal structure,Electric and mag-entic Properties of Layered Cobaltitle β-NaxCoO2[J]. Journal of Solid State Ch-emistry,2002,166:177-181.
    [44].D N Argyriou,P G Radaelli,C J Milne.Crystal structure of the superconducting layered cobaltate NaxCoO2.yD2O[J],J.Phys:Condens Matter,2005,17(21):3293-3304
    [45].Ying Xu,Zhi Zeng.Electronic study of NaCo2O4 by LAPW method[J].Physica B, 2007,391(2):389-392.
    [46].John P. Perdew, Kieron Burke.Generalized Gradient Approximation MadeSimple [J].Physical Review Letters,2006,77(18):3865-3868.
    [47].Pfrommer B G,Cote M,Louie S G,et all.Relaxtion of Crystals with the Quasi-Newton method [J]. Journal of Computational Physics,1997,131(1):233-240.
    [48].万齐欣.Ag掺杂ZnO的第一性原理研究[D],南昌:南昌大学,2007.
    [49].沈益斌,周勋,徐明.过渡金属掺杂ZnO的电子结构和光学性质[J].物理学报,2007,56(6):3440-3445.
    [50].吴宏照.氧化物热电材料NaCo2O4的制备及性能研究[D].天津:天津大学,2006.