用户名: 密码: 验证码:
可降解光交联聚(醚—酐)凝胶用于药物增溶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一些水难溶性药物因其溶解性差导致生物利用度低,吸收不完全,严重的影响了其临床应用,成为制剂领域面临的一大难题。国内外很多学者致力于难溶性药物增溶的研究并取得了一定成果,如制成固体分散体、环糊精包合物、可溶性药物前体等,但均在不同程度上存在着缺陷,如贮存不稳定等。为解决这一难题,本文提出了一种通过用生物可降解三维光交联网络凝胶来包载难溶性药物并达到药物增溶和贮存稳定性的思想。
     本文选用美国FDA批准用于人体的生物相容性材料聚乙二醇PEG、癸二酸SA等作为组成凝胶网络的骨架,将亲水性PEG引入到聚酸酐的链段中,使两种材料的优势得以充分体现。将PEG衍生物和癸二酸均通过双键封端后,通过生物相容性引发剂2,2-二甲氧基-2-苯基苯乙酮的引发,在紫外光的照射下发生自由基聚合反应,形成生物可降解聚(醚-酐)三维光交联网络凝胶,用FTIR和1H NMR进行产物结构表征并进行溶胀性和降解性能测定。用原位法和后包合两种方法将水难溶性模型药物吲哚美辛包载于凝胶中,以满足不同的用药目的。通过X-ray和DSC测定药物存在形态及贮存稳定性,两种方法制成的载药凝胶中吲哚美辛均以无定型或分子状态分布,且在贮存8个月后仍能保持原有形态,无任何晶体析出;药物体外溶出实验表明,包载于聚(醚-酐)网络中的药物有较结晶原料药更快的溶出速率和累积溶出量,且通过调节亲、疏水性大分子单体比例可延缓药物释放。聚(醚-酐)凝胶网络中,聚乙二醇的引入可有效增加难溶性药物的表面润湿性,无定型或分子形态的分布状态能够增加药物与介质接触的表面积,三维网络可有效抑制药物结晶,此法有望解决水难溶性药物溶解度和溶出速率低及制剂中药物物理形态不稳定、易析晶老化等难题,为难溶性药物增溶提出了一种新思路,对药物制剂领域的整体发展具有一定的指导意义。
The poor solubility of hydrophobic drugs in water and their low dissolution rate in the body fluids often leads to insufficient bioavailability and is one of the most difficult and non-dissolved problems in pharmaceutical industry. Over the years, various solid dosage formulation techniques including solid dispersion,β-cyclodextrin inclusion complex, water-soluble prodrug et al., which enhance the dissolution of poorly soluble substances, have been successfully introduced to some extent. However, some of the formulated drug systems become instable and will recrystallize when they are stored for a period of time. The aim of this work was to explore a method that the hydrophobic drugs were entrapped into the biodegradable poly(ether-anhydride) photocrosslinked gels to increase the dissolution rate and enhance the stability of these drugs .
     Polyethylene glycol (PEG) and sebacic acid (SA) were chosen as the candidates to construct the matrix of the poly (ether-anhydride) gels due to their excellent properties such as biocompatibility, non-toxicity and non-immunogenicity, which are proved by FDA for widely use in the field of biomedical science. By introducing hydrophilic PEG chain to polyanhydride structures, PEG-based macromers containing anhydride bonds were synthesized and photopolymerized to form degradable gels under UV irradiation. The structures were characterized by FTIR and 1H NMR. Indomethacin (IMC) as a model of poorly water-soluble drug was embedded in the degradable poly (ether-anhydride) photocrosslinked network by two different methods: in situ and post-fabrication. The drug was proved to be distributed with amorphous or molecular state in the crosslinked network and the physical morphology of the drug remained stable after at least 8 months storage by employing X-ray diffraction and differential scanning calorimetery (DSC). Dissolution tests showed that the drug in the network displayed better dissolution rate and more cumulative drug release than the crystal raw indomethacin. This method could increase the dissolution rate, inhibit recrystallization and enhance the stability of indomethacin in the degradable poly (ether-anhydride) networks, which provides a novel method and can be extended to other hydrophobic drugs.
引文
[1] Byrne M E,Park K , Peppasa N A., Molecular imprinting within hydrogels,Adv. Drug Deliv. Rev, 2002, 54:149~161
    [2] Park H,Park K,Biocompatibility issues of implantable drug delivery systems, Pharm. Res. 1996, 13:1770~1776
    [3] Smetana K,Cell biology of hydrogels, Biomaterials , 1993,14:1046~1050
    [4] Anderson J M,Langone J J,Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems, J. Controlled Release,1999,57:107~113
    [5] Hennink W E,van Nostrum C F,Novel crosslinking methods to design hydrogels, Adv. Drug Deliv. Rev,2002,54:13~36
    [6] Gombotz W R,Wee S F,Protein release from alginate matrices, Adv. Drug. Deliv. Rev.,1998,31:267~285
    [7] Sheng L G,Bencherif S, Cooper J A,et al.,Synthesis and Characterization of PEG and PEG Urethane Dimethacrylate Hydrogels,Antonucci Polymeric Materials: Science & Engineering,2004,90:251~252
    [8] Iza M, Stoianovici G, Viora L, et al., Hydrogels of poly(ethylene glycol):Mechanical characterization and release of a model drug. J.Controlled. Release, 1998,52:41~51
    [9] Dai W S,Barbari T A,Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly(vinyl alcohol), J. Membr. Sci, 1999, 156:67~79
    [10] Yamamoto M,Tabata Y,Hong L, et al.,Bone regeneration by transforming growth factor β1 released from a biodegradable hydrogel,J. Controlled Release, 2000,64:133~142
    [11] Wetering P,Metters A T,Schoenmakers R G,Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins,J. Controlled Release,2005,102:619~627
    [12] Peppas N A,Merrill E W,Hydrogels as swollen elastic networks,J. Appl. Polym. Sci. 1997, 21:1763~1770
    [13] Stringer J L,Peppas N A,Diffusion of small molecular weight drugs in radiation-crosslinked poly(ethylene oxide) hydrogels, J. Controlled Release1996, 42:195~202
    [14] Peppas N A, Keys K B, Torres-Lugo M , et al., Poly(ethylene glycol)-containing hydrogels in drug delivery,J. Controlled Release,1999, 62:81~ 87
    [15] Stringer J L, Peppas N A,Diffusion of small molecular weight drugs in radiation-crosslinked poly(ethylene oxide) hydrogels,J. Controlled Release, 1996,42:195~202
    [16] Jabbari E,Nozari S,Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution,Eur. Polym. J. 2000, 36:2685~2692
    [17] Lu S,Anseth K S,Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release,J. Controlled Release,1999, 57:291~300
    [18] Ward J H,Peppas N A,Preparation of controlled release systems by free-radical UV polymerizations in the presence of a drug,J.Controlled Release 2001,71:183~192
    [19] Rathna G V,Hydrogels of modified ethylene diaminetetra acetic dianhydride gelatin conjugated with poly (ethylene glycol) dialdehyde as a drug-release matrix,J. Appl Polym Sci,2004,91:1059~1067
    [20] Podual K, Doyle F J,Peppas N A,Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase,Polymer 2000,41:3975~3983
    [21] Shantha K L, Harding D R,Synthesis, characterization, and evaluation of poly[lactose acrylate-N-vinyl-2-pyrrolidinone hydrogels for drug delivery,Eur. Polym J.,2003,39: 63~68
    [22] Kim S W, Bae Y H,Okano T, Hydrogels: swelling, drug loading, and release,Pharm. Res. 1992,9 :283~290
    [23] Katime I, Rosa N, Diaz de A E, et al., Release of theophylline and aminophylline from acrylic acid/n-alkyl methacrylate hydrogels,J. Polym Sci. Part A: Polym Chem,2004,42:2756~2765
    [24] Zhuo R X,Li W,Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins,J. Polym Sci. Part A.: Polym Chem,2003,41:152~159
    [25] Zhang Y, Zhu W, Wang B B, et al.,A novel microgel and associated post-fabrication encapsulation technique of proteins,J. Controlled Release,2005,105 :260~268
    [26] Wichterle O, Lim D, Hydrophilic gels in biologic use,Nature,1960, 185: 117~121
    [27] Ulbrich K, Subr V, Podperova P, et al., Synthesis of novel hydrolytically degradable hydrogels for controlled drug release,J. Controlled Release,1995,34 :155~165
    [28] Hoffman A S,Hydrogels for biomedical applications,Adv. Drug Deliv. Rev 2002,43:3~12
    [29] Lim F,Sun A,Microencapsulated islets as bioartificial pancreas,Science, 1980,210:908~910
    [30] Yannas I V,Lee E,Orgill D P,Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin, Proc. Natl. Acad. Sci. USA,1989,86:933~937
    [31] Tsang V L,Bhatia S N,Three-dimensional tissue fabrication,Adv. Drug Deliv. Rev,2004,56:1635~1647
    [32] Nguyen K T,West J L,Biomaterials,2002,23:4307~4311
    [33] Liu V A,Bhatia S N,Three-dimensional photopatterning of hydrogels containing living cells,Biomed. Microdevices,2002,4:257~266
    [34] Chacon D,Hsieh Y L,Kurth M J,et al., Swelling and protein absorption/desorption of thermo-sensitive lactitolbased polyether polyol hydrogels,Polym,2000,41:8257~8262
    [35] Qiu B,Stefanos S,Ma J L,A hydrogel prepared by in situ cross-linking of a thiol-containing poly(ethylene glycol)-based copolymer: a new biomaterial for protein drug delivery,Biomaterials,2003,24:11~18
    [36] Garcia O,Blanco M D,Martin J A,et al., 5-Fluorouracil trapping in poly(2-hydroxyethyl methacrylate-co-acrylamide) hydrogels: in vitro drug delivery studies,Eur. Polym J,2000,36:111~122
    [37] Obara K,Ishihara M,Ozeki Y,Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice,J. Controlled Release,2005,110 :79~89
    [38] Ono K,Saito Y,Yura H,et al.,Photocrosslinkable chitosan as a biological adhesive,J. Biomed Mater Res,2000,49:289~295
    [39] Bettini R,Colombo P,Peppas N A,Solubility effects on drug transport through pH-sensitive, swelling-controlled release systems: Transport of theophylline and metoclopramide monohydrochloride,J. Controlled Release,1995,37:105~111
    [40] Cicek H,Tuncel A,Immobilization of a-chymotrypsin in thermally reversible isopropylacrylamide-hydroxy ethylmethacrylate copolymer gel, J. Polym. Sci., Part A: Polym. Chem,1998,36:543~552
    [41] Kondo A,Kishimura M,Katoh S,et al., Improvement of proteolytic resistance of immunoadsorbents by chemical modification with polyethylene glycol,Biotech Bioeng,1989,34:532~540
    [42] Shaffer C B,Critchfield F H,The absorption and excretion of the solid polyethylene glycols (carbowax compounds),J Am Pharm Assoc,1947,36:152~157
    [43] Ozkan Y,Dogˇanay N,Dikmen N,et al., Enhanced release of solid dispersions of etodolac in polyethylene glycol,ILFarmaco,2000,55:433~438
    [44] 王俊,裴元英,用聚乙二醇修饰大分子药物的研究进展,中国医药工业杂志,2004,35:696~701
    [45] 张修建,王清明,陈惠鹏等,药物的聚乙二醇修饰研究进展,解放军药学学报,2003,19:213~216
    [46] Abuchowski A,Van Es T,Palczuk N C,et al., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol,J. Biol Chem,1977,252:3578~3583
    [47] Pool R,Hairy enzymes stays in the blood,Science,1990,248:305~311
    [48] Abuchowski A,Kazo G M,Verhoest C R, et al., Cancer therapy with chemically modified enzymes,Cancer Biochem Biopys,1984,7:175~180
    [49] Takacs M A, Jacobs S J,Bordens R M,et al., Detection and characterization of antibodies to PEG-IFN-α2b using surface plasmon resonance,J. Interferon Cytokine Res,1999,19:81~90
    [50] Bailon P, Palleroni A, Schaffer C A, et al., Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon α-2a for the treatment of hepatitis C,Bioconjugate Chem,2001,12(2):195~202
    [51] Coukell A J,Spencer C M,Polyethylene glycol-liposomal doxorubicin:a review of its pharmacodynamic and pharmacokinetic properties and therapeutics efficacy in the management of AIDS-related Kaposi’s sarcoma,Drugs,1997,53:520~526
    [52] Rreenwald R B , Pendri A , Conover C , et al. , Drug delivery systems.2.camptothecin 20-O-poly(ethylene glycol) ester transport forms,J. Med Chem,1996,39:1938~1940
    [53] Greenwald R B,Gilbert C W,Pendri A,et al.,Drug delivery systems: water soluble taxol 2-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness,J Med Chem,1996,39:424~435
    [54] Quicka D J,Anseth K S,DNA delivery from photocrosslinked PEG hydrogels:encapsulation efficiency, release profiles, and DNA quality , J. Controlled Release,2004,96 :341~351 58
    [55] Benoit D S W,Nuttelman C R,Collins S D,Synthesis and characterization of a fluvastatin-releasing hydrogel delivery system to modulate hMSC differentiation and function for bone regeneration,Biomaterials,2006,27 :6102~6110
    [56] Riley S L,Dutt S,Torre R L,et al.,Formulation of PEG-based hydrogels affects tissue-engineered cartilage construct characteristics , J. Mater Sci: materials in medicine,2001,12:983~990
    [57] Scott R A,Peppas N A,Highly crosslinked,PEG-containing copolymers for sustained solute delivery,Biomaterials,1999,20 :1371~1380
    [58] DiRamio J A,Kisaalita W S,Majetich G F. et al., Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs,Biotechnol. Prog,2005,21:1281~1288
    [59] Kanjickal D,Lopina S,Evancho-Chapman M M,Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins,J. Biomed Mater Res,2005,74:454~460
    [60] Kim B S,Hrkach J S,Langer R,Synthesis and characterization of novel degradable photocrosslinked poly (ether-anhydride) networks,J Polym Sci: Part A: Polym Chem,2000,38:1277~1282
    [61] Burkoth A K,Anseth K S,A review of photocrosslinked polyanhydrides: in situ forming degradable networks,Biomaterials,2000,21:2395~2404
    [62] Rosen H B,Chang J,Wnek G E,et al., Bioerodible polyanhydrides for controlled drug delivery,Biomaterials,1983,4(2):131~133
    [63] Brem H,Lawson H C,The development of new brain tumor therapy utilizing the local and sustained delivery of chemotherapeutic agents from biodegradable polymer,Cancer,1999,86:197~199
    [64] Anseth K S,Newman S M,Bowman C N,Polymeric dental composites: properties and reaction behavior of multimethacrylate dental restorations, Biopolym,1995,122:177~182
    [65] Ruyter I E,Oysaed H,Composites for use in posterior teeth composition and conversation,J. Biomed Mater Res,1987,21:11~23
    [66] Muggli D S,Burkoth A K,Keyser S A,Reaction behavior of biodegradable, photo-cross-linkable polyanhydrides,Macromolecules,1998,31:4120~4125
    [67] Young J S, Gonzales K D,Anseth K S,Photopolymers in orthopedics: characterization of novel crosslinked polyanhydrides,Biomaterials,2000, 21:1181~1188
    [68] Muggli D S , Development of photocrosslinkable biodegrabable polyanhydrides for use in orthopedic applications,M.S. thesis,University of olorado,Boulder,CO,1997
    [69] Shastri V P,Padera R F,Tarcha P,A preliminary report on the biocompatibility of photopolymerizable semi-interpenetrating anhydride networks,Biomaterials,2004,5:715~721
    [70] Quick D J,Macdonala K K,Anseth K S,Delivering DNA from photocrosslinked, surface eroding polyanhydrides,J. Controlled Release,2004,97 :333~343
    [71] Abraham J,Domb,Nitza Manor et al., Biodegradable bone cement compositions based on acrylate and epoxide terminated poly(propylene fumarate) oligomers and calcium salt compositions,Biomaterials,1996,17:411~417
    [72] Sawhney A S,Pathak C P,Hubbell J A,Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromer,Macromolecules,1993,26:581~587
    [73] Lu S,Anseth K S,Release behavior of high molecular weight solutes from poly(ethylene glycol)-based degradable networks,Macromolecules, 2000,33:2509~2515
    [74] Kim B S,Hrkach J S,Langer Robert,Biodegradable photo-crosslinked poly(ether-ester) networks for lubricious coatings,Biomaterials,2000,21:259~265
    [75] Bikiaris D,Papageorgiou G Z,Stergiou A,et al.,Physicochemical studies on solid dispersions of poorly water-soluble drugs evaluation of capabilities and limitations of thermal analysis techniques,Thermochimica Acta,2005,439:58~67
    [76] Yokogawa K,Nakashima E,Ishizaki J,et al.,Relationships in the structure –tissue distribution of basic drugs in the rabbit,Pharm. Res,1990,7:691~696
    [77] Hageluken A,Grunbaum L,Nurnberg B,et al.,Lipophilic beta-adrenoceptor antagonists and local anesthetics are effective direct activators of G-proteins, Biochem. Pharmacol,1994,47:1789~1795
    [78] Lipinski C A,Drug-like properties and the causes of poor solubility and poor permeability,J. Pharmacol. Toxicol. Methods,2000,44:235~249
    [79] Lipinski C A,Lombardo F,Dominy B W,et al.,Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,Adv. Drug Deliv. Rev,2001,46:3~26
    [80] Teicher B A (Ed.) ,Anticancer,Drug Deliv Guide, Humana Press, Philadelphia,1997
    [81] Yalkowsky S H (Ed.) ,Techniques of Solubilization of Drugs, Marce Dekker, New York and Basel,1981
    [82] Thompson D,Chaubal M V,Cyclodextrins (CDS)-excipients by definition,drug delivery systems by function (part I: injectable applications),Drug Deliv. Technol,2000,2 :34~38
    [83] Leuner C,Dressman J,Improving drug solubility for oral delivery using solid dispersions,Eur J Pharm Biopharm,2000,50: 47~60
    [84] Sekituchi K,Obi N,Studies on absorption of eutectic mixture,Chem Pharm Bull,1961,9(11):866~875
    [85] Gupta R L,Kumar R,Singla A K,Enhanced dissolution and absorption of thrimethoprim from coprecipitates with polyethyleneglycols and polyvinylpyrrolidone,Drug Dev. Ind. Pharm,1991,17:453~468
    [86] Craig D Q M,The mechanisms of drug release from solid dispersions in water-soluble polymers,Int. J Pharm,2002,231:131~144
    [87] Naima Z,Siro T,Juan-Manuel G D,et al.,Interactions between carbamazepine and polyethylene glycol (PEG) 6000 characterisation of the physical solid dispersed and eutectic mixtures,Eur. J Pharm. Sci,2001,12:395~404
    [88] Joshi1 H N,Tejwani R W,Davidovich M,et al.,Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol–polysorbate 80 mixture,Int. J Pharm,2004,269 :251~258
    [89] Verheyen1 S,Blaton N,Kinget R,et al.,Pharmaceutical performance of solid dispersions containing poly(ethylene glycol) 6000 and diazepam or temazepam,J. Therm Anal Calorim,2004,76:405~416
    [90] Ford J L,Rubinstein M H,Aging of indomethacin-poly(ethylene glycol) 6000 solid dispersion,Pharm Acta Helv,1979,54(5):353 ~ 358
    [91] Kadri M,Djemil R,Abdaoui M,et al.,Inclusion complexes of N-sulfamoyloxazolidinones with β-cyclodextrin,Bioorg Med Chem Letters,2005,15:889~894
    [92] Ahn K J,Him K M ,Choi J S,et a1., Effects of cyclodextrin derivatives on of ketioprofen,Drug Dev Ind Pharm,1997,23(4):397~401
    [93] Leppaènen J,Huuskonen J,Savolainen J,et al.,Synthesis of a water-soluble prodrug of entacapone,Bioorg Med Chem Lett,2000,10 : 1967~1969
    [94] Ohwad J,Tsukazaki M,Hayase T,et al.,Design, synthesis and antifungal activity of a novel water soluble prodrug of antifungal triazole,Bioorg Med Chem Lett,2003,13 :191~196
    [95] Feng X,Yuan Y J,Wu J C,Synthesis and evaluation of water-soluble paclitaxel prodrugs,Bioorg Med Chem Lett,2002,12: 3301~3303
    [96] Kang B K,Lee J S,Chon S K,et al.,Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs,Int J Pharm,2004,274:65~73
    [97] Layre A M,Gref R,Richard J,et al.,Nanoencapsulation of a crystalline drug,Int J Pharm,2005,298,323~327
    [98] Henck J O,Griesser U J,Burger A,Polymorphie von Arzneistoffen,Pharm. Ind,1997,59:165~169
    [99] Lukyanov A N,Torchilin V P,Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugsm, Adv Drug Deliv Rev,2004,56 :1273~1289
    [100] 施洁明,何仲贵,邢楠等,2-羟丙基 β-环糊精对吲哚美辛的增溶及稳定作用,中国药学杂志,2004 5(39):353~355
    [101] Okimoto K,Tokunaga Y,Ibuki R, et al., Applicability of (SBE)7m-β-CD in controlled-porosity osmotic pump tablets (OPTs), Int J Pharm,2004,286: 81~88
    [102] Jambhekar S,Casella R,Maher T,The physicochemical characteristics and bioavailability of indomethacin from β-cyclodextrin, hydroxyethyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin complexes,Int J Pharm,2004,270: 149~166
    [103] Takeuchi H,Nagira S,Yamamoto H,et al.,Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method,Int J Pharm,2005,293:155~164
    [104] Fini A,Rodriguez L,Cavallari C,et al.,Ultrasound-compacted and spray-congealed indomethacin/polyethyleneglycol systems,Int J Pharm,2002, 247:11~22
    [105] Fujii M,Okada H,Shibata Y,et al.,Preparation, characterization, and tableting of a solid dispersion of indomethacin with crospovidone,Int J Pharm,2005,293:145~153
    [106] Lu B , Wen R , Yang H , et al. , Sustained-release tablets of indomethacin-loaded microcapsules : Preparation, in vitro and in vivo characterization,Int J Pharm,2006, doi:10.1016/j.ijpharm.2006.10.002
    [107] Satoa Y,Kawashimb Y,Takeuchi H,In vitro evaluation of floating and drug releasing behaviors of hollow microspheres(microballoons) prepared by the emulsion solvent diffusion method,Eur J Pharm Biopharm,2004,57:235~243
    [108] Tamilvanan S,Sa B,Studies on in vitro release behaviour of indomethacin- loaded polystyrene microparticles,Int J Pharm,2000,201:187~197
    [109] Qiao M X , Chen D W,Ma X C,et al.,Injectable biodegradable temperature-responsive,PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymercomposition on the drug release from the copolymer-based hydrogels, Int J Pharm,2005,294:103~112
    [110] Chauhan A S,Sridevi S,Chalasani K B,et al.,Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin,J. Controlled Release,2003,90:335~343
    [111] Sugimoto M,Okagaki T,Narisawa S,et al.,Improvement of dissolution characteristics and bioavailability of poorly water-soluble drugs by novel cogrinding method using water-solublepolymer,Int J Pharm,1998,160:11~19
    [112] 廉云飞,李娟,平其能等, 吲哚美辛微乳的制备及经皮吸收研究,中国医药工业杂志,2005,36:148~152
    [113] 曹德善 ,刘利萍 ,王广基等,吲哚美辛缓释片的研制及其生物利用度的研究, 中国药科大学学报,2002,33:383~387
    [114] 龙永福,谢凯,许静等, 刚柔嵌段共聚物聚苯基喹啉-b-聚乙二醇的合成及荧光性质, 材料导报,2005,19(5):105~108
    [115] Tarcha P J,Su L,Baker T,et al.,Stability of photocurable anhydrides: methacrylic acid mixed anhydrides of nontoxic diacids,J. Polym Sci: Part A: Polym Chem,2001,39:4189~4195
    [116] Omidiana Hossein,Roccaa J G,Parkb K,Advances in superporous hydrogels,J. Controlled Release,2005,120:3~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700