用户名: 密码: 验证码:
淀山湖生态系统结构与能量流动特征的ECOPATH模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究现阶段淀山湖富营养化形成的内在原因,根据2008-2009年间对淀山湖湖区水生生物资源调查的结果和历史调查资料,运用Ecopath with Ecosim 6.1软件构建了淀山湖生态系统的营养通道模型,分析了淀山湖水域生态系统的结构和能量流动特征。模型中涉及淀山湖生态系统中的水鸟、鱼类、虾类、软体动物、底栖动物、浮游动物、浮游植物、碎屑等21个功能组分,基本涵盖了淀山湖生态系统的主要能量流动过程。
     将来自不同功能组的营养流合并为数个营养级,以简化复杂的食物网关系称之为生态系统的营养级结构,本研究最终将淀山湖生态系统合并为5个重要的营养级,其中第Ⅰ级包括碎屑、浮游植物、高等水生植物,第Ⅱ级包括象形浮游动物、枝角类、桡足类、软体动物、其他底栖动物、草食性鱼类,第Ⅲ级包括刀鲚、光泽黄颡鱼、其他鱼类等,第Ⅳ级包括红白鱼和其他肉食型鱼类,第Ⅴ级包括水鸟、红白鱼和其他肉食型鱼类。经营养级转换效率分析后发现,淀山湖生态系统第Ⅲ,Ⅳ营养级间的转换效率较高,达到14.6%;淀山湖生态系统的牧食食物链转换效率为12.3%,碎屑食物链转换效率为11.3%;系统的能量流动在5个营养级之间平均能量转换效率为11.7%,高于周边太湖和千岛湖等湖泊的均值。生态网络分析显示,淀山湖生态系统的能流、生物量及生产量的分布呈金字塔型,各功能组的营养级范围为1~3.92,水鸟占据了营养级的最高层。
     混合营养效应分析即指食物网中不同的功能组对其他相应功能组的影响。淀山湖生态系统混合营养效应分析显示,每个功能组对其自身的混合营养效应一般为负效应,捕食者对其饵料,渔业对其渔获物的混合营养效应一般也为负效应。浮游植物和碎屑作为该食物网的生产者对其他大部分种类都有正效应。顶级捕食者对其饵料的负效应不明显。综合分析认为,目前淀山湖渔业捕捞强度会对该生态系统的鱼类功能组产生负效应。
     循环流量是系统中重新进入再循环的营养流总量,淀山湖生态系统的循环流量为77.65 t·km-2·a-1,该值远小于相邻的太湖,说明目前淀山湖生态系统的整体再循环率较低,能量利用效率有待改善和提高。TPP/TR (系统初级生产力比总呼吸量)是描述系统成熟度的重要指标,发育成熟的生态系统其TPP/TR值应接近1,本研究结果显示淀山湖生态系统TPP/TR值为2.80。连接指数Cl和系统杂食指数SOI都是反应系统内部联系复杂程度的指标。越趋于成熟的生态系统,其系统各功能组间的联系越复杂,淀山湖生态系统的连接指数和系统杂食指数分别为0.19和0.07,两值均小于相邻的太湖。Finn's循环指数指的是系统中循环流量与总流量的比值,淀山湖的Finn's值为1.89%,而Finn's平均路径长度指的是每个循环流经食物链的平均长度,淀山湖的Finn's平均路径长度为2.37。综合分析淀山湖的生态系统参数系统初级生产力/总呼吸量(TPP/TR)、连接指数CI和能量循环指数FCI(分别为2.80、0.19和0.0189)表明,淀山湖生态系统目前仍然处于幼态化生态系统状态。
Dianshan Lake, the biggest fresh water lake in Shanghai, covers an area of 62 km2 with mean depth of 2.0 m. It is regarded as the key water conservation district of Shanghai, providing drinking water for more than 10 million people. But with the rapid development of industry and agriculture in recent years, the water of Dianshan Lake has been drastically polluted by industry and living sewage from surrounding areas. What's worse is that blue-green algae bloom has emerged in some parts of the lake. The self-clean capability of Dianshan Lake has already degraded. The city government has provided several research projects to explore the reasons for ecological deterioration of this area. Based on a database report of bio-resources survey from September 2008 to September 2009, a mass-balance model of trophic interactions was constructed using Ecopath with Ecosim to represent the energy transfer through the trophic levels of the Dianshan Lake ecosystem, which represented the first Ecopath model of Dianshan Lake and consisted of 21 functional groups including birds, commercial fishes, phytoplanktons, zooplanktons, benthos, shrimps, mollusks, macrophytes and detritus. Each group represented the organisms with similar roles in the food web and covered the main trophic flow in Dianshan Lake.
     The results indicated that total throughput was 4098.50 t-km-2·year-1. The trophic levels of different groups ranged from 1 for detritus and phytoplanktons to 3.92 for large predators, and water bird group occupied the top level of ecosystem.According to the analysis of mixed trophic impact, the trawling and gillnet fishing were both considered as impacting components and the negative trophic impact of fishing on different groups of the system was relative highly. According to top-down control or bottom-up control in several predator-prey relationships, some species can be used to control blue-green algae bloom in some area, e.g. Hypophthalmichthys molitrix had negative trophic impact on the algae due to their predation relationship in the food web, while submerged macrophytes and other macrophytes had little influence on the algae due to their competitive relationship in the food web because of their low biomass to keep the niche. Through network analysis, the system network is mapped into a linear food chain and five main trophic levels are found with a mean transfer efficiency of 11.3% from detritus and 12.3% from the primary producers within the ecosystem, which was higher than the lakes nearby, but the transfer efficiency is just 7.0% from levelⅠto levelⅡand 3.3% from levelⅤtoⅥ, which means the transfer efficiency of Dianshan Lake ecosystem is too imbalanced. The importance of discard food and the system re-cycling rate in ecosystems was low, energy utilization rate could be increased. Most of the un-used detritus deposited on the bottom of lake and affected water transparency via being agitated by the storm.
     The indices reflecting ecosystem maturity and stability examined TPP/TR(total primary production/total respiration), CI(Connectance Index), FCI(Finn's cycling index) were 2.80,0.17,0.0189, respectively, showed that Dianshan Lake was in such a condition of environmental stress that it was out of the lake's self-clean capability. And that conducted top-down control or bottom-up control did not work in wholefood web, ecological theory lost the power in some parts of lake. The value of FCI,1.89%, indicated that a mass of energy could be further used in Dianshan Lake ecosystem. The value of CI,0.17, indicated that the relationships in the food web were loose, suggesting that fish diversity conservation and macrophytes restoration must be considered, while internal and external pollution sources were limited. Considering Odum's theory of ecosystem development, the ecosystem was placed on a low developmental stage.
引文
1.常秀岭,刘家寿,胡传林,等.湖北浮桥河水库悬浮物的季节变化[J].湖泊科学,2010,(22)2:300-306.
    2.陈作志,邱永松,贾晓平.北部湾生态通道模型的构建[J].应用生态学报,2006,(17)6:1107-1111.
    3.冯德祥,刘一,禹娜等.淀山湖后生浮游动物群落结构特征分析。华东师范大学学报自然科学版IN PRESS.
    4.龚志军,谢平,阎云君.底栖动物次级生产力研究的理论与方法[J].湖泊科学.2001,13(1):79-88.
    5.何志辉.淡水生态学[M].北京:中国农业出版社,2000.
    6.华东师范大学.淀山湖水生生物资源调查报告.2010.
    7.黄建辉,韩兴国.关键种,关键在哪里?[J].植物生态学报.2001,25(4):505-509.
    8.黄漪平.太湖水环境及其污染控制[M].北京,科学出版社,2001.
    9.蒋燮治,堵南山.中国动物志-淡水枝角类[M].北京:科学出版社,1979.
    10.金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    11.李云凯,禹娜,陈立侨,等.东海南部海区生态系统结构与功能的模型分析[J].渔业科学进展,2010,(31)2:30-39.
    12.李云凯,宋兵,陈勇,等.太湖生态系统发育的Ecopath and Ecosim动态模拟[J].中国水产科学,2009,16(2):257-265.
    13.林群,金显仕,郭学武,等.基于Ecopath模型的长江口及毗邻水域生态系统结构和能量流动研究[J].水生态学杂志,2009(2)2:28-36.
    14.刘恩生.太湖主要鱼类的食物组成[J].水产学报,2008,(32)3:395-401.
    15.刘恩生,刘正文,鲍传和,等.太湖鲚鱼和鲢、鳙鱼的食物组成及相互影响分析.[J]湖泊科学,2007,19(4):451-456.
    16.刘健康.东湖生态学研究(第2版)[M].北京:科学出版社,1995.
    17.刘健康,何碧梧.中国淡水鱼类养殖学.北京:科学出版社.1992.427pp.
    18.刘其根.千岛湖保水渔业及其对湖泊生态系统的影响[M].上海:华东师范大学,2005.
    19.刘玉,姜涛,王晓红,等.南海北部大陆架海洋生态系统Ecopath模型的应用与分析[J].中山大学学报自然科学版,2007,(46)123-127.
    20.阮仁良,王云.淀山湖水环境质量评价及污染防治研究[J].湖泊科学,1993,5(6):153-158.
    21.闰云军,梁彦龄.扁担塘底栖动物群落的能量流动[J].生态学报.2003,23(3):527-538.
    22.上海海水产学院.淀山湖渔业资源的初步调查报告[J].1960,上海水产学院学报.1960年1期.
    23.沈嘉瑞.中国动物志:淡水桡足类[M].北京:科学出版社,1979.
    24.宋兵.太湖渔业和环境的生态系统模型研究[M].上海:华东师范大学,2004.
    25孙顺才,黄漪平.太湖[M].北京,海洋出版社,1993.
    26.仝龄,唐启升,Pauly D渤海生态通道模型初探[J].应用生态学报.2000,11(3):435-440.
    27.王家楫.中国淡水轮虫志[M].北京:科学出版社,1961.
    28.王雪辉,杜飞雁,邱永松,等.大亚湾海域生态系统模型研究Ⅰ:能量流动模型初探[J].南方水产,2005,1(3):1-8.
    29.谢平.鲢,鳙与藻类水华控制[M].北京:科学出版社,2003.
    30.徐姗楠,陈作志,何培民.杭州湾北岸大型围隔海域人工生态系统的能量流动和网络分析[J].生态学报,2008,28(5):2065-2072.
    31.杨再福.太湖渔业与环境的可持续发展[M].上海:华东师范大学,2003.
    32.由文辉.淀山湖的浮游植物及其能量生产[J].海洋湖沼通报,1995,1:47-53
    33.由文辉.淀山湖水生态系统的物质循环[J].中国环境科学,1997,17(4):293-296.
    34.张迎梅,阮禄章,董元华,等.无锡太湖地区夜鹭及白鹭繁殖生物学研究.[J]动物学研究.2000,21(4):275-278.
    35.章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991.
    36.周凤霞.淡水微型生物图谱[M].北京:化学工业出版社,2005.
    37.ARREGUIN S F, ARCOS E, CHAVEZ E A. Flows of biomass and structure in an exploited benthic ecosystem in the gulf of California, Mexico[J]. Ecological Modelling.2002, 156:167-183.
    38.BRANDO V E, CECCARELLI R, LIBRALATO S, RAVAGNAN, G. Assessment of environmental management effects in a shallow basin using mass-balance models[J]. Ecol. Model.2004,172,213-232.
    39.BREY T. Estimating production of macrobenthic invertebrates from biomass and individual weight[J]. Meeresforsch,1999,32:329-343.
    40.CARPENTER S R, KITCELL J F, HODGSON J R, et al. Regulation of lake primary productivity by food web structure[J]. Ecology,1987,68:1863-1876.
    41.CARRER S and OPITZ S. Trophic network model of a shallow water area in the northern part of the lagoon of Venice. Ecol. Model[J].1999,124:193-219.
    42.CARRER S, HALTING-S B, BENDORICCHIO G. Modelling the fate of dioxins in a trophic network by coupling an ecotoxicological and an Ecopath model[J]. Ecological Modelling.2000,126:201-223.
    43.CHRISTENSEN V. Fishery-induced changes in a marine ecosystem:insights for models of theGulf of Thailand[J]. J. of Fish Biol.1998,53 (Suppl A):128-142.
    44.CHRISTENSEN V and PAULY D. Placing fisheries in their ecosystem context, an introduction[J]. Ecologica Modelling.2004,172:103—107.
    45.CHRISTENSEN V, WALTERS C J, PAULY D. Ecopath with Ecosim version 6 user guide[M]. Vancouver:Fisheries Centre,University of British Columbia,2008.
    46.FINN J T. Measures of ecosystem structure and function derived from analysis of flows. Journal of Theoretical Biology.1976,56:363-380.
    47.FRANCISCO A. ENRIQUE A, ERNESTO A, et al. Flows of biomass and structure in an exploited benthic ecosystem in the gulf of California[J], Mexico Ecological Modelling.2002,156:167-183.
    48.FROESE R, PAULY D. Fishbase.2004.http://www.fishbase.org.
    49.HALFON E, SCHITO N, ULANOWICZ R E. Energy flow through the Lake Ontario food web conceptual model and an attempt at mass balance.Ecological Modelling[J].1996,86:1-36.
    50.HEYMANS J J, SHANNON L J and JARRE A. Changes in the northern Benguela ecosystem over three decades:1970s,1980s and 1990s. Ecological Modelling[J]. 2004,172:175-195.
    51.HEYMANS J J, SUMAILA R, CHRISTENSEN V. Policy options for the northern Benguela ecosystem using a multispecies, multifleet ecosystem model. Prog in Oceanogr, 2009.83:417-425.
    52.HOSPER H, MEIJER M L. Biomanipulation, will it work for your lake? A simple test for the assessment of chances for clearwater, following drastic fish-stock reduction in shallow, eutrophic lakes[J]. Ecological Engineering,1993,2:63-72.
    53.KITCHELL J F, COX S P, HARVEY C J, et al. Sustainability of the lake superior fish community:interactions in a food web context[J]. Ecosystems.2000,3:545-560.
    54.K MAVUTI, J MOREAU, J MUNYANDORERO & P D P LISNIER. Analysis of trophic relationships in two shallow equatorial lakes Lake Naivasha (Kenya) and Lake Ihema (Rwanda) using a multispecifies trophic model [J]. Hydrobiologia,1996,321: 89-100.
    55.LI Y K, DEREK 0, CHEN Y, et al. Evaluating impacts of fisheries on ecosystem properties and developing optimal management strategies in a lake ecosystem[J]. Fisheries research,2009,95:309-324.
    56.MARIA C S V, MWAPU I, BONIFACE K, et al. Modeling trophic interactions in Lake Kivu:What roles do exotics play?[J] Ecological Modelling.2008,212(3-4):422-438.
    57.MCCLANAHAN T R. A coral reef ecosystem-fisheries dodel:impacts of fishing intensity and catch selection on reef structure and processes[J]. Ecol. Modelling. 1995,80:1—19.
    58.MOREAU J, MAWTI K, DAUFRESNE T. A Synoptic Ecopath model of biomass flows during two different static ecological situations in Lake Nakuru (Kenya)[J]. Hydrobiologia.2001,458:63-74.
    59.ODUM E P. The strategy of ecosystem development.Science,1969,104:262-270.
    60.OKEY T A, PAULY D. A mass-balanced model of trophic flows in Prince William Sound. In:Ecosystem Consideration in Fisheries Management[M]. Alaska:The 16th Lowell Wakefield Fisheries Symposium,1998b,621-635.
    61.PALOMARES M L D, PAULY D. Predicting food consumption of fish populations as functions of mortality,food type,morphometrics,temperature and salinity.Marine and Freshwater Research,1998,49:447-453.
    62.PARK R A, O'NEILL R V, BLOOMFIELD J A, et al. A generalized model for simulating lake Ecosystem[J]. Simulation,1974,23:33-50.
    63.PAULY D. On the interrelationships between natural mortality,growth parameters and mean environmental temperature in 175 fish stock[J]Journal du Conseil international pour I'Exploration de la Mer,1980,39:175-192.
    64.S A PEDERSEN and D ZELLER. A mass blance model for the west Greenland marine ecosystem.Fisheries Centre Research Reports[J].2001,9(4):68-79.
    65.SCAVIA D, BLOOMFIELD J A, FISHER J S, et al. Documentatyion of CLEANX:a generalized model for simulating the open-water ecosystems of lakes[J]. Simulation,1974,23:51-56.
    66.SHAPIRO J. Biomanipulation:The next phase-making it stable[J].Hydrobiologia, 1990,200/201:13-27.
    67.SCHEFFER M. Ecology of shallow lakes[M].London:Chapman and Hall,1998.
    68.TADESSE F, SEYOUM M. Trophic analysis of Lake Awassa(Ethiopia) using mass-balance Ecopath model[J]. Ecological Modeling.2007,201:398-408.
    69.TADESSE F, MICHAEL S, SEYOUM M,etal.Food web structure and trophic interactions of the tropical highland lake Hayq, Ethiopia[J]. EcologicalModelling.2011,222:804-813.
    70.TONG L, TANG Q SH, DANIEL P. A preliminary approach on mass-balance ecopath model of the Bohai sea[J].Chinese journal of applied ecology,2000,11(3):435-440
    71.VEGA-CENDEJAS M E, ARREGUIN-SANCHEZ E. Energy fluxes in a mangrove ecosystem from a coastal lagoon in Yucatan Peninsula, Mexico[J]. Ecology Modelling,2001,137:119-133.
    72.WINBERG G G.Rate of metabolism and food requirements of fishes[J]. Transl. Fish. Res. Board Can.1956,253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700