用户名: 密码: 验证码:
血管内皮细胞复合无机活性元素骨支架材料修复兔长骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     近年来在骨组织工程学领域出现了很多种新的组织工程骨支架材料修复骨缺损的研究方法,如组织工程支架材料复合生长因子法及组织工程支架材料复合带蒂预购血管肌瓣法等等。本研究采用骨组织工程支架材料联合血管内皮细胞应用于骨缺损修复,观察探讨组织工程骨细胞材料复合体应用于骨缺损修复时细胞生长分化成骨及骨血管再生的状况。意图通过实验研究的方法来更好地解释组织工程骨促血管再生和促成骨的机制。
     研究方法
     应用酶消化法,抽取兔自身长骨骨髓,体外分离、培养扩增骨髓基质干细胞至第三代,加入条件培养基后诱导分化为血管内皮细胞,培养传代后,接种于无机活性元素支架材料上,构成组织工程骨细胞材料复合体,移植到兔股骨的人工缺损上,组织工程骨细胞材料复合体移植为实验组,单纯无机活性元素支架材料移植为对照组。通过采用免疫组织化学染色,术后X线定量检测等方法追踪在组织工程骨模型中,骨缺损局部骨量及血管内皮生长因子(VEGF)表达量的变化,观察术后兔股骨的修复成骨及血管再生情况,并将结果进行对比研究。
     结果
     双侧骨缺损术后定期观察均可见成骨细胞密集,骨组织修复,血管再生重建;免疫组化结果显示实验组早期成骨速度及血管新生速度方面优于对照组,X线检测亦显示实验组缺损区术后同期骨量及外在骨痂X线阻射程度高于对照组。表明实验组在成骨方面及血管再生方面相对于对照组均具有一定优势。
     结论
     无机活性诱导元素骨支架材料在用于修复骨缺损时能有效促进成骨细胞生长、分化,提高其成骨特性,而细胞复合组织工程骨修复支架材料在骨缺损修复中的应用,提高了无机活性诱导元素骨支架材料在分化成骨及血管再生方面的优势,使骨缺损的修复及重建效率得到有效提升。
Purpose
     Bone tissue engineering in recent years there are many kinds of new bone tissue engineering scaffold material of bone defect repair methods, such as tissue engineering scaffold material of Growth Factor and tissue engineering scaffold materials futures vascular pedicle muscle flaps, etc. . In this study, the joint bone tissue engineering scaffold material used in vascular endothelial cells of bone defects, tissue engineering of bone cells observed composite materials used in bone repair cells to differentiate into bone and bone status of angiogenesis. Experimental research methods intended to better explain the proliferation of vascular tissue engineering of bone regeneration and promote the mechanism of bone.
     Methods
     The enzyme digestion, extraction of rabbit's own long bone marrow, isolate, culture expansion of bone marrow stromal cells to the third generation, joined the conditioned medium after the induction of differentiation into vascular endothelial cells, culture and passage were inoculated in inorganic active elements of the scaffolds to form Tissue engineering of bone cell materials composite, ported to the artificial femur defects on composite tissue engineering of bone cells transplanted as the experimental group, the simple transfer of inorganic materials as active elements stent control group. By using immunohistochemical staining, after X-quantitative detection method for tracking the tissue engineering of bone model, the bone defect the local expression of bone mass and changes in VEGF was observed after the repair of femur bone and vascular regeneration, and the results were compared.
     Results
     Regularly observed after bilateral bone osteoblasts were seen dense bone tissue repair, angiogenesis reconstruction; Immunohistochemistry showed that the experimental group of early osteogenesis and angiogenesis speed speed than the control group, X ray detection experiment also shows group of bone defects after year and the external callus higher level of X radiopacity. Show that the terms of the experimental group and the blood vessels in the bone regeneration compared with the control group had certain advantages.
     Conclusions
     Activity induced by inorganic elements of bone scaffolds in repairing bone defects when used effectively promote bone cell growth, differentiation and enhance its osteogenic characteristics, and cells combined with tissue engineering scaffold material for bone repair in the repair of bone defects and improve the inorganic activity induced bone scaffold elements to differentiate into bone and blood vessels in the regeneration of the advantages, so that the repair and reconstruction of bone defects effectively improve efficiency.
引文
[1] Crane GM ,Lshaug SL,Mikos AG,et a1.Bone Tissue Engineering Nature Medicine,1995,1(12):1322-1324.
    [2] Nandakumar A, Yang L, Habibovic P,et a1. Calcium Phosphate Coated Electrospun Fiber Matrices as Scaffolds for Bone Tissue Engineering[J].Langmuir,2009,21(15):143-148.
    [3] Wojtowiez AM,Shekaran A,Oest ME,et a1.Coating of biomaterial scafolds with the collagen-mimetic peptide GFOGER for bone defeet repair[J].Biomaterials,2009,26(5):231-238.
    [4]杨志明.组织工程的发展趋势[J].中国修复重建外科杂志,2003,17(2):81-82.
    [5] Warnke PH ,Wiltfang J,Springer I,et al.Man as living bioreactor fate of an exogenously prepared customized tissue-engineered mandible.Biomaterials,2006,27(17):3163-3165.
    [6]龚飞飞,叶茂昌,周来生,等.无机活性元素组织工程支架材料重建修复山羊颌骨缺损的扫描电镜观察[J].中国组织工程研究与临床康复,口腔医学研究2008;24(1) : 12-15.
    [7]叶茂昌,周来生,李容新,等.无机活性元素骨组织工程支架材料修复山羊颌骨缺损[J].中国组织工程研究与临床康复2007;11(48):9627-9632.
    [8] Schliephake H,Knebel J W,Aufderheide M,et al.Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: an experimental pilot study in sheep[J]. Int J Oral Maxillofac Surg,2001,30(6):531-537.
    [9] Drosse I,Volkmer E,Capanna R,et al.Tissue engneering for bone defect healing:an update on a multi-component approach [J].Injury,2008,39(2):S9-20.
    [10] Dawson JI,Oreffo RO.Bridging the regeneration gap:stem cells,biomaterials and clinical translation in bone tissue engineering [J].Arch Biochem Biophys,2008,473(2):124-131.
    [11] Goshima J,Goldberg V M,Caplan A I.The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks.Clin Orthop Relal Res,l99l,(262):298-3l1.
    [12] Albrektsson T,Repair of bone grafts.A vital microscopic and histological investigation in the rabbit.Scand J Plast Reconstr Surg.1980,14(1):1-12.
    [13]裴国献,金丹,陈滨,等.骨组织工程研究中的血管、神经化问题[J].中国创伤骨科杂志,2002,2(4):311-313.
    [14] Masashi Nomi,Anthony Atala,Paolo De Coppi,et a1.Principals of neovascularization for tissue engineering[J].Mol Aspects Med。2002,23:463-483.
    [15]谭洪波,杨柳,段小军,等.骨组织工程支架体外血管化初步研究.重庆医学.2007,3(36):499-501.
    [16] J.M. Kanczler, R.O.C. Oreffo. Osteogenesis and angiogenesis: the potential for engineering bone[J]. European Cells and materials, 2008,15:100-114.
    [17] Stahl,A,W u,X,W enger A ,et a1.Endothelial progenitor cel1 sprouting in spheroid cultures is resistant to inhibition by osteoblasts:a model for bone replacement grafts[J].FEBS Lett,2005,579(24):5338.
    [18] M astrogiacomo M ,Corsi A ,Francioso E,et a1.Recon-struction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate[J].Tissue Eng,2006,12(5):1261.
    [19] Andreas H Z.Tissue engineering of angiogenesis with autologous endothelial progenitor cells[J].Curr Opin Biotech,2004,15(5):424.
    [20] Ferrara N.Molecular and biological properties of vascular endothelial growth factor[J].J Mol Med,1999,77(7):527-543.
    [21]孙勇肖建德,血管内皮生长因子在骨组织工程中的应用[J].国际骨科学杂志,2007,11(28):393-397.
    [22]康然刚,王来平,叶茂昌,等.应用预制型无机诱导因子复合性工程支架材料行山羊组织工程化骨构建的放射性核素显像监测[J].口腔医学,2006.26(3):211-213.
    [23]黄婕,叶茂昌,周来生,等.无机活性元素骨组织工程支架材料止血机制的体外实验研究[J].中国口腔颌面外科杂志,2008,5(6):205-209.
    [24]傅重洋,洪光祥,王发斌.血管内皮生长因子受体在大鼠脊髓组织中的表达与分布[J].中国组织工程研究与临床康复,2007,11(23):4638-4641.
    [1] J.M.Kanczler,R.O.C.Oreffo.Osteogenesis and angiogenesis: the potential for eengineering bone[J].European Cells and materials. 2008(15): 100-114.
    [2] Mooney DJ,Mikos AG.Sci Am.1999,280(4):60-65.
    [3] Asahara T,Murohara T,Sullivan A,et a1.Isolation of putative progenitor endothelial cells for angiogenesis[J].Science,1997, 275(5302):964-967.
    [4] Shi Q,Rafii S,Wu MH,et a1.Evidence for circulating bone marrow derived endothelial cells[J].Blood,1998,92(2):362-367.
    [5] Soker S,Machado M,Atala A.Systems for therapeutic angiogenesis in tissue engineering[J].World J Urol 2000;18(1):10-l8.
    [6] Reyes M,Dudek A,Jahagirdar B,et al.Origin of endothelial progenitors in human postnatal bone marrow[J].J Clin Invest 2002;109(3):337-346.
    [7] Griflth LG.Naughton G.Tissue engineering-current challenges and expanding oppodunfies[J].Science 2002;295(5557):1009-1014.
    [8] Demir R,Kasll UA,Cayll S,et a1.Sequential steps during vasculogenesis and angiogenesis in the very eady human placenta[J].placenta 2006;27(6-7):535-539.
    [9] Kaigler D,Krebsbach PH,Polvefini PJ,et a1.Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells[J].Tissue Eng,2003,9(1):95-103.
    [10] Gerber HP’Vu TH,Ryan AM,et a1.VEGF Couples hypertrophic cartilage remodeling,ossification and angiogenesis during endochondral bone formation[J].Nat Med l999;5(6):623-628.
    [11] Villars F Guillotin B.Amedee et a1.Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap iunction communication[J].Am J Physiol Cell Physiol 2002;282(4):C775-C785.
    [12] Kaigler D.Krebsbach PH, West ER,et a1.Endothelial cell modulation of bone marow stromal cell osteogenic potentia1[J].FASEB J 2005:l9(6):665-667.
    [13] Murphy W L,Simmons CA,Kaigler D,et a1.Bone regeneration via a mineral substrate and induced angiogenesis[J].Dent Res O4:83(3):2O4-2lO.
    [14]刘伯龄,张锡庆.hVEGF165基因转染后骨髓间充质干细胞蛋白分泌功能及成骨活性的检测[J].中国组织工程研究与临床康复,2007,11(46):9242-9245.
    [15]傅重洋,洪光祥,王发斌.血管内皮生长因子受体在大鼠脊髓组织中的表达与分布.中国组织工程研究与临床康复,2007,11(23):4638-4641。
    [16]白晓峰,田卫东.组织工程血管化的研究进展,国外医学口腔医学分册[J].2005,7(32):4.
    [17] Frefich B,Kurtz-Hofman n J,LindelUalln N,et a1.Tissue engineering of vascularized bone and soft tissue transplants[J]. Mund Kiefer Gesichtschir,2000,4(2):S490-495.
    [18] Vacanti CA.Vaeanti JP.The science of tissue engineering[J]. Orthop Clin North Am.2000,31(3):351-356.
    [19] Amant C,Berthou L,Walsh K.Angiogenesis and gene therapy in man:dream or reality[J]? Drugs.1999;59 Spec No:33-36.
    [20] Jones WS,Annex BH.Growth factors for therapeutic angiogenesis in peripheral arterial disease[J].Curr Opin Cardiol. 2007;22(5):458-463
    [21] van Weel V,van Tongeren RB,van Hinsbergh VW,et al.Vascular growth in ischemic limbs:a review of mechanisms and possible therapeutic stimulation[J].Ann Vasc Surg.2008;22(4):582-597.
    [22] Zheng Y,Yi C,Xia W,et a1.Mesenchymal stem cells transduced by vascular endothelial growth factor gene for ischemic random skin flaps[J].Plast Reconstr Surg.2008;121(1):59-69.
    [23] Baumqartner I,Pieczek A,Manor O,et al.Constitutive expression of phVEGFl65 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia[J].Circulation.1998;9 7(12):1114-1123.
    [24] Birk DM,Barbato J.Mureebe L,et a1.Current insights on the biology and clinical aspects of VEGF regulation vasc[J]. Endovascular Surg.2008;42(6):517-530.
    [25] Yang J,Zhou W,Zheng W,et al.Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardia infarction [J].Cardiology. 2007;107(1):17-29.
    [26] Gao F,He T,Wang H,et al.A promising strategy for the treatment of ischemic heart disease:Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats[J].Can J Cardiol. 2007;23(11):891-898.
    [27] Jabbarzadeh E,Starnes T,Khan YM,et al.Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair:a combined gene therapy-cell transplantation approach[J].Proc Natl Acad Sci USA.2008;105(32):11099-11104.
    [28] Jiang J,Fan CY,Zeng BF.Osteogenic differentiation effects on rat bone marrow-derived mesenchymal stromal cells by lentivirus-mediated co-transfection of human BMP2 gene and VEGF l65 gene[J].Biotechnol Lett.2008;30(2):197-203.
    [29]汪群力,裴国献.组织工程组织血管化研究新进展[J]. Zhonghua Chuangshang Guke Zazhi(Chin J Orthop Traurea),2005,7(6):564-567.
    [30] Chou L,Cottrell D,Wu B.J of Dental Research. 2004.304:2885.
    [31] Chou L.Chinese J of Biomed Engine.2001.495-498.
    [32] Chen Y,Nathanson D,Cottrell D,et al.Dental Research.2001. 85:571.
    [33] Chou L,Firth J,Uitto V,et al.J Cell Science.1995. 108:1563-1571.
    [34]康然刚,王来平,叶茂昌,等.应用预制型无机诱导因子复合性工程支架材料行山羊组织工程化骨构建的放射性核素显像监测[J].口腔医学.2006.26(3):211-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700