用户名: 密码: 验证码:
小鼠癫痫模型建立的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫是神经科的常见疾病。统计资料显示,我国癫痫患病率为7.0‰,据此估算我国现有癫痫患者约900万人。癫痫不仅给患者造成身体上的危害,还严重影响患者生活质量,导致一系列精神心理问题,给家庭和社会带来沉重负担。癫痫发作、认知功能、精神行为状态、社会功能、自信心及羞耻感等因素都可能影响患者的生活质量。学者们逐渐认识到,控制发作仅是癫痫患者综合管理的一部分,社会、生理、心理等因素可能对癫痫患者生活质量造成不同程度的影响。癫痫治疗的目标已从单纯控制和减少发作,转变为最大程度地提高患者的生活质量。
     颞叶癫痫是成人中最常见的癫痫综合征,占部分性癫痫的1/3以上,难治性癫痫的半数以上。研究证实颞叶癫痫是受遗传因素和环境因素共同作用的复杂多因性疾病,易感基因在决定颞叶癫痫病因和临床表现型上发挥作用。颞叶癫痫分为内侧型和外侧型两种临床亚型。颞叶内侧癫痫是最常见的药物难治性癫痫之一,早期外科手术治疗对控制发作、提高认知功能和改善预后均有重要意义。
     海人酸(kanic acid, KA)是脑内兴奋性氨基酸递质—谷氨酸的结构类似物。KA模型具有模拟人类颞叶癫痫的理想条件:1.海马杏仁核在癫痫表现中起核心作用;2.有人类颞叶癫痫相似的病理改变,如神经元缺失、胶质增生和苔藓纤维发芽;3.有如人类症状性颞叶癫痫的临床表现:初始的脑部损害后,经过一段无症状的静止期,最终出现反复自发性癫痫发作;4.抗癫痫药物对KA引起的癫痫作用差。因此海人酸癫痫模型能很好地模拟人类颞叶癫痫,是研究癫痫发展变化、致病机理的有效工具。海人酸模型已广泛用于癫痫发作的研究,许多学者将海人酸腹腔注射或立体定向海马内注射应用,成功地诱导出类似于人类皮质癫痫的动物模型,为癫痫的发病机制和治疗方法的研究提供了重要的手段。本实验旨在建立海人酸颞叶癫痫动物模型,观察其发展过程中症状、脑电图、病理改变及药物治疗的作用,探讨该模型的病理机制和致痫机理。
     第一部分构建海人酸急性致痫小鼠模型的研究
     目的建立海人酸诱导的小鼠急性癫痫模型,并探讨其特点。方法实验取健康雄性昆明小鼠99只,随机分为生理盐水组(n=33)和致痫组(n=66),致痫组腹腔注射海人酸10mg/kg,生理盐水组腹腔注射生理盐水35μl/g。注射后连续5h观察小鼠是否有痫性发作并分级。当小鼠持续痫性发作达1h时给予地西泮4mg/kg腹腔注射,对照组3只和致痫组9只同时描记脑电图,并取脑切片后苏木精-伊红染色法观察海马各区病理学改变。结果①行为学表现,模型组小鼠注射海人酸后可出现湿狗样抖动、头面部肌肉阵挛、肢体阵挛及全面强直阵挛发作。生理盐水对照组未见癫痫发作。②脑电图表现,癫痫持续状态小鼠表现为持续性节律性棘波、棘慢波或高波幅慢波。③病理学研究,双侧海马均可出现神经元变性,以CA1和门区为主。结论腹腔注射海人酸致痫小鼠急性模型同相应的大鼠模型一样,具有制作简便、痫性发作潜伏期短、致痫率高等特点,其所产生的急性癫痫模型具有与人类颞叶癫痫相似的行为、脑电图与神经病理改变。
     第二部分青霉素与海人酸癫痫模型的比较的研究
     目的通过用青霉素、海人酸2种药物制作癫痫模型,探讨2种致痫剂的作用特点及应用条件。方法实验取健康雄性昆明小鼠90只,随机分为3组,对照组(n=10)、青霉素致痫组(n=40)和海人酸致痫组(n=40),青霉素致痫组腹腔注射青霉素7×106 U/kg,海人酸致痫组腹腔注射海人酸10 mg/kg,生理盐水组腹腔注射生理盐水35μL/g。注射后连续5 h观察小鼠是否有痫性发作并分级,进行脑电图描记。结果空白对照组无痫性发作,两组模型均出现痫性发作,海人酸致痫组与青霉素致痫组按Racine分级0~Ⅴ级各级之间无明显差异(P>0.05),小鼠出现Ⅲ~V级癫痫行为潜伏期两组致痫组比较有显著差异(t0.05,78=1.990 P<0.05)。而死亡率低(χ2=36.473 P<0.05)。结论腹腔注射海人酸所致的动物模型具有与人类颞叶癫痫极为相似的癫痫发作行为学、病理学、脑电图等特征,是理想的人类颞叶癫痫的动物模型。
Epilepsy is a common neurological disorder.Statistics showed that the morbidity rate of epilepsy in China was about 7.0‰.So there are about 9 million patients affected by epilepsy in China.Epilepsy carries a substantial burden of illness,which is reflected in poor quality of life(QOL),psychosocial function and higher care resource use.The influence of epilepsy on patients’lives may be quite destructive and impaired QOL.Seizure,cognitive, emotional and behavioral status,social function, self-esteem, stigma seem to be crucial to QOL. It has been gradually recognized that seizure control is only one aspect of comprehensive management on epilepsy. It is widely pointed out that the purpose of treating epilepsy is not necessarily seizure eradiation rather the aim should be at obtaining maximal improvement of patients’quality of life.
     Temporal lobe epilepsy is the most common epilepsy syndrome in adults, accouting for more than 30%of partial epilepsy.About half of temporal lobe epilepsy is medically intractable.Temporal lobe epilepsy is a heterogeneous disorder with complex genetics in which putative susceptibility genes and environmental factors are believed to contribute to the etiologic and phenotype of the diseases. According to the focus of seizure origin,temporal lobe epilepsy is subclassificated as mesial temporal lobe epilepsy and lateral lobe epilepsy. Mesial temporal lobe epilepsy is regarded as the most common medically intractable epilepsy and early surgery may not only reduce seizure,but also improve cognitive and prognosis outcome.
     The kanic acid(KA)is a structural analogue of the aminoglutaminic acid,excitatory amino acid in the brain.KA model fulfils the perfect criteria of animal model of temporal epolepsy: 1.The hippocampus, amygdala and other limbic structures play a central role in its symptomatology; 2.The pattern of pathologic change is clearly reminiscent of Ammon’s horn sclerosis in temporal epoleptic patients, including the neuronal cell loss, glia hyperplasia and mossy fiber sprouting. 3.There are spontaneous recurrent serzures in chronic phase. 4.Available anticonvulsants are weakly against the seizures generated by KA. So KA model can stimulate temporal epilepsy in human vividly. It is a good tool that can be used to research development and mechanism of epilepsy. KA model is used generally for the study in the epilepsy. Many scholars induced successfully epileptic animanl model by intraperitoneal injection of KA to investigate its pathogeniesin and therapeutics.In this investigation, the objective is to establish the kainate-induced temporal lobe epilepsy(TLE) model, study the morphology and electrophysiology’s changement of hippocampal formation in the model mice, discuss the mechanism of pathologic changes and epileptogenesis in this model.
     Part One Establishing the mouse models of acute epilepsy induced by kainic acid
     Objective To establish the mouse models with acute epilepsy induced by kainic acid, and explore the characteristics. Methods 99 healthy male Kunming mice were selected and divided randomly into the saline group (n=33) and seizure-induced group (n=66). The seizure-induced group were treated with 10mg/kg kainic acid by intraperitoneal injection, and those in the saline group were treated with 35μl/g saline by intraperitoneal injection. After injection, the following 5 hours if there was seizure or not was observed continuously and was graded. When the seizure lasted for 1 hour, the mice were offered 4mg/kg diazepam by intraperitoneal injection. 3 in the control group and 9 in the seizure-induced group were monitored by electro encephalogram(EEG). The mice brains were sectioned and the pathologic change in the hippocampal area was checked by hemotoxylin-eosin (HE) staining. Results Totally 99 mice entered the final analysis.①On the praxiology, mice in model group showed wet dog shakes, the clonus of face, head and limbs, and generalized tonic-clonic convusions after injection of kainic acid.Epileptic seizure was not observed on mice in saline control group.②On the EEG, the mice of the status epilepticus could see the explosive slow wave of high amplitude of wave, spike wave or spike slow wave.③On the pathology, intraperitoneal injection could lead to neuronal degeneration in the bilateral hippocampus, mainly in the CA1 and hilar area. Conclusion The kainic acid induced mouse models with acute epilepsy is the same to the corresponding mice models with the characters of easy to make, short latency of seizure and high incidence mice etc. The developed acute epilepsy models have mimic features of human temparal lobe epilepsy, and the brain electric wave and neural pathology have changed.
     Part Two The comparison of epilepsy model reproduced by penicillin and kainic acid
     Ovjective To establish the mouse models with acute epilepsy induced by kainic acid and penicillin, and explore the characteristics and condition of application. Methods 90 healthy male Kunming mice were selected and divided randomly into the saline group (n=10) and penicillin-induced group (n=40) and kainic acid-induced group (n=40). The kainic acid-induced group were treated with 10 mg/kg kainic acid by intraperitoneal injection, the penicillin-induced group were treated with 7×106 U/kg penicillin by intraperitoneal injection, and those in the saline group were treated with 35μL/g saline by intraperitoneal injection. After injection, the following 5 hours if there was seizure or not was observed continuously and was graded and was monitored by electro encephalogram(EEG). Results Totally 80 mice entered the final analysis. It was noted that the latency of the appearance of the status epilepticus by kainic acid was shorter than that by penicillin (P<0.05). The mortality rate was lower as well (P<0.05). Conclusion Acute epilepsy model reproduced by kainic acid might be superior to penicillin.
引文
1. Sander JW.The epidemiology of epilepsy revisited.Curr Opin Neurol, 2003,16(2):165-170.
    2. Koliatsos VE,Ratan R.R.Cell death and diseases of the Nervous system. Chapter 17.
    3.江文,黄远桂,黄熙等.癫痫发病机制的中西医学说.安徽中医学院学报,2001,20:l-4
    4. Parra J,Augustijn PB,GeertsY,et al. Classifieation of epileptie seizures:A comparison of two systems.Epilepsia,2001,42(4):478-482
    5. Princivalle AP,Duncan JS,Thom,-M; et al. TI: Studies of GABA(B) receptors labelled with[(3)H]-CGP62349 in hippocampus resected from patients with temporal lobe epilepsy.Br-J-Pharmacol.2002 Aug; 136(8): 1099-1106.
    6. Ishikawa M,Mizukami K,Iwakiri M,et al. Alterations of heterogeneous nuclear RNP A2 and B1 in the hippocampus of the rat after perforant pathway lesion.Acta-Neuropathol-(Berl).2004 Feb;107(2):144-148.
    7. van-der-Beek EM,Wiegant VM,Schouten WG,et al.Neuronal number, volume,and apoptosis of the left dentate gyrus of chronically stressed pigs correlate negatively with basal saliva cortisol levels.Hippocampus.2004; 14(6):688-700.
    8. Siew S.TI:Scanning electron microscopy of the human hippocampus. Scan-Electron-Microsc.1983;(Pt 1):171-181.
    9. Engber TM,Dennis SA Jones BE,et al. Brain regional substrates for the actions of the novel wake-promoting agent modafinil in the rat: comparison with amphetamine.Neuroscience.1998,87(4):905-911.
    10. Naber PA,Witter MP.TI:Subicular efferents are organized mostly as parallel projections:a double-labeling,retrograde-tracing study in the rat. J-Comp-Neurol.1998,393(3):284-297.
    11. Nakayama H,Shioda S,Nakajo S,et al. Expression of the nicotinic acetylcholine receptor alpha4 subunit mRNA in the rat cerebellar cortex. Neurosci-Lett.1998,256(3):177-179.
    12. Walz W , Lang MK. Immunocytochemical evidence for a distinct GFAP-negative subpopulation of astrocytes in the adult rat hippocampus. Neurosci-Lett.1998,257(3):127-130.
    13. Scharfman HE. Electrophysiological diversity of pyramidal-shaped neurons at the granule cell layer/hilus border of the rat dentate gyrus recorded in vitro.Hippocampus.1995,5(4):287-305.
    14. Herman GT,Roberts D,Axel L. Fully three-dimensional reconstruction from data collected on concentric cubes in Fourier space: implementation and a sample application to MRI.Phys-Med-Biol.1992 Mar;37(3):673-687.
    15. Muramori F , Kobayashi K , Nakamura I. A quantitative study of neurofibrillary tangles,senile plaques and astrocytes in the hippocampal subdivisions and entorhinal cortex in Alzheimer's disease,normal controls and non-Alzheimer neuropsychiatric diseases.Psychiatry-Clin-Neurosci. 1998,52(6):593-599.
    16. Von-Bohlen-und-Halbach O , Albrecht D. Visualization of specific angiotensin II binding sites in the rat limbic system.Neuropeptides.1998 ,32(3):241-245.
    17. Nakajima Y,Okamoto M,Nishimura H,et al. Neuronal expression of mint1 and mint2, novel multimodular proteins, in adult murine brain. Brain-Res-Mol-Brain-Res.2001,92(1-2):27-42.
    18. Babar E,Melik E,Ozgunen T. Effects of excitotoxic median raphe lesion on working memory deficits produced by the dorsal hippocampal muscarinic receptor blockade in the inhibitory avoidance in rats. Brain-Res-Bull.2002 ,57(5):683-688.
    19. Caramelli P, Robitaille Y, Laroche-Cholette A, et al.Structural correlates of cognitive deficits in a selected group of patients with Alzheimer's disease.Neuropsychiatry-Neuropsychol-Behav-Neurol.1998,1(4):184-190.
    20. Braga-de-Souza S, Lent R. Temporal and spatial regulation of chondroitin sulfate,radial glial cells,growing commissural axons,and other hippocampal efferents in developing hamsters.J-Comp-Neurol.2004, 468(2):217-232.
    21. Stichel CC,Hermanns S, Luhmann HJ, et al. Inhibition of collagen IV deposition promotes regeneration of injured CNS axons.Eur-J-Neurosci. 1999,11(2):632-646.
    22. Gu W, Brodt korb E , Steinlein OK. L Gi1 is mutated in familial temporal lobe epilepsy characterized by aphasic seizures [J]. Ann Neurol , 2002 ,52 :364-367.
    23. Kubova H ,Druga R ,Lukasiuk K,et al . Status epilepticus carses necrotic damage in the mediodorsal nucleus of the thalamus in immature rats [J] . J Neurosci , 2001 ,21 :3593-3599.
    24. Bengzon J , Kokaia L , Elmer E ,et al . Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures [J] . Proc Natl Acad Sci (USA) ,1997 ,94 :10432-10437.
    25. Pet roff OAC , Errante LD , Kim J H , et al . N-aceryl-aspartate ,total creatine ,and myo-inositol in the epileptogenic human hippocampus[J] . Neurology ,2003 ,60 :1646-1651.
    26. Kovacs R , Schuchmann S , Gabriel S ,et al . Free radical-mediated cell damage after experimental status epilepticus in hippocampal slice cultures [ J ] . J Neurophysiol , 2002 , 88 : 2909 -2918.
    27. Kovacs R ,Schuchmann S , Gabriel S ,et al . Ca2+ signalling and changes of mitochondrial function during low-Mg2+-indrced epileptiform activity in organotypic hippocampal slice cultures[J] . Eur J Neurosci , 2001 , 13 :1311-1319.
    28. Kann O ,Schuchmann S ,Buchheim K,et al . Coupling of neuronal activity and mitochondrial metabolism as reveal ed by NAD(P) H fluorescence signals in organotypic hippocampal slice cultures of the rat [J] . Neuroscience ,2003 ,119 :87-100.
    29. Kann O, Kovacs R, Heinemann U. Metabotropic receptor-mediated Ca2+ signaling elevates mitochondrial Ca2+ and stimulates oxidative metabolism in rat hippocampal slice cultures [J]. J Neurophysiol ,2003 ,90 :613-621.
    30. Schrchmann S ,Kovacs R , Kann O ,et al . Monitoring NAD( P)H autofluorescence to assess mitochondrial metabolic functions in rat hippocampal-entorhinal cortex slices[J]. Brain Res Brain Res Protoc, 2001, 7: 267-276.
    31. Kunz WS. The role of mitochondria in epileptogenesis [J] .Curr Opin Neurol ,2002 ,15 :179-184.
    32. Vielhaber S ,Von Oertzen J H , Kudin AF ,et al . Correlation of hippocampal glucose oxidation capacity and interictal FDGPET in temporal lobe epilepsy[J] . Epilepsia ,2003 ,44 :193-199.
    33. Schuchmann S ,Albrecht D , Heinemann U ,et al . Nitric oxide modulates low-Mg(2+)-induced epileptiform activity in rat hippocampal-entorhinal cortex silices [J] . Neurobiol Dis ,2002 ,11 :96-105.
    34. Araujo IM ,Ambrosio AF ,Leal EC ,et al . Neruonal nitric oxide synthase proteolysis limits the involvement of nitric oxide in kainite-indrced neurotoxicity in hippocampal neuros [J] . J Neurochem ,2003 ,85 :791-800.
    35. Klaidnan L K, Adams JD Jr , Cross R , et al . Alterations in brain glutathion homeostasis induced by the nerve gas conan [J] . Nerotox Res, 2003, 5: 177-182.
    36. Cohen AS , Lin DD , Quirk GL , et al . Dentate granule cell GABAAreceptors in epileptic hippocampus :enhanced synaptic efficacy and altered pharmacology [J] . Eur J Neurosci ,2003 ,17 :1607-1616.
    37. Dinocourt C , Petanjek Z , Freund TF ,et al . Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures [J] . J Conp Neurol , 2003 , 459 : 407 -425.
    38. Wittner L ,Eross L ,Szabo Z ,et al . Synaptic reorganixation of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epliepsy [J] . Neuroscience , 2002 , 115 :961-978.
    39. Remy S ,Gabriel S ,Urban BW, et al . A novel mechanism underlying drug resistance in chronic epilepsy [J]. Ann Neurol ,2003 ,53 :469-479.
    40. Reny S ,Urban BW, Elger CE ,et al . Anticonvulsant pharmacology of voltage-gated Na+ channels in hippocanpal neurons of control and chronically epileptic rats [J] . Eur J Neurosci ,2003 ,17 :2648-2658.
    41. Kwan P ,Sills GJ ,Butler E ,et al . Regional expression of multidrug resistance genes in genetically epilepsy-prone rat brain after a single audiogenc seizure [J] . Epilepsia ,2002 ,43 : 1318-1323.
    42. Ellerkmann RK, Remy S ,Chen J ,et al . Molecular and functional changes in voltage-dependent Na+ channels following pilocarpine-induced status epilepticus in rat dentate granule cells [J] . Neuroscience , 2003 , 119 :323-333.
    43. Tishler DM ,Weinberg KI , Hinton DR ,et al . MDR1 gene expression in brain of patients with medically in tractable epilepsy[J] . Epilepsia ,1995, 36: 1-6.
    44. Borst P ,Evers R ,Kool M ,et al J . A famiy of drug transporters : the multidrug resistance-associated proteins [J] . J Natl Cancer Inst, 2000, 92: 1295-1302.
    45. Potschka H , Fedrowitz M ,Loscher W. Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity [J] . J Pharmacol Exp Ther ,2003 ,306 :124-131.
    46. Loscher W, Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs [J] . J Pharmacol Exp Ther , 2002 , 301 :7-14.
    47. Potschka H ,Fedrowitz M ,Loscher W. P-Glycoprotein-mediated efflux of phenobarbital , lamotriging ,and felbamate at the blood-brain barrier : evidence from microdialysis experimerts in rats[J]. Neurosci Lett, 2002, 327: 173-176.
    48. Owen A , Pirmohamed M , Tettey JN ,et al . Carbamazepine is not a substrate for P-glycoprotein [J] . Br J Clin Pharmacol ,2001 ,51 :345-349.
    49. Weiss J , Kerpen CJ ,Lindenmaier H ,et al , Interaction of antiepileptic drugs with human P-glycoprotein in vitro [J] . J Pharmacol Exp Ther, 2003, 307: 262-267.
    50. Sisodiya S. Drug resistance in epilepsy :not futile ,but complex[J] . Lancet Neurol ,2003 ,2 :331.
    51. Sisodiya SM ,Martinian L ,Scheffer GL ,et al . Major vault protein ,a marker of drug resistance ,is upregulated in ref rectory epilepsy[J] . Epilepsia ,2003 ,44 :1388-1396.
    52. Sisodiya SM ,Lin WR , Harding BN ,et al . Drug resistance in epilepsy : expression of drug resistance proteins in common causes of refractory epilepsy[J] . Brain ,2002 ,125 :22-31.
    53. Rizzi M ,Caccia S , Guiso G, et al . Limbic seizures induce P-glycoprtein in rodent brain: functional implications for pharmacoresistance[J] . J Neurosci, 2002, 22: 5833-5839.
    54. Siddiqui A ,Kerb R ,Weale ME ,et al . Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1 [J] . N Eng1 J Med , 2003 , 348 : 1442 -1448.
    55. Fujikawa DG, Itabashi HH, Wu A, et al. Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy. Epilepsia 2000 Aug; 41(8):981-991
    56. Bengzon J, Mohapel P, Ekdahl CT, Neuronal apoptosis after brief andprolonged seizures. Prog Brain Res 2002; 135:111-119
    57. Covolan L, Smith RL, Mello LE. Ultrastructural identification of dentate granule cell death from pilocarpine-induced seizures. Epilepsy Res 2000,41(1):9-21
    58. Scharfman HE, Sollas AL, Smith KL, et al. Structural and functional asymmetry in the normal and epileptic rat deniate gyrus. J Comp Neurol 2002,454(4):424-439
    59. Ledergerber D, Fritschy JM, Kralic JE. Impairment of dentate gyrus neuronal progenitor cell differentiation in a mouse model of temporal lobe epilepsy. Exp-Neurol. 2006 May; 199(1): 130-142
    60. Rao MS, Hattiangady B, Reddy DS, et al. Hippocampal neurodegeneration, spontaneous seizures, and mossy fiber sprouting in the F344 rat model of temporal lobe epilepsy. J-Neurosci-Res. 2006,83(6): 1088-1105
    61. Lehmann TN, Gabriel S, Kovacs R, et al. Alterations of neuronal connectivity in area CA1 of hippocampal sliecs from temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats. Epilepsia2000:41Suppl 6:5190-5194
    62. Lehmann TN, Gabriel S, Eilers A, et al. Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal connectivity. Eur J Neurosci 2001,14(l):83-95
    63. Zhang X, Cui SS, Wallace AE, et al.Relations between brain pathology and temporal lobe epilepsy. J Neurosci 2002,15;22(14):6052-6061
    64. Roch C,Leroy C, Nehlig A, et al. Predictive value of cortical injury for the development of temporal lobe epilepsy in 21-day-old rats: an MRI approach using the lithium-pilocarpine model. Epilepsia 2002,43(10):1129-1136
    65. Kubova H, Druga R, Haugvicova R, et al. Dynamic ehanges of status epilepticus-induced neuronal degeneration in the mediodorsal nueleus of the thalamus during postnatal development of the rat. Epilepsia 2002;43 Suppl5:54-60
    66. Kubova H, Druga R, Lukasiuk K, et al. Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J Neurosci 2001,21(10):3593-3599
    67. Scorza FA, Arida RM, Priel M, et al. The contribution of the lateral posterior and anteroventral thalamic nuclei on spontaneous recurrent seizures in the Pilocarpine model of epilepsy. Arq Neuropsiquiatr 2002,60(3-A):572-575
    68. Werthahn KJ, Lieber J, Classen J, et al. Motor cortex excitability in patients with focal epilepsy. Epilepsy Res, 2000;41:179-189
    69. Sanabria ER, da Silva AV, Spreafico R, et al. Damage, reorganization, and abnormal neocortical hyperexcitability in the pilocarpine model of temporal lobe epilepsy. Epilepsia 2002:43 Suppl 5:96-106
    70.孙艺平,张万琴,洪昭雄.癫痫敏感大鼠脑内GFAP-免疫反应活性的变化.神经科学,1996,3(2):73
    71. Ivanco TL , Racine RJ. Long-term potentiation in the reciprocal corticohippocampal and corticocortical pathways in the chronically implanted, freely moving rat[J]. Hippocampus.2000,10(2):143-152.
    72. Ulas J,Satou T,Ivins KJ,et al. Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures[J].Glia,2000,30(4):352-361.
    73. Nadler JV,Shelton DL, Perry BW,et al. Regional distribution of [3H] kainic acid after intraventricular injection[J].Life Sci,1980,26(2):133-138.
    74. Schwarzer C,Sperk G,Samanin,et al. Neuropeptides-immunoreactivity and their mRNA expression in kindling: functional implications for limbic epileptogenesis [J]. Brain Res Rev,1996,22(1):27-32.
    75. Loscher W. Animal models of intractable epilepsy.Prog Neurobiol. 1997.53, 239–258.
    76. Coulter DA., McIntyre DC, Loscher W. Animal models of limbicepilepsies:what can they tell us?Brain Pathol. 2002.12,240–256.
    77. Cavazos JE, Das I, Sutula TP. Neuronal loss induced in limbic pathways by kindling:evidence for induction of hippocampal sclerosis by repeated brief seizures.J. Neurosci. 1994.14,3106–3121.
    78. Otsuki K, Morimoto K, Sato K,et al. Effects of lamotrigine and conventional antiepileptic drugs on amygdala-and hippocampal-kindled seizures in rats.Epilepsy Res. 1998.31,101–112.
    79. Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969. 25, 295–330.
    80. Racine RJ. Kindling:the first decade.Neurosurgery, 1978.3,234–252.
    81. Racine RJ. Modification of seizure activity by electrical stimulation.II. Motor seizure.Electroencephalogr.Clin.Neurophysiol. 1972b.32,281–294.
    82. Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 1969. 25, 295–330.
    83. Sato M, Racine RJ, McIntyre DC. Kindling:basic mechanisms and clinical validity.Electroencephalogr.Clin.Neurophysiol. 1990a.76,459–472.
    84. Morimoto K, Sato H, Osawa M, et al. Contributions of kindling to clinical epileptology.In:Corcoran,M.E.,Moshe,S.L.(Eds.), Kindling 5.Plenum Press, New York, 1998c.pp.485–484.
    85. Michalakis M, Holsinger D, Ikeda-Douglas C, et al. Development of spontaneous seizures over extended electrical kindling. I.Electrographic, behavioral, and transfer kindling correlates.Brain Res. 1998.793,197–211.
    86. Pinel JP, Rovner LI. Experimental epileptogenesis:kindling-induced epilepsy in rats. Exp. Neurol. 1978. 58, 190–202.
    87. Tanaka T, Tanaka S, Fujita T, et al. Experimental complex partial seizures induced by a microinjection of kainic acid into limbic structures. Prog. Neurobiol. 1992.38,317–334.
    88. Mathern G.W, Cifuentes F, Leite JP, et al. Hippocampal EEG excitability andchronic spontaneousseizures are associated with aberrant synaptic reorganization inthe rat intrahippocampal kainate model. Electroencephalogr. Clin Neurophysiol. 1993.87,326–339.
    89. Lothman EW, Bertram EH, Kapur J, et al. Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epilepsy Res. 1990.6,110–118.
    90. Inoue K, Morimoto K, Sato K, et al. Mechanisms in the development of limbic status epilepticus and hippocampal neuron loss:an experimental study in a model of status epilepticus induced by kindling-like electrical stimulation of the deep prepyriform cortex in rats.Acta Med.Okayama 1992.46,129–139.
    91. Glien M, Brandt C, Potschka H, et al. Repeated low-dose treatment of rats with pilocarpine:low mortality but high proportion of rats developing epilepsy.Epilepsy Res. 2001.46,111–119.
    92. Hamani C, Mello LE. Spontaneous recurrent seizures and neuropathology in the chronic phase of the pilocarpine and picrotoxin model epilepsy.Neurol.Res. 2002.24,199–209.
    93. Ben AY. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy[J]. Neuroscience, 1985,14(2):375-380
    94. Cavalheiro EA, Riche DA,Salle LG. Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures[J]. Electroencephalography and Clinical Neurophysiology, 1982, 53:581-586
    95. Gary WM, Cifuentes F, Joao PL, et al. Hippocampal EEG excitability and chronic spontaneous seizures are associated with aberrant synaptic reorganization in the rat intrahippocampal kainite model[J]. Electro- encephalography and Clinical Neurophysiology, 1993,87:326-330
    96. Nadler JV, Okazaki MM. Protective effects of mossy fiber lesions againstkainic acid-induced seizures and neuronal degeneration[J]. Neuroscience, 1988,26:763-767
    97. Gary WM, James KP, Thomas LB. Quantified patterns of mossy fiber sprouting and neuron densites in hippocampal and lesional seizures[J]. J Neurosurg, 1995,82:211-217
    98. Yin HZ, Sensi SL, Ogoshi F, et al. Blockade of Ca2 +-permeable AMPA/ kainite channels decreases oxygen-glucose deprivation-induced Zn2 +accumulation and neuronal loss in hippocampal pyramidal neurons[J]. J Neurosci, 2002,22(4):1273-1277
    99. Lee MC, Rho JL, Woo YJ, et al. c-JUN expression and apoptotic cell death in kainite-induced temporal lobe epilepsy [J]. J Korean Med Sci, 2001,16(5):649-656
    100.Pollard H, Charriaut C, Cantagel S, et al. Kainate-induced apoptotic cell death in hippocampal neurons[J] . Neuroscience, 1994,63:7-13
    101.David C, Henshall, Jun C, et al. Involvement of caspase-3like protease in the mechanism of cell death following focally evoked limbic seizures[J]. J Neurochemistry, 2000,74(3):1215-1221
    102.Proper EA, Oestreicher AB, Jansen GH, et al. Immunohistochemical characterization of mossy fibre sprouting in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy[J]. Brain, 2000,123:19-23
    103.Okazaki MM, Molnar P, Nadler JV. Recurrent mossy fiber pathway in rat dentate gyrus: synaptic currents evoked in prsence and absence of seizure induced growth[J] . J Neurophysiol, 1999,81(4):1645-1652
    104.Represa A, Pollard H, Moreau J, et al. Mossy fiber sprouting in epileptic rats is associated with a transient increased expression of alpha-tubulin[J]. Neurosci Lett, 1993,156(1-2):149-156
    105.Pollard H, Khrestchatisky M, Moreau J, et al.Correlation between reactive sprouting and microtubule protein expression in epileptic hippocampus [J]. Neuroscience,1994,61(4):773-778
    106.Reeben M, Lauurikainen A, Hiltunen JO, et al. The messengener RNAs for both glial cell line derived neurotrophic factor receptors. C-ret and GDNFRαare induced in the rat brain in response to kainite-induced excitation[J]. Neuroscience,1998,83(1):151-163
    107.Simantov R, Crispino M, Hoe W, et al. Changes in expression of neuronal and glial glutamate transporters in rat hippocampus following kainite induced seizure activity[J] . Brain Res Mol Brain Res, 1999,65(1):112-121
    108.Babb TL, Mathem GW, Leite JP, et al. Glutamate AMPA receptors in the fascia dentate of human and kainite rat hippocampal epilepsy[J]. Epilepsy Res, 1996,26(1):193-201
    109.Blumcke I, Becker AJ, Klein C, et al. Temporal lobe epilepsy associated up-regulation of metabotropic glutamate receptors: Correlated changes in mGluR1 mTNA and rotein expression in experimental animals and human patients[J] . J Neuropathol Exp Neurol, 2000,59(1):1-6
    110.Rodriguez MA, Herreras O, Lerma J, et al. Kainate receptors resynaptically downregulate GABAergic inhibition in the rat hippocampus[J]. Neuron, 1997,19(4):893-900
    111.Friedman LK, Pellegrini DE, Seperber EF, et al. Kainate induced status epilepticus alters glutamate and GABA receptor gene expression in adult rat hippocampus: an in situ hybridization study[J]. J Neurosci, 1994, 14(5pt1): 2697-2704
    112. Marsicano G, Goodenough S, Monory K, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity [J]. Science, 2003, 302(5642): 84-88.
    113.Suzuki F, Heinrich C, Boehrer A, et al. Glutamate receptor antagonists and benzodiazepine inhibit the progression of granule cell dispersion in a mouse model of mesial temporal lobe epilepsy [J]. Epilepsia, 2005, 46(2): 193-202.
    114.Arabadzisz D, Antal K, Parpan F, et al. Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus [J]. Exp-Neurol, 2005, 194(1): 76-90.
    115.Sanon N, Carmant L, Emond M, et al. Short-term effects of kainic acid on CA1 hippocampal interneurons differentially vulnerable to excitotoxicity. Epilepsia, 2005, 46(6): 837-848.
    116.Rao MS, Hattiangady B, Reddy DS, et al. Hippocampal neurodegeneration, spontaneous seizures, and mossy fiber sprouting in the F344 rat model of temporal lobe epilepsy. J-Neurosci-Res, 2006, 83(6): 1088-1105.
    117.Araki T, Simon RP, Taki W, et al. Characterization of neuronal death induced by focally evoked limbic seizures in the C57BL/6 mouse [J]. J-Neurosci-Res, 2002, 69(5): 614-621.
    118.Douglas AC, Dan CM, Wolfgang L. Animal Models of Limbic Epilepsies: What Can They Tell Us?[J]. Brain Pathology, 2002, 12(2): 240-256.
    119.Patwardhan RV, Calvert JW, Besio W, et al. Technical note: preliminary results in development of a novel intracisternal penicillin seizure model in the rat [J]. Front-Biosci, 2005, 10: 3009-3012.
    120.Shen EY, Lai YJ. In vivo microdialysis study of excitatory and inhibitory amino acid levels in the hippocampus following penicillin-induced seizures in mature rats [J]. Acta-Paediatr-Taiwan, 2002 , 43(6): 313-318.
    121.郑乃智,阮旭中,李震中,等.青霉素、戊四氮、美解眠癫痫模型的比较[J].临床脑电学杂志, 1997, 6(2): 101-102.
    122.Suzuki F, Heinrich C, Boehrer A, et al. Glutamate receptor antagonists and benzodiazepine inhibit the progression of granule cell dispersion in a mouse model of mesial temporal lobe epilepsy [J]. Epilepsia, 2005, 46(2): 193-202.
    123.Araki T, Simon RP, Taki W, et al. Characterization of neuronal death induced by focally evoked limbic seizures in the C57BL/6 mouse [J]. J-Neurosci-Res, 2002, 69(5): 614-621.
    124.杨忠旭,栾国明,闫丽,等.颞叶癫痫大鼠模型的建立及长期癫痫敏感性的研究.中华医学杂志, 2004, 84(2): 152-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700