用户名: 密码: 验证码:
珠江广州河段和磨刀门河口轮虫的群落特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对珠江广州河段(2007年4月—2010年4月)和磨刀门水域(2009年7月—2010年1月)理化指标和轮虫群落进行了调查研究,主要结果如下:
     1.珠江广州河段2个采样点共记录轮虫76种,其中污染指示轮虫51种。优势种为微型多突轮虫(Lififerotrocha subtilis)、裂痕龟纹轮虫(Anuraeopsis fissa)、西氏三肢轮虫(Filinia novaezealandiae)和角突臂尾轮虫(Brachionus angularis)。轮虫丰度范围69—6038 ind. L-1,中大码头采样点丰度最高,平均丰度为1891±1282 ind.L-1; 2站点高峰期均出现在枯水期。轮虫丰度与pH、氮磷比显著正相关,与径流量显著负相关(P<0.05)。冗余分析(RDA)表明叶绿素a、透明度、氮磷比是影响轮虫群落结构时空变化的重要因子。
     2.磨刀门3个采样点共记录轮虫69种,其中污染指示轮虫51种。优势种为广布多肢轮虫(Polyarthra vulgaris)、螺形龟甲轮虫(Keratella cochlearis)、热带龟甲轮虫(Keratella tropica)和暗小异尾轮虫(Trichocerca pusilla)。轮虫丰度范围为0—199ind.L-1,滞水区采样点丰度最高,平均值为31±54ind. L-1; 3采样站点高峰期均出现在丰水期。轮虫丰度与水温、总氮、叶绿素α显著正相关,与盐度显著负相关。磨刀门水域理化因子变化剧烈,轮虫多样性指数波动范围较大,反映出轮虫群落结构的不稳定性。RDA分析表明水温、盐度和叶绿素α是影响轮虫群落结构季节变化的重要因子。
     3.根据水质生态学评价指标,珠江广州河段水体E/O值2.83, QB/T值1.75,已达重度富营养水平;磨刀门水体E/O值1.62, QB/T值1.38,已达轻度富营养水平,与非生物环境因子营养状态综合评价结果一致。
Physicochemical parameters and rotifer communities were investigated in Guangzhou segment of the Pearl River from April 2007 to April 2010, and in Modaomen waters from July 2009 to January 2010. The main results are as follows:
     1. Seventy-six species of rotifers, in which fifty-one species were pollution indicator rotifers, were recorded at two sites in Guangzhou segment of the Pearl River. The dominant species were Lififerotrocha subtilis, Anuraeopsis fissa, Filinia novaezealandiae and Brachionus angularis. The abundance of rotifers ranged from 69 to 6038 ind. L-1 with the highest point appeared at Zhongda pier and the average abundance 1891±1282 ind.L-1. The rotifer abundance peak at the two sites appeared in the dry season. Significantly negative correlations were found between runoff and rotifer abundance which had obviously positive correlations with the pH value and nitrogen-phosphorus ratios. The analysis results of RDA showed that chlorophyll a (Ch1 a), transparency and nitrogen-phosphorus ratios were the most important factors that influenced the spatial and temporal distributions of community structure of rotifers.
     2. Sixty-nine species of rotifers, in which fifty-one species were pollution indicator rotifers, were recorded at three sites in Modaomen waters of the Pearl River estuary. The dominant species were Polyarthra vulgaris, Keratella cochlearis, Keratella tropica and Trichocerca pusilla. The abundance of rotifers ranged from 0 to 199 ind. L-with the highest point recorded in the sampling site of the stagnant district and the average abundance being 31±54 ind. L-1. The rotifer abundance peak at the three sites was recorded in the wet season. Significantly negative correlations were found between salinity and rotifer abundance which had obviously positive correlations with water temperature, Total Nitrogen (TN) and Chlorophyll a (Ch1 a). The violent changes of physicochemical factors in Modaomen estuary and the large fluctuations of diversity index of rotifers indicated that the community structure of rotifers was unstable. The analysis results of RDA showed that water temperature, salinity and Chlorophyll a (Ch1 a) were the most important factors that influenced seasonal variations of community structure of rotifers.
     3. According to the ecological assessment indicators of water quality, waters in Guangzhou segment of the Pearl River (E/O= 2.83, QB/T= 1.75) had reached the level of hypereutrophication, and waters in Modaomen estuary (E/O= 1.62, QB/T= 1.38) the level of mild eutrophication, which coincided with the results of the comprehensive evaluation of trophic state of non-biologic environmental factors.
引文
[1]Arndt H. Rotifers as predators on components of the microbial web (bacteria, heterotro-phic flagellates, ciliates) — a review [J]. Hydrobiologia,1993.255-256 (1):231-246.
    [2]Arora J and Mehra N K. Seasonal dynamics of rotifers in relation to physical and chemical conditions of the river Yamuna (Delhi), India [J]. Hydrobiologia,2003,491 (1-3):101-109.
    [3]ASTM. Standard guide for acute toxicity tests with the rotifer Brachionus, Annual Book of ASTM Standards [S]. USA,1991. Vol.11.04, E1440.
    [4]Berzins B and Pejler B. Rotifer occurrence in relation to temperature [J]. Hydrobiologia, 1989a,175 (3):223-231.
    [5]Berzins B and Pejler B. Rotifer occurrence and trophic degree [J]. Hydrobiologia,1989b, 182(2):171-180.
    [6]Berzins B and Pejler B. Rotifer occurrence in relation to oxygen content [J]. Hydroboilo-gia,1989c,183 (2):165-172.
    [7]De Smet. Description of Encentrum dieteri sp. nov. (Rotifera, Dicranophoridae) from the high Arctic, with redescription of E. bidentatum (Lie-Pettersen,1906) and E. murrayi Bryce,1922 [J]. Belg. J. Zool,1995,125 (2):349-361.
    [8]Devetter M. Influence of environmental factors on the rotifer assemblages in an artificial lake [J]. Hydrobiologia,1998,387-388:171-178.
    [9]Dolan J R, Gallegos C C. Trophic role of planktonic rotifers in the Rhode River Estuary, spring-summer 1991 [J]. Marine Ecology Progress Series,1992,85 (8):187-199.
    [10]Duggan I C, Green J D, Shiel R J. Distribution of rotifer assemblages in North Island, New Zealand, lakes:relationships to environmental and historical factors [J]. Freshwter Biology,2002,47:195-206.
    [11]Duggan I C, Green J D, Shiel R J. Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state [J]. Hydrobiologia,2001. 446-447(1):155-164.
    [12]Dumont H J. Biogeography of rotifers [J]. Hydrobiologia,1983,104 (1):19-30.
    [13]Egloff D A. Food and growth relations of the marine microzooplankter, Synchaeta cecilia (Rotifera) [J]. Hydrobiologia,1988,157:129-141.
    [14]Ejsmint-Karabin J. Rotifer occurance in relation to age, depth and trophic state of quarry lakes [J]. Hydrobiologia,1995,313-314 (1):21-28.
    [15]Fernando C H, Tudorancea C, Mengestou S. Invertebrate zooplankton predator composition and diversity in tropical lentic waters [J]. Hydrobiologia,1990,198 (1): 13-31.
    [16]Ferrari I, Farabegoli A, Mazzoni R. Abundance and diversity of planktonic rotifers in the Po River [J]. Hydrobiologia,1989,186/187:201-208.
    [17]Galkovskaja G A. Planktonic rotifers and temperature [J]. Hydrobiologia,1987.147 (1): 307-317.
    [18]Gilbert J J, Bogdan K G. Selectivity of Polyarthra and Keratella for flagellate and aflagellate cells [C]. Verh. Int. Ver. Limnol.1981,21:1515-1521.
    [19]Gilbert J J, Stemberger R S. Control of Keratella populations by interference competition from Daphnia. Limnol [J]. Oceanogr,1985,30 (1):180-188.
    [20]Green J. Associations of planktonic and periphytic rotifers in a Malaysian estuary and two nearby ponds [J]. Hydrobiologia,1995.313-314(1):47-56.
    [21]Gulati R D. Zooplankton structure in the Loosdrecht lakes in relation to trophic status and recent restoration measures [J]. Hydrobiologia,1990,191 (1):173-188.
    [22]Heinbokel J F, Coats D W, Henderson K W, et al. Reproduction rates and secondary production of three species of the Rotifer Genus Synchaeta in estuarine Potomac River [J]. Journal of Plankton Research,1988,10 (4):659-674.
    [23]Herbst D B. Gradients of salinity stress, environmental stability and water chemistry as a templet for defining habitat types and physiological strategies in inland salt waters [J]. Hydrobiologia,2001.466 (1-3):209-219.
    [24]Herzig A. Leptodora kindti:efficient predator and preferred prey item in Neusiedler See, Austria [J]. Hydrobiologia,1995,307 (1-3):273-282.
    [25]Herzig A. The analysis of planktonic rotifer populations:A plea for long-term Investigations [J]. Hydrobiologia,1987,147 (1):163-180.
    [26]Hofmann W. The influence of abiotic environmental factors on population dynamics in planktonic rotifers [J]. Arch. Hydrobiol. Beih.,1977,8:77-83.
    [27]Holst H, Zimmermann H, Kausch H, Koste W. Temporal and spatial dynamics of planktonic rotifers in the Elbe Estury during Spring [J]. Estuarine Costal and Shelf Science,1998,47:261-273.
    [28]Karr J R, Rossano E M. Applying public health lessons to protect river health [J]. Ecol Civil Eng,2001,4 (1):3~18.
    [29]Koste W. Rotatoria:Die Radertiere Mitteleuropas [M]. Berlin:Gebr. Borntraeger.1978.
    [30]Kulikov A S, Shkute A O, Polishchuk L V. Feeding in juvenile Leptodora kindtii (Focke) [J]. Sov. J. Eco.,1992,22:202-205.
    [31]Lorenzen C J. Determination of chlorophyll and pheo-pigments:spectrophotometric equations [J]. Limnology and Oceanography,1967,12 (2):343-346.
    [32]Markevich D I, Kutikova L A. Mastax morphology under SEM and its usefulness in reconstructing rotifer phylogeny and systematics [J]. Hydrobiologia,1989,186-187 (1): 285-289.
    [33]Markevich G L. Phylogenetic relationships of Rotifera to other veriform taxa [J]. Hydrobiologia,1993,255-256 (1):521-526.
    [34]May L. Rotifer occurrence in relation to water temperature in Loch Leven, Scotland [J]. Hydrobiologia,1983,104 (1):311-315.
    [35]Modenutti B E. Planktonic rotifers of Samborombon River Basin (Argentina) [J]. Hydrobiologia,1998,387-388:259-265.
    [36]Nagata T, Hanazato T. Different predation impacts of two cyclopoid species on a small-sized zooplankton community:an experimental analysis with mesocosms [J]. Hydrobiologia,2006,556 (1),233-242.
    [37]Neumann-Leitao S, Paranagua M N, Valentin J L. The planktonic rotifers of the estuarine lagunar complex of Suape (Pernambuco, Brazil) [J]. Hydrobiologia,1992,232 (2):133-143.
    [38]Onwudinjo C C, Egborge A B M. Rotifers of Benin River, Nigeria [J]. Hydrobiologia, 1994,272 (1):87-94.
    [39]Pace M L, Finlay S E G, LINTS D. Zooplankton in advective environments:the Hudson River community and a comparative analysis [J]. Canadian Journal of Fisheries and Aquatic Sciences,1992,49 (5):1060-1069.
    [40]Park G S, Marshall H G. Estuarine relationships between zooplankton community structure and trophic gradients [J]. Journal of Plankton Research,2000b,22 (1): 121-135.
    [41]Park G S, Marshall H G. The Trophic Contributions of Rotifers in Tidal Freshwater and Estuarine Habitats [J]. Estuarine, Coastal and Shelf Science,2000a,51 (6):729-742.
    [42]Pourriot R. Food and feeding habits of Rotifera [J]. Arch. Hydrobiol. Beih. Ergebn. Limnol,1977,8:243-260
    [43]Rougier C, Pourriot R, Lam-Hoai T, et al. Ecological patterns of the rotifer communities in the Kaw River estuary (French Guiana) [J]. Estuarine, Coastal and Shelf Science,2005,63 (1-2):83-91.
    [44]Ruttner-Kolisko A. Population dynamics of rotifers as related to climatic conditions in Lunzer Obersee and Untersee [J]. Arch. Hydrobiol. Beih,1977,8:88-93.
    [45]Sarma S S S, Nandini S, Araiza M A F. Effect of methyl parathion-treated prey (Brachionus calyciflorus) on the population growth of the predator Asplanchna sieboldi (Rotifera) [J]. Bull. Environ. Contam. Toxicol.,1998,61:135-142.
    [46]Sarma S S S, Nandini S, Flores J L G Effect of methyl parathion on the population growth of the rotifer Brachionus patulus (O. F. Muller) under different algal food (Chlorella vulgaris) densities [J]. Ecotoxicol. Environ. Saf.,2001,48 (2):190-195.
    [47]Sarma S S S, Rivera S A, Hinojosa F E et al. Combine influence of food level and inoculation density on competition between Anuraeopsis fissa and Brachionus patulus or Brachionus macracanthus (Rotifera:Brachionidae) [J]. Russuan Journal of Ecology, 2007,38 (5):353-362.
    [48]Shao Z J and Xie P. The impact of silver carp(Hypophtalmichthys molitrix) on the rotifer community in eutrophic subtropical Chinese lake [J]. Freshwater Ecology,2003, 18:599-604.
    [49]Shao Z J, Xie P, Zhuge Y. Long-term changes of planktonic rotifers in a subtropical Chinese lake dominated by filter-feeding fishes [J]. Freshwater Biology,2001,46 (7): 973-986.
    [50]Silva A M A, Barbosa J E L, Medeiros P R, et al. Zooplankton (Cladocera and Rotifera) variations along a horizontal salinity gradient and during two seasons (dry and rainy) in a tropical inverse estuary (Northeast Brazil) [J]. Pan-American Journal of Aquatic Sciences, 2009,2 (4):226-238.
    [51]Sladecek V. Rotifers as indicators of water quality [J]. Hydrobiologia,1983.100 (1): 169-201.
    [52]Snell T W, Carrillo K. Body size variation among strains of the rotifers Brachionus plicatilis [J]. Aquaculture,1984,37 (4):359-367.
    [53]Snell T W, Janssen C R. Rotifers in ecotoxicology:a review [J]. Hydrobiologia,1995, 313-314(1):231-247.
    [54]Sousa W, Attayde J L, Rocha E S, et al. The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil [J]. Journal of Plankton Research,2008.30 (6):699-708.
    [55]Ter Braak C J F, Smilauer P. CANOCO Reference Manual and User's Guide to Canoco for Windows (version 4.5) [M]. New York:Centre for Biometry Wageningen.2002.
    [56]Wang Q, Yang Y F, Chen J F. Impact of Environment on the Spatio-Temporal Distribution of Rotifers in the Tidal Guangzhou Segment of the Pearl River Estuary, China [J]. Internat. Rev. Hydrobiol,2009,94 (6):688-705.
    [57]Wen X L, Xi Y L, Qian F P. Comparative analysis of rotifer community structur-ein five subtropical shallow lakes in East China:role of physical and chemical c on-ditions [J]. Hydrobiologia,2011,661:303-316.
    [58]Yoshida T, Urabe J, Elser J. Assessment of "top-down" and "bottom-up" forces as determinants of rotifer distribution among lakes in Ontario, Canada [J]. Ecol. Res.,2003, 18 (6):639-650.
    [59]Zhuge Y, Huang X F, Koste W. Rotifera Recorded from China,1893-1997, with remarks on their composition and distribution [J]. International Review of Hydrobiology,1998,83 (3):217-232.
    [60]陈立斌,郭凯,赵文.北京官厅水库轮虫群落结构与水体富营养化状况[J].湖泊科学,2010,22(02):256-264.
    [61]陈立婧,顾静,彭自然,等.滆湖轮虫群落结构与水质生态学评价[J].动物学杂志,2008.43(3):7-16.
    [62]崔伟中.珠江河口水环境的时空变异及对生态系统的影响[D].南京:河海大学,2006.
    [63]方宏达,朱艾嘉,董燕红,等.2005~2006年珠江口浮游动物群落变化研究[J].台湾海峡,2009,28(1):30-37.
    [64]高原,赖子尼,王超,等.2006年夏季珠江口浮游动物群落结构特征分析[J].南方水产,2008,4(1):11-15.
    [65]胡德礼,刘秋海,吴超羽,等.基于DEM的西江磨刀门水道近40年来河床演变特征研究[J].地理与地理信息科学,2009.25(2):55-58,62.
    [66]黄祥飞,胡春英,伍焯田.武汉东湖的轮虫[J].水生生物学,1985,9(2):129-142.
    [67]黄祥飞,席贻龙,诸葛燕.轮虫[J].生物学通报,1999,34:10-12.
    [68]金相灿,刘鸿亮,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1991.286-302.
    [69]邝铁池,罗刚,焦瑞虎.广州珠江河段水质环境保护整治的现状与对策[J].中国市政工程.2006,124(6):41-43.
    [70]蓝文陆,黄邦钦,黄凌风,等.珠江口冬季小型原生动物的分布及其影响因素的初步研究[J].海洋环境科学.2009,33(5):11-16.
    [71]雷安平,施之新,魏印心.武汉东湖浮游藻类物种多样性的研究[J].水生生物学报,2003,27(2):1 79-184.
    [72]李春初.中国南方河口过程与演变规律[M].北京:科学出版社,2004:1-20.
    [73]李共国,虞左明.千岛湖轮虫群落结构及水质生态学评价[J].湖泊科学,2003.15(2):169-176.
    [74]刘红.水体富营养化和鱼药对浮游动物影响的研究[D].武汉:中国科学院水生生物研究所,2003.
    [75]钱方平,席贻龙,温新利等.湖泊富营养化对轮虫群落结构及物种多样性的影响[J].生物多样性,2007,15(4):344-355.
    [76]饶小珍,许友勤,陈寅山.福州内河的轮虫与水质污染评价[J].福建师范大学学报自然科学版),2000,16(1):71-75.
    [77]茹鹏凌,王庆,杨宇峰.广州城市河段和湖泊轮虫群落结构研究[J].暨南大学学报:自然科学版,2007,28(5):524-536.
    [78]尚玉昌.普通生态学[M].北京:北京大学出版社.2002.
    [79]宋玉珍,马正学,金德美.黄河兰州段浮游动物调查[J].甘肃科学学报,2005,9(3):78-81.
    [80]王家楫.中国淡水轮虫志[M].北京:科学出版社.1961.21-283.
    [81]王金秋,徐兆礼,石椿,等.长江口疏浚弃土悬沙对褶皱臂尾轮虫的影响[J].应用生态学报,2002.13(7):871-874.
    [82]王金秋,袁骐,陈亚翟.长江口轮虫群落物种多样性的初步研究[J].中国水产科学,1999,6(5):10-14.
    [83]王庆,杨宇峰.珠江广州河段轮虫群落结构的初步研究[J].水生生物学报,2007,31(02):233-239.
    [84]王云龙,袁骥,沈新强.长江口及邻近水域春季浮游植物的生态特征[J].中国水产科学,2005,12(3):300-306.
    [85]温新利,席贻龙,张雷,陆星家,陈发扬.青弋江芜湖段轮虫群落结构和物种多样性的初步研究[J].生物多样性,2004,12(4):387-395.
    [86]席贻龙,陈月琴,诸葛燕,黄祥飞.四种臂尾轮虫rDNA 16S-23S基因间隔区的序列测定与分析[J].水生生物学报,2003,27(4):427-430.
    [87]谢平,诸葛燕,戴莽.水体富营养化对浮游生物群落多样性的影响[J].水生生物学报.1996,20(增刊)30-37.
    [88]徐润林,白庆笙,谢瑞文.珠江广州市段PFU原生动物群落特征及其与水质的关系[J].生态学报,2002,22(4):479-485.
    [89]杨蕾.珠江口磨刀门河口沉积化学的研究[D].广州:中山大学,2006.
    [90]杨宇峰,黄祥飞.浮游动物生态学研究进展[J].湖泊科学,2000,12(1):81-89.
    [91]杨宇峰,黄祥飞.鲢鳙对浮游动物群落结构的影响[J].湖泊科学,1992,4(3):78-86.
    [92]尹健强,黄晖,黄良民,等.雷州半岛灯楼角珊瑚礁海区夏季的浮游动物[J].海洋与湖沼,2008,39(2):131-138.
    [93]张景平,黄小平,江志坚,等.珠江口海域污染的水质综合污染指数和生物多样性指数评价[J].热带海洋学报,2010,29(1):69-76.
    [94]张敬怀,高阳,方宏达,等.珠江口大型底栖生物群落生态特征[J].生态学报.2009,29(6):2990-2999.
    [95]赵焕庭.珠江河口演变[M].北京:海洋出版社,1990.1-357.
    [96]诸葛燕.中国典型地带轮虫的研究[D].武汉:中国科学院水生生物研究所,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700