用户名: 密码: 验证码:
上海市河网水体溶存氧化亚氮和甲烷的时空分布及排放通量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化亚氮(N20)和甲烷(CH4)是大气中重要的温室气体,其对未来全球气候变化可能会产生巨大的直接和间接影响,然而目前全球N2O、CH4源汇通量清单中还存在很大不确定性。随着全球范围内城市化进程的推进,人类的生存与发展极大地影响了全球的碳、氮循环,使得河流生态系统碳、氮负荷加倍增长,河流富营养化和黑臭等水质污染现象频发,增加了河流生态系统产生和排放N2O、CH4的潜能。
     在国家自然科学基金青年科学基金项目:“长江三角洲河网水体氧化亚氮产生机制及其排放通量”和国家重大水专项课题:“城市黑臭河道外源阻断、工程修复与原位多级生态净化关键技术研究与示范”等的支持下,本论文选取上海市河网作为研究对象,运用环境地球化学、生物地球化学、自然地理学等多学科综合研究手段,采用野外采样与实验室分析相结合、现场试验与室内培养试验相结合的方法,系统研究上海市河网水体溶存N2O、CH4浓度和饱和度的时空变化特征,探讨环境因子的控制作用和影响,采集市区(SQ)和郊区(QP)典型河流河底沉积物来考察N2O、CH4在沉积物—界面的产生与释放,并最终初步估算出上海市河网水—气界面N2O、CH4排放总量。主要结论包括以下几个方面:
     (1)河网水体N20和CH4浓度的总体变化范围分别在0.26±0.01~89.91±45.50μg N·L-1和0.74±0.64~1367.68±186.69μg C·L-1之间,溶解饱和度的变化范围分别在108.74+5.75-21355.11±10808.41%和95.95±49.70-64704.78±13886.65%之间,总体均处于饱和至高度过饱和状态;2月和4月水中N20和CH4浓度及饱和度显著高于其他月份;河网内水中N20和CH4浓度及饱和度的高值均出现在SQ、BS、JD等市区或工业集中区域。
     (2)水体中N20和CH4浓度之间存在显著的正相关;N20和CH4均分别与水温、气温、pH值、ORP和DO含量存在显著负相关,而与NH4+-N、TP、DOC和DIC存在显著正相关;N20与NH4+-N浓度在各个DO含量范围内整体存在一致的正相关关系,其关系可用回归方程:y=0.713015*e0.298754*x (R2=0.430, P<0.001)来描述,而N03-N与N20浓度仅在DO含量处于O~1.2 mg·L-1范围时N20浓度随着N0_3--N浓度的增加显著升高。
     (3) CART模型分类结果表明,NH4+-N、水温、DO、NO3--N、TP和pH是水中N20浓度的主要分类因子,而NH4+-N、NO3--N、DO、ORP和S042-是cH4浓度的主要分类因子。CART模型在水质较差、N2O、CH4浓度较高区域对N2O、CH4浓度的分类预测效果较好。GAM模型对水中N20总偏差解释率为72.31%,其中NH4+-N贡献率达42.99%,表层水体环境因子通过GAM模型拟合后对水中N20浓度的整体拟合效果较好;GAM模型对CH4浓度总偏差解释率为51.20%,预测效果总体较差。GAM模型在郊区水体较清洁区域可以得到较好的预测效果。
     (4)QP和SQ水体内部N20产生速率分别为O.10±0.67和0.97±0.65 ng N·h-1,远低于QP和SQ沉积物—水界面N20释放速率的3.86±1.93和12.49±6.25 ngN·h-1;两地沉积物—水界面CH4释放速率分别为0.079±0.0084和7.04±0.48μgC·h-1,上覆水体的氧化作用使得两地水体内部CH4产生速率极低;沉积物是两地表层水体N20和C出的主要来源;QP和SQ沉积物—水界面N20和CH4的释放通量分别为4.02±2.01和13.01±6.51μg N·m-2·h-1以及83.66±11.22和7335.48±495.79μg C·m-2·h-1,沉积物—水界面N20和CH4释放通量的较大差异是造成表层水体N20和CH4浓度空间分异的主要原因之一
     (5)富氧状态下QP和SQ沉积物的耗氧量均大于贫氧状态;由于沉积物中有机碳含量较高,SQ沉积物在富氧和贫氧状态下的耗氧量均高于QP沉积物,使得上覆水体总体处于缺氧状态;添加了NH4+-N或NH4+-N/NO3--N条件下,QP和SQ沉积物耗氧量明显增加,且随物质添加梯度出现上升趋势;上覆水体中的NH4+-N扩散进入沉积物表层加快了硝化反应速率可能是沉积物—水界面DO消耗加速的主要原因。
     (6)贫氧条件下QP和SQ沉积物—水界面N20的释放通量总体高于富氧状态;添加NH4+-N和NH4+-N/NO3--N显著增加了QP和SQ沉积物—水界面N20释放通量,其中尤以SQ沉积物更为显著,上覆水体中的DO和NH4+-N浓度是影响沉积物—水界面N20释放最为主要的因素;而上覆水体DO浓度是唯一显著影响QP和SQ沉积物—水界面CH4释放的决定性因素。
     (7)自然条件下QP和SQ表层O~1cm沉积物孔隙水N20浓度分别在1.02±0.64-2.04±1.45和2.23±0.85~3.40±1.07μg N·L-1之间,高于两地原位表层水体中的N20浓度;贫氧状态以及NH_4+-N和NH4+-N/NO3--N添加明显促进了表层0~1cm内孔隙水中N20的产生;在上覆水体较高的NH4+-N浓度和较低的DO浓度条件下,沉积物表层的硝化作用是N20的主要产生机制。自然条件下QP和SQ表层0~1cm沉积物孔隙水CH4浓度分别在49.48±12.94-54.14±21.48和6941.25±2647.55~7465.17±1234.68μg C·L-1;沉积物表层0~1cm内氧化作用显著降低了孔隙水CH4浓度;QP和SQ沉积物中极高的有机碳含量使得N03--N和S042-添加对CH4的抑制作用并不明显,并使沉积物成为水体中CH4的主要来源。
     (8)河网水—气界N20和CH4排放通量的总体变化范围分别在0.05±0.003~48.12±6.42 mg N·h-1·m-2和-0.04±0.01~579.25±86.20 mg N·h-1·m-2之间,河网水体总体是大气N20和CH4的源;较高的水温条件对水体N20和CH4排放存在一定的促进作用;SQ、BS和JD等市中心区域以及工业生产区域内水体N20和CH4排放通量显著较高;河网水体N20排放通量略低于长江口海域水体N20排放通量,而CH4排放通量与典型湿地生态系统CH4排放水平相当。
     (9)上海市河网水体N2O、CH4的年排放总量分别为7.23 Gg N·yr-1和58.22Gg C·yr-1;上海市河网水体N20年排放总量可占全球河流水体N20排放估算量的0.66%,现今对全球河流N20源效应的认识可能存在较大误差;上海市河网水体CH4的年排放量可占全国淡水湿地CH4排放估算量的6.62%,佐证了河流生态系统作为大气CH4排放源的重要性;城市化地区河网是大气N2O、CH4潜在的重要排放源,应当引起更多的关注与重视。
Nitrous oxide (N2O) and methane (CH4) are important greenhouse gases, which directly or indirectly influence future climate change. The inventories of global N2O and CH4, however, still left significant uncertainties. With the process of urbanization in the whole global dimension, human being's living and development extremely affect global carbon and nitrogen cyclings, causing the exponential increases of carbon and nitrogen loads in the river ecosystem and eutrophication and black-odor of river water. Consequently, the potential to produce and emit N2O and CH4 of river ecosystem has been stimulated.
     This paper was supported by the project of Nitrous oxide production mechanism and emission flux at Yangtze delta river net, funded by State Natural Science Fund and National Water Project:The research and demonstration of the application of extraneous sources interdiction, engineering restoration, and in-situ multilevel ecological purification technology in urban black-odorous river. The whole river network of Shanghai was selected as the research object and multi-disciplinary synthetic study methods were used in this study, including environmental geochemistry, biogeochemistry, physical geography and so on. Based on field samplings, laboratory analysis, in situ measurements and incubation experiments, this paper was aimed to systematically study the spatial and temporal variabilities of solube N2O and CH4 concentrations and saturations, gas production and exchange across sediment-water inferface, the effects of primary environmental factors on gas concentrations and the preliminary calculation of N2O and CH4 total emission across air-water interface of Shanghai river network. Main conclusions were as followings.
     (1) The total variation ranges of N2O and CH4 concentrations in river water were 0.26±0.01~89.91±45.50μg N·L-1 and 0.74±0.64~1367.68±186.69μg C·L respectively. The total variation ranges of N2O and CH4 saturations in river water were 108.74±5.75~21355.11±10808.41% and 95.95±49.70~64704.78±13886.65%, and the surface water had a overall high saturation; In February and April, the N2O, CH4 concentrations and saturations were significantly higher than those in other months; the highest concentrations and saturations of N2O and CH4 in river network appeared at downtown area and industrial area, like SQ, BS and JD.
     (2) N2O and CH4 concentrations in river water were significantly correlated with each other; Both N2O and CH4 concentrations had significant negative correlations with water temperature, air temperature, pH, ORP and DO respectively, and had significant positive correlations with NH4+-N, TP, DOC and DIC respectively; N2O concentration had a uniform positive correlation under different DO concentration, and this positive correlation could be described by regression formula:y 0.713015*e0298754*x (R2=0.430, P<0.001). However, the rapid increase of N2O concentration with N03--N could only be observed under low DO concentration ranging from 0~1.2 mg·L
     (3) The results of CART model indicated that NH4+-N, water temperature, DO, N03--N, TP and pH were primary environmental that could be used to classify N2O concentration in river water, and NH4+-N, N03--N, DO, ORP and SO42-correspondently were the classification factors of CH4 concentrations. CART model functioned ideally under the poor-quality water condition and high N2O, CH4 concentrations to classify N2O and CH4. GAM model could explain 72.31% of total variation of N2O concentration in which NH4+-N was attribute to 42.99% so that primary environmental factors could be used by GAM model to well fit N2O concentration in river water; However, GAM model could only explain 51.20% of total variation of CH4 concentration which unable GAM model to exactly fit or predict CH4 in river water. Generally, GAM model was effective under the good-quality water condition.
     (4) N2O production rate in water body of QP and SQ were 0.10±0.67 ng N·h-1 and 0.97±0.65 ng N·h-1, respectively, and were significantly lower than N2O emission rate across sediment-water interface, which were 3.86±1.93 ng N·h-1 and 12.49±6.25 ng N·h-1. CH4 emission rate across sediment-water interface of QP and SQ were 0.079±0.0084μg C·h-1 and 7.04±0.48μg C·h-1, respectively. The oxidation effect of oxygenic overlying water made the CH4 production rate extremely low. Sediments were main sources of N2O and CH4 in overlying water of QP and SQ. The emission flux of N2O and CH4 in QP and SQ were 4.02±2.01μg N·m-2·h-1 and 13.01±6.51μg N·m-2·h-1, and 83.66±11.22μg C·m-2·h-1 and 7335.48±495.79μg C·m-2·h-1, respectively. The significant differences of N2O and CH4 emission flux across sediment-water interface were one of the primary reasons that could explain spatial variations of N2O and CH4 concentrations in river network.
     (5) Oxygen comsuption of both QP and SQ were higher under oxygen-rich condition than those under oxygen-poor condition; because of the high organic matter concentration, oxygen comsuption of SQ sediment were higher than those of QP sediment under both oxygen-rich and oxygen-poor conditions, which made the overlying water in persistant oxygen-deficit condition; under the condition of NH4+-N or NH4+-N/NO3--N addition, oxygen comsuption of both QP and SQ sediment increased evidently, and also increased with addition gradient; the acceleration of nitrification process in surface sediment layer caused by NH4+-N diffusion from overlying water might be the main reason to explain the increase of oxygen comsuption across the sediment-water interface.
     (6) Under oxygen-poor condition, both N2O emission fluxes across sediment-water interface of QP and SQ were higher than those under oxygen-rich condition; NH4+-N and NH4+-N/NO3--N addition significantly increased N2O emission fluxes across sediment-water interface of QP and SQ sediments. DO and NH4+-N concentration in overlying water were most important factors that could influence N2O emission across sediment-water interface; DO was the only factor that could affect CH4 emission fluxes across sediment-water interface of QP and SQ sediments.
     (7) Under natural condition N2O concentrations of sediment core water in top 0-1 cm of QP and SQ sediments ranged from 1.02±0.64~2.04±1.45μg N·L-1 and 2.23±0.85~3.40±1.07μg N·L-1, and both of them were higher than N2O concentrations in QP and SQ surface water; Oxygen-poor condition, NH4+-N addition and NH4+-N/NO3--N addition significantly stimulated N2O production in top sediment; Under high NH4+-N and low DO condition, nitrification processing at the surface layer of sediment was the main mechanism for producing N2O. Under natural condition CH4 concentrations of sediment core water in top 0~1 cm of QP and SQ sediments ranged from 49.48±12.94~54.14±21.48μg N·L-1 and 6941.25±2647.55~7465.17±1234.68μg C·L-1; oxidation effect in top 0~1 cm of sediment significantly decreased CH4 concentration in sediment core water; the extremely high organic matter concentration of QP and SQ sediments disabled the inhibiting effect of sulfate-reduction and nitrate-reduction on CH4 formation, and made sediments the main sources of CH4 in overlying water.
     (8) N2O and CH4 emission fluxes across water-air interface of river network ranged from 0.05±0.003~48.12±6.42 mg N·h·m-2 and -0.04±0.01~579.25±86.20 mg N·h-1·m-2, respectively. Generally, river network is the source of atmospheric N2O and CH4; High water temperature promoted N2O and CH4 emission; N2O and CH4 emission fluxes in urban and industrial areas like SQ, BS, JD were significantly higher; N2O emission flux of river network was slightly lower than that in sea water of Yangtze estuary, and CH4 emission flux of river network was equivalent to those of presentative wetland ecosystems.
     (9) The year total N2O and CH4 emissions of Shanghai river network were 7.23 Gg N·yr-1 and 58.22 Gg C·yr-1, respectively; year total N2O emission accounted for 0.66% of the global N2O emission from river ecosystem,indicating the inaccuracy in current estimation on global N2O emission from river ecosystem; year total CH4 emission of river network accounted for 6.62% of CH4 emission from freshwater wetland nationwide,corrobating the importance of river ecosystem as the source of atomsperic CH4; the river network in urbanized area was the potential important source of atomsperic N2O and CH4, and deserved more concerns and attentions.
引文
[1]Abril G. and Borges A.V. eds. Carbon dioxide and methane emissions from estuaries. In: Tremblay A., Varfalvy L., Roehm C., Garneau M., eds. Greenhouse Gases Emissions:Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer, Berlin, Heidelberg, New York,2004.187-207.
    [2]Allen D.E., Dalal R.C., Rennenberg H. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biology & Biochemistry,2007,39:622-631.
    [3]Alm J. Saarnio S. Nykanen H., Silbola J. and Martikainen P.J. Winter CO2, CH4, and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry,1999,44:163-186.
    [4]Baeseman J.L., Smith R.L. and Silverstein J. Denitrification potential in stream sediments impacted by acid mine drainage:effects of pH, various electron donors, and iron. Microbial Ecology,2006,51:232-241.
    [5]Baker M.A., Vervier P. Hydrological variability, organic matter supply and denitrification in the Garonne River ecosystem. Freshwater Biology,2004,49,181-190.
    [6]Bange H.W., Rapsomanikis S., Andreae M.O. Nitrous oxide in coastal waters. Global Biogeochemical Cycles,1996,10:197-207.
    [7]Bange H.W., Dahlke S., Ramesh R., Meyer-Rei L., Rapsomanikis S. and Andreae M.O. Seasonal study of methane and nitrous oxide in the coastal waters of the Southern Baltic Sea. Estuarine, Coastal and Shelf Science,1998,47(6):807-817.
    [8]Barnard R., Leadley P., Hungate B.A. Global change, nitrification, and denitrification:a review. Global Biogeochemical Cycles,2005,19(1):2282-2298.
    [9]Barnes J. Nitrous oxide in UK estuaries. Ph.D Thesis, University of Newcastle upon Tyne, pp. 158.2003.
    [10]Barnes J., Ramesh R., Purjava R., Nirmal Rajkumar A., Senthil K.B., Krithika K., Ravichandran K., Uher G., Upstill-Goddard R. Tidal dynamics and rainfall control N2O and CH4 emissions from a pristine mangrove creek. Geophysical Research Letters,2006,33, L15405.
    [11]Barnes J. and Owens N.J.P. Denitrification and nitrous oxide concentrations in the Humber Estuary, UK, and adjacent coastal zones, Marine Pollution Bulletin,1999,37,247-260.
    [12]Bartlett K.B., Cril P. M., Bonassi J.A. Methane flux from the Amazon River floodplain: emission during rising water. Journal of Geophysical Research,1990,95:16773-16788.
    [13]Bastviken D., Tranvik L.J., Downing J.A., Crill P.M., Enrich-Prast A. Freshwater methane emissions offset the continental carbon sink. Science,2011,331(6013):50.
    [14]Beal E.J., House C.H., Orphan V.J.. Manganese- and Iron-Dependent Marine Methane Oxidation. Science,2009,325:184-187.
    [15]Beaulieu J.J., Arango C.P., Hamilton S.K., Tank J.L. The production and emission of nitrous oxide from headwater streams in the Midwestern United States. Global Change Biology, 2008,14:878-894.
    [16]Beaulieu J.J., Arango C.P. and Tank J.L. The effects of season and agriculture in nitrous oxide production in headwater streams. J. Environ. Qual.,2009,38:637-646.
    [17]Bodelier P.L.E., Libochant J.A., Blom C.W.P.M., and Laanbroek H.J. Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Applied and Environmental Microbiology,1996,62(11):4100-4107.
    [18]Bousquet P., Ciais P., Miller J.B., Dlugokencky E.J., Hauglustaine D.A., Prigent C., Van der Werf G.R., Peylin P., Brunke E.G., Carouge C., Langenfelds R.L., Lathiere J., Papa F., Ramonet M., Schmidt M., Steele L.P., Tyler S.C. and While J. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature,2006,443,439-443.
    [19]Bouwman A.F., Van der Hoek K.W. and Olivier J.G.J. Uncertainties in the global sources distribution of nitrous oxide. J. Geophys. Res.,1995,100,2785-2800.
    [20]Castro-Gonzalez M. and Farias L. N2O cycling at the core of the oxygen minimum zone off northern Chile. Marine Ecology Progress Series,2004,280:1-11.
    [21]Chen T.A.C., Wang S.L., Lu X.X. Hydrogeochemistry and greenhouse gases of the Pearl River, its estuary and beyond. Quaternary International,2008,186(1):79-90.
    [22]Clough T.J., Bertram J.E., Sherlock R.R., Leonard R.L., Nowicki B.L. Comparison of measured and EF5-r derived N2O fluxes from a spring-fed river. Global Change Biology, 2006,12:352-363.
    [23]Clouch T.J., Buckthought L.E., Kelliher F.M. and Sherlock R.R. Diurnal fluctuations of dissolved nitrous oxide (N2O) concentrations and estimates of N2O emissions from a spring-fed river:implications for IPCC methodology. Global Change Biology,2007,13: 1016-1027.
    [24]Cole J.J. and Caraco N.F. Emissions of nitrous oxide (N2O) from a tidal, freshwater river, the Hudson river, New York. Environmental Science Technology,2001,35:991-996.
    [25]Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Mircrobiological reviews,1996,60(4):609-640.
    [26]Dan J., Kumai T., Sugimoto A., Murase J. Biotic and abiotic methane releases from Lake Biwa sediment slurry. Limnology,2004,5,149-154.
    [27]de Angelis, M.A. and Scranton M.I. Fate of methane in the Hudson River and Estuary. Global Biogeochem. Cycles,1993,7(3),509-523.
    [28]de Angelis M.A., Lilley M.D. Methane in surface waters of Oregon estuaries and rivers. Limnol. Oceanogr.,1987,32:716-722.
    [29]de Bie M.J.M., Middelburg J.J., Starink M.H., Laanbroek J. Factors controlling nitrous oxide at the microbial community and estuarine scale. Marine Ecology Progress Series,2002,240: 1-9.
    [30]Denman K.L., Brasseur G., Chidthaisong A., Ciais P., Cox P.M., Dickinson R.E., Hauglustaine D., Heinze C., Holland E., Jacob D., Lohmann U., Ramachandran S., da Silva Dias P.L., Wofsy S.C., Zhang X. Couplings between changes in the climate system and biogeochemistry. In:Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, NY.2007.
    [31]Ding W., Cai Z., Wang D. Preliminary budget of methane emissions from natural wetlands in China. Atmos Envir,2004,38:751-759.
    [32]Dong L.F., Nedwell D.B., Colbeck I. and Finch J. Nitrous oxide emission from some English and Welsh rivers and estuaries. Water, Air, and Soil Pollution:Focus,2004,4:127-134.
    [33]Dong L.F., Nedwell D.B., Stott A. Sources of nitrogen used for denitrification and nitrous oxide formation in sediments of the hypernutrified Colne, the nutrified Humber, and the oligotrophic Conwy estuaries, United Kingdom. Limnology and Oceanography,2006, 51(1-2):545-557.
    [34]Dong L.F, Nedwell D.B., Underwood GJ.C. Nitrous Oxide Formation in the Colne Estuary, England:the Central Role of Nitrite. Applied and Environmental Microbiology,2002,68(3): 1240-1249.
    [35]Ettwig K.F., Margaret K., Butler K. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature,2010,464:543-548.
    [36]Ferron S., Ortega T., Forja J.M. Benthic fluxes in a tidal salt marsh creek affected by fish farm activities:Rio San Pedro (Bay of Cadiz, SW Spain). Marine Chemistry,2009,113(1-2): 50-62.
    [37]Garnier J, Cebron A, Tallec G., Billen G., Sebilo M., Martinez A. Nitrogen behaviour and nitrous oxide emission in the tidal Seine River estuary (France) as influenced by human activities in the upstream watershed. Biogeochemistry,2006,77:305-326.
    [38]Garnier J., Billen G., Cebron A. Modelling nitrogen transformations in the lower Seine river and estuary (France):impact of wastewater release on oxygenation and N2O emission. Hydrobiologia,2007,588:291-302.
    [39]Gribsholt B., Boschker H.T.S., Struyf E. Nitrogen processing in a tidal freshwater marsh:A whole-ecosystem 15N labeling study. Limnology and Oceanography,2005,50(6):1945-1959.
    [40]Groffman P.M., Gold A.J., Addy K. Nitrous oxide production in riparian zones and its importance to national emission inventories. Chemosphere-Global Change Sci,2000,2(3): 291-299.
    [41]Grunwald M., Dellwig O., Beck M. Methane in the southern North Sea:Sources, spatial distribution and budgets. Estuarine, Coastal and Shelf Science,2009,81(4):445-456.
    [42]Harrison J.A., Matson P.A. Patterns and controls of nitrous oxide emissions from waters draining a subtropical agricultural valley. Global Biogeochemical Cycles,2003,17:1-13.
    [43]Hefting M.M., Bobbink R., de Caluwe H. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. Journal of Environmental Quality,2003,32: 1194-1203.
    [44]Hirota M., Senga Y., Seike Y. Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere,2007,6: 597-603.
    [45]Hlavaoova E., Martin R., Lubomir C., Vaclav M. Greenhouse gas (CO2, CH4, N2O) emissions to the atmosphere from a small lowland stream in Czech Republic. Hydrobiologie,165(3): 339-353.
    [46]Holmer M. and Kristensen F. Coexistence of sulfate reduction and methane production in an organic-rich sediment. Marine Ecology Progress Series,1994,107:177-184.
    [47]Hornibrook E.R.C., Longstaffe F.J. and Fyfe W.S. Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim. Cosmochim. Acta,2000,64:1013-1027.
    [48]Huttunen J.T., Vaisanen T.S., Hellsten S.K., and Martikainen P.J. Methane fluxes at the sediment-water interface in some boreal lakes and resrvoirs. Boreal Environment Research, 2006,11:27-34.
    [49]Huttunen J.T., Alm J. Liikanen A., Juutinen S., Larmola T., Hammar T., Silvola J. and Martikainen P.J. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere,2003, 52:609-621.
    [50]Inwood S.E., Tank J.L., Bernot M.J. Patterns of denitrification associated with land use in 9 midwestern headwater streams. Journal of the North American Benthological Society,2005, 24:227-245.
    [51]IPCC. Climate Change 2001:The Scientific Basis. Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton J.T., Ding Y., Griggs D.J., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    [52]IPCC. Climate Change 2007:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007,996 pp.
    [53]Jarvie H.P., Neal C., Withers P.J.A. Sewage-effluent phosphorus:A greater risk to river eutrophication than agricultural phosphorus? Science of the total environment,2006,360: 246-253.
    [54]Jφrgensen B.B. and Parkes R.J. Role of sulfate reduction and methane production by orgnaic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark). Limnol Oceanogr., 2010,55(3):1338-1352.
    [55]Kettunen A., Kaitala V., Lehtinen A., Lohila A., Alm J., Sivola J., Martikainen P.J. Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biology and Biochemistry,1999,31:1741-1749.
    [56]Kim K.R. and Craig H. Nitrogen-15 and oxygen-18 characteristics of nitrous oxide:a global perspective. Science,1993,262:1855-1857.
    [57]Kim K.R. and Craig H. Two isotope characterization of N2O in the Pacific Ocean and constraints on its origin in deep water. Nature,1990,347:58.
    [58]Kroeze C., Dumont E., Seitzinger S.P. New estimates of global emissions of N2O from rivers and estuaries. Environmental Science,2005,2:159-165.
    [59]Kroeze C. and Seitzinger S.P. Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050:a global model. Nutrient Cycling in Agroecosystems,1998,52(2-3):195-212.
    [60]LaMontagne M.G., Duran R., Valiela I. Nitrous oxide sources in coastal aquifers and coupled estuarine receiving waters. Science of the Total Environment,2003,309:139-149.
    [61]Lashof D.A. and Ahuja D. Relative contribution of greenhouse gas emissions to the global warming. Nature,1990,344:529-531.
    [62]Laursen A.E., Seitzinger S.P. Diurnal patterns of denitrification, oxygen consumption and nitrous oxide production in rivers measured at the whole-reach scale. Freshwater Biology, 2004,49:1448-1458.
    [63]Liikanen A., Murtoniemi T., Tanskanen H. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics of a eutrophic mid-boreal lake. Biogeochemistry,2002, 59:269-286.
    [64]Liss P.S. and Salter P.G. Flux of gases across the air-sea interface. Nature,1974,247: 181-184.
    [65]Liss P.S. and Merlivat L. Air-sea gas exchange rates:Introduction and synthesis. In: Buat-Menard P, eds. The Role of Air-sea Exchange in Geochemical Cycling, NATO ASI Series, Vol.185. New York:D. Reidel Publishing Company,1986,113-127.
    [66]Lojen S., Ogrinc N., Dolenec T. Decomposition of sedimentary organic matter and methane formation in the recent sediment of Lake Bled (Slovenia), Chemical Geology,1999,159, 223-240.
    [67]Magalhaes C., Costa J., Teixeira C., Bordalo A.A. Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal. Marine Chemistry,2007,10: 332-341.
    [68]Megonigal J.P., Hines M.E. and Visscher P.T. Anaerobic metabolism:linkages to trace gases and aerobic processes.2004. Pages 317-424 in Schlesinger W.H. (Editor). Biogeochemistry, Elsevier-Pergamon, Oxford, UK.
    [69]Meyer R.L., Allen D.E., Schmidt S. Nitrification and denitrification as sources of sediment nitrous oxide production:A microsensor approach. Marine Chemistry,2008,110:68-76.
    [70]Millennium Ecosystem Assessment Report,2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC.
    [71]Montzka S.A., Fraser P.J., Butler J.H., et al. Controlled substances and other source gases. In Scientific assessment of ozone depletion:2002, Global ozone research and monitoring project, Report No.47 2003 (pp.1.1-1.83). Geneva:World Meteorological Organization.
    [72]Mosier A.R., Duxbury J.M., Freney J.R., Heinemeyer O., Minami K. and Johnson D.E. Mitigating agricultural emissions of methane. Climatic Change,1998,40(1):39-80.
    [73]Mulholland P. J., Valett H.M., Webster J.R., Thomas S.A., Cooper L.W., Hamilton S.K., Peterson B.J. Stream denitrification and total nitrate uptake rates measured using a field 15N tracer addition approach. Limnology and Oceanography,2004,49:809-820.
    [74]Naqvi S.W.A., Bange H.W., Gibb S.W., Gibb S.W., Goyet C., Hatton A.D. and Upstill-Goddard R.C. Biogeochemical ocean-atmosphere transfers in the Arabian Sea. Progress in Oceanography,2005,65:116-144.
    [75]Naqvi S.W.A. N2O production in the ocean. Nature,1991,349:373-374.
    [76]Nauhaus K., Boetius A., Kriiger M. and Widdel F. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environmental Microbiology,2002,4(5):296-305.
    [77]Nevison C.D. Review of the IPCC methodology for estimating nitrous oxide emissions associated with agricultural leaching and runoff. Chemosphere-Global Change Science,2000, 2:493-500.
    [78]Nevison, C.D., Lueker T.J., and Weiss R.F. Quantifying the nitrous oxide source from coastal upwelling, Global Biogeochem. Cycles,2004,18, GB1018.
    [79]Nevison C.D., Weiss R.F. and Erickson Ⅲ D.J. Global oceanic emissions of nitrous oxide. J. Geophys. Res.,1995,100:15809-15820.
    [80]Nirmal Rajkumar A., Barnes J., Ramesh R., Purvaja R., Upstill-Goddard R.C. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Marine Pollution Bulletin,2008,56:2043-2051.
    [81]Martens C.S., Albert D.B, Alperin M.J. Biogeochemical processes controlling methane in gassy coastal sediments:Part 1. A model coupling organic matter flux to gas production, oxidation and transport. Continental Shelf Research,1998,18:1741-1770.
    [82]Mcmahon P.B. and Dennehy K.F. N2O emissions from a nitrogen-enriched river. Environ. Sci. Technol,1999,33,21-25.
    [83]Pelletier L., Moore T.R., Roulet N.T. Methane fluxes from three peatlands in the La Grande Rivie're watershed, James Bay lowland, Canada, Journal of Geophysical Reserch,2007,112: G01018.
    [84]Popp T.J., Chanton J.P., Whiting G.J. Evaluation of methane oxidation in the rhizosphere of a Carex dominated fen in north central Alberta, Canada. Biogeochemistry,2000,51:259-281.
    [85]Reay D.S., Smith K.A., Edwards A.C. Nitrous oxide emission from agricultural drainage waters. Global Change Biology,2003,9:195-203.
    [86]Richey, J.E., Devo A.H. Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnol. Oceanogr.,1988,33(4):551-561.
    [87]Ronner U. Distribution, production and consumption of N2O in the Baltic Sea, Geochim et Cosmochimica Acta,1983,47:2179-2188.
    [88]Roslev P. and King G.M. Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiology Ecology,1996,19:105-115.
    [89]Rysgaard S., Thastum P., Dalsgaard T., Christensen P.B. and Sloth N.P. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries and Coasts,1999,22(1):21-30.
    [90]Schlesinger W.H., Reckhow K.H., Bernhardt E.S. Global change:the nitrogen cycle and rivers. Water Resources Research,2006,42:W03S06.
    [91]Schmaljohann R. Methane dynamics in the sediment and water column of Kiel Harbour (Baltic Sea). Marine Ecology Progress Series,131:263-273.
    [92]Scholten J.C.M. and Stams A.J.M. The effect of sulfate and nitrate on methane formation in a freshwater sediment. Antonie van leeuwenhoek,1995,68,309-315.
    [93]Schulz S., Matsuyama H., Conrad R. Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiology Ecology, 1997,22:207-213.
    [94]Schulz S. and Conrad R. Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiology Ecology, 1996,20:1-14.
    [95]Scranton M.I. and McShane K. Methane fluxes in the southern North Sea:the role of European rivers. Continental Shelf Research,1991,11(1):37-52.
    [96]Seitzinger S.P., Kroeze C., Styles R.V. Global distribution of N2O emissions from aquatic systems:natural emissions and anthropogenic effects. Chemosphere-Global Change Science, 2000,2:267-279.
    [97]Seitzinger S.P., Kroeze C. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochemical Cycles,1998,12:93-113.
    [98]Silvennoinen H., Liikanen A., Rintala J., Martikainen P.J. Greenhouse gas fluxes from the eutrophic Temmesjoki River and its Estuary in the Liminganlahti Bay (the Baltic Sea). Biogeochemistry,2008b,90:193-208.
    [99]Silvennoinen H., Liikanen A., Torssonen J., Stange C.F., Martikainen P.J. Denitrification and nitrous oxide effluxes in boreal, eutrophic river sediments under increasing nitrate load:a laboratory microcosm study. Biogeochemistry,2008a,91:105-116.
    [100]Silvennoinen H., Hietanen S., Liikanen A., Stange C.F., Russow R., Kuparinen J., Martikainen P.J. Denitrification in the river estuaries of the Northern Baltic Sea. Ambio,2007, 36:134-140.
    [101]Silvennoinen H., Liikanen A., Torssonen J., Stange C.F., Martikainen P.J. Denitrification and N2O effluxes in the Bothnian Bay (northern Baltic Sea) river sediments as affected by temperature under different oxygen concentrations. Biogeochemistry,2008c,88:63-72.
    [102]Sliva C.C., Guido M.L., Ceballos J.M., Marsch R., Bendooven L. Production of carbon dioxide and nitrous oxide in alkaline saline soil of Texcoco at different water contents amended with urea:A laboratory study. Soil Biology & Biochemistry,2008,40:1813-1822.
    [103]Smith L.K., Lewis W.M. Chanton J.P., Cronin G. and Hamilton S.K. Methane emissions from the Orinoco River floodplain, Venezuela. Biogeochemistry,2000,51:113-140.
    [104]Solomon S., Qin D., Manning M., et al. Technical Summary. In:Solomon S, Qin D, Manning M, et al. eds. Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press,2007. 19-91.
    [105]Stadmark J., Leonardson L. Greenhouse gas production in a pond sediment:Effects of temperature, nitrate, acetate and season. Science of the Total Environment,2007,387: 194-205.
    [106]Stow C.A., Walker J.T., Cardoch L., Spence P. N2O emissions from streams in the Neuse River watershed, North Carolina. Environmental Science and Technology,2005,39: 6999-7004.
    [107]Strack M. and Waddington J.M. Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment, Global Biogeochemistry Cycles,2007,21:GB1007.
    [108]Strauss E.A., Richardson W.B., Bartsch L.A., Cavanaugh J.C., Bruesewitz D.A., Imker H., Heinz J.A., Soballe D.M. Nitrification in the Upper Mississippi River:patterns, controls, and contribution to the NO3- budget. Journal of the North American Benthological Society,2004, 23:1-14.
    [109]Trimmer M., Risgaard-Petersen N., Nicholls J.C. Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores. Marine Ecology Progress Series,2006,326:37-47.
    [110]Upstill-Goddard R.C., Barnes J., Frost T., Punshon S. and Owens N.J.P. Methane in the southern North Sea:Low-salinity inputs, estuarine removal, and atmospheric flux. Global Biogeochem. Cycles,2000,14(4),1205-1217.
    [111]Valentine D.L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments:a review. Antonie van Leeuwenhoek,2002,81,271-282.
    [112]Valentine D.L. and Reeburgh W.S. New perspectives on anaerobic methane oxidation. Environmental Microbiology,2000,2(5):477-484.
    [113]Van Huissteden J., Maximov T.C., Dolman A.J. High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia), Journal of Geophysical Research,2005,110:G02002.
    [114]Veeck L., Statham P.J., Hydes D.J., Smythe-Wright D., Boswell S.M. Are estuarine systems a significant source of N2O to the atmosphere? European Geophysical Society, Geophysical Research Abstracts,2003,5,08893.
    [115]Wagner D., Lipski A., Embacher A. and Gattinger A. Methane fluxes in permafrost habitats of the Lena Delta effects of microbial community structure and organic matter quality. Environmental Microbiology,2005,7(10):1582-1592.
    [116]Walker J.T., Geron C.D., Vose J.M., Swank W.T. Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia. Chemosphere,2002,49:1389-1398.
    [117]Wang D.Q., Chen Z.L., Xu S.Y., Hu L.Z. and Wang J. Denitrification in Chongming east tidal flat sediment, Yangtze Estuary, China. Science in China ser. D Earth Sciences,2006, 49(10):1090-1097.
    [118]Wang D., Chen Z., Wang J., Xu S., Yang H., Chen H., Yang L. and Hu L. Summer-time Denitrification and Nitrous Oxide exchange in the intertidal zone of the Yangtze Estuary. Estuarine, Coastal and Shelf Science,2007,73:43-53.
    [119]Wanninlchof R. Relationship between wind speed and gas exchange over the sea. J Geophy Res,1992,97(C5):7373-7382.
    [120]Warwick J.J. and Shetty P. In-stream nitrification rate prediction. Water Research,1998, 22(6):723-732.
    [121]Wilcock R.J. and Sorrell B.K. Emissions of Greenhouse Gases CH4 and N2O from Low-gradient Streams in Agriculturally Developed Catchments. Water, Air, and Soil Pollution,2008,188:155-170.
    [122]Woodward K.B., Fellows C.S., Conway C.L., Hunter H.M. Nitrate removal, denitrification and nitrous oxide production in the riparian zone of an ephemeral stream. Soil Biology and Biochemistry,2009,41(4):671-680.
    [123]World Meteorological Organization. Annual Greenhouse Gas Bulletin. Geneva:WMO-GAW, 2006.
    [124]Xu J., Wang Y, Wang Q., Yin J. Nitrous oxide concentration and nitrification and denitrification in Zhujiang River Estuary, China. Acta Oceanologica Sinica.2005,24(3): 122-130.
    [125]Yan W., Laursen A.E., Wang F., Sun P., Seitzinger S. Measurement of denitrification in the Changjiang River. Environmental Chemistry,2004,1:95-98.
    [126]Yang S.S. Methane production in river and lake sediments in Taiwan. Environmental Geochemistry and Health,1998,20,245-249.
    [127]Zhang G., Zhang J., Ren J., Li J., Liu S. Distributions and sea-to-air fluxes of methane and nitrous oxide in the North East China Sea in summer. Marine Chemistry,2008,110:42-55.
    [128]Zinder S.H. Physiological ecology of methanogens. In Methanogensis:Ecology, Physiology, Biochemistry and Genetics (ed. Ferry J.G.). Chapman and Hall, New York:128-206.
    [129]鲍士旦.土壤农化分析.北京:中国科学出版社,2000,30-34.
    [130]柴超,俞志明,宋秀贤,沈志良.长江口水域富营养化特性的探索性数据分析.环境科学,2007,28(1):53-58.
    [131]曹铭昌,周广胜,翁恩生.广义模型及分类回归树在物种分布模拟中的应用与比较.生态学报,2005,25(8):2031-2040.
    [132]贺宝根,周乃晟,袁宣民.底泥对河流的二次污染浅析.环境污染及其防止,1999,21(3):41-43.
    [133]韩舞鹰编.海水化学要素调查手册.北京:海洋出版社,1986,121-148.
    [134]李文红,陈英旭,孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究.农业环境科学,2003,22(2):170-173.
    [135]李明芳.基于广义计算和分类回归树的电信业异动客户识别.浙江大学硕士学位论文, 2003.
    [136]李春华.太湖水—气界面碳循环研究.华南热带农业大学硕士论文.2004.
    [137]刘培芳,陈振楼,刘杰.盐度和pH对崇明东滩沉积物中NH4+释放的影响研究.上海环境科学,2002b,21(5):271-273.
    [138]孟昭睿.基于分类回归树的个人信用评价模型.企业技术开发,2009,28(2):76-77.
    [139]裘祖楠,张仲燕.苏州河底泥中污染物分布特征及相关性.环境污染及其防治,1998,17(2):10-14.
    [140]上海市地方志.2010,上海概况Available:http://www.shtong.gov.cn/
    [141]上海市统计局.上海2010统计年鉴,online edition. Available: http://www.stats-sh.gov.cn/2004shtj/tjnj/tjnj2010.htm
    [142]孙玮玮,王东启,陈振楼,胡蓓蓓,许世远.长江三角洲平原河网水体溶存CH4和N20浓度及其排放通量.中国科学B辑:化学,2009,39(2):165-175.
    [143]唐礼智,汤建中.上海市苏州河段水质污染综合治理研究.地理学与国土研究,2001,17(4):81-94.
    [144]田光明,何云峰,李勇先.水肥管理对稻田土壤甲烷和氧化亚氮排放的影响.土壤与环境,2002,11(3):294-298.
    [145]王东启,陈振楼,王军,许世远,杨红霞,陈华,杨龙元.夏季长江口潮问带CH4、CO2和N20通量特征.地球化学,2007,36(1):78-88.
    [146]王东启.长江口滨岸潮滩沉积物反硝化作用及N20的排放和吸收.华东师范大学博士学位论文,2006.
    [147]王彤,贾彬,王琳娜.广义可加模型稳健估计在空气污染对健康影像评价中的应用.中国卫生统计,2007,24(3):245-270.
    [148]邢光熹,曹亚澄,施书莲,孙国庆,杜丽娟,朱建国.太湖地区水体氮的污染源和反硝化.中国科学(B辑),2001,31(2):130-137.
    [149]熊正琴,邢光熹,沈光裕,施书莲,杜丽娟.太湖地区湖水与河水中溶解N20及其排放.环境科学.2002,23(6):26-30.
    [150]徐启新,杨凯,许世远.上海高速城市化进程对水环境的影响及对策探讨.世界地理研究,2003,12(1):54-59.
    [151]徐文彬.箱技术测量土壤痕量气体释放通量中的误差因素——以N20为例.地质地球化学,1999,27(3):111-117.
    [152]许世远.上海城市自然地理图集.上海:中华地图学社,2004,57-58.
    [153]许志兰,廖日红,楼春华,胡秀琳,孟庆义.城市河流面源污染控制技术.北京水力,2005,4:26-28.
    [154]许洁.南海、黄海及长江口海域溶解氧化亚氮和甲烷的分布及海—气交换通量研究.中国海洋大学硕士论文,2006.
    [155]杨晋浩.S-PLUS实用统计分析.成都:电子科技大学出版社,2007,254-257.
    [156]谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展.中国农业气象,2002,23(4):47-52.
    [157]邹建文,黄耀,宗良纲,郑循华,王跃思.稻田CH4, CO2和N20排放及其影响因素.环境科学学报,2003,23(6):758-764.
    [158]张桂玲.中国近海部分海域溶解甲烷和氧化亚氮的生物地球化学研究.中国海洋大学博士学位论文,2004.
    [159]张运林,黄群芳,马荣华,陈伟民.基于反射率的太湖典型湖区溶解性有机碳的反演.地球科学进展,2005,20(7):772-777.
    [160]张立彬,张其前,胥芳,杜将胜.基于分类回归树(CART)方法的统计解析模型的应用与研究.浙江工业大学学报,2002,30(4),315-318.
    [161]张玲,杜庆宣.基于分类回归树算法的上市公司会计信息失真识别研究.财务与会计,2009,30(159):57-61.
    [162]张燕萍,张志琴,张晓萍,封宝琴,李海平.太原市空气污染对心脑血管疾病死亡率急性影响的Poisson广义可加模型分析.环境与健康杂志,2008,25(1):11-14.
    [163]赵晶,徐建华,梅安新.城市土地利用结构与形态的分形研究——以上海市中心城区为例.华东师范大学学报,2005,1:78-84.
    [164]赵静.长江和海南东部典型水体中溶存甲烷和氧化亚氮的分布与释放.中国海洋大学硕士学位论文,2004.
    [165]赵萍,傅云飞,郑刘根,冯学智,Satyanarayana B基于分类回归树分析的遥感影像土地利用/覆盖分类研究.遥感学报,2005,9(6):708-716.
    [166]朱广伟,陈英旭.沉积物中有机质的环境行为研究进展.湖泊科学,2001,13(3):272-279.
    [167]周启星,朱荫湄.西湖底泥不同供氧条件下有机质降解及CO2与CH4释放速率的模拟研究.环境科学学报,1999,19(1):11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700