用户名: 密码: 验证码:
源于偃麦草小麦白粉病抗性的遗传与基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦白粉病是我国乃至世界广大麦区常见的重要病害,自20世纪70年代后期以来,随着半矮秆品种的推广、栽培水平的提高和水肥条件的改善,我国的小麦白粉病由局部地区发生向全国扩展蔓延,特别是随着含抗病基因Pm8的1B/1R易位系衍生品种及其它抗源抗性的丧失,主栽品种对白粉病的抗性普遍较差,多个新的生理小种已成为优势小种并开始流行。据统计,在我国小麦白粉病的发生面积由1981年的290万公顷增加到1996年的1200万公顷,从而对小麦生产构成新的威胁。
     培育和推广抗病品种是防治小麦重要病害的主要手段,从小麦近缘植物种属导入新的抗病基因则是实现抗源多样化进而防止或延缓抗性丧失的有效途径。中间偃麦草和十倍体长穗偃麦草蕴藏着许多对小麦遗传改良极其有用的基因资源,是应用于小麦育种最为成功的两个多年生野生近缘植物。为导入其抗病基因,山西省农科院作物遗传研究所以感病的高产、优质小麦品种(系)为受体,八倍体小偃麦为供体,采用六·八杂交方式,育成一批丰产性好、品质优良、兼抗白粉病、条锈病等多种病害的小麦新品系,它们是优良的小麦抗病育种亲本材料。本研究采用常规遗传分析方法和分子标记技术,以分别衍生于中间偃麦草和十倍体长穗偃麦草的多抗性新品系CH5026和CH7034为材料,开展了小麦白粉病的抗性鉴定、抗性遗传分析及抗病基因的SSR标记定位,获得以下研究结果:
     1:CH5026是衍生于普通小麦—中间偃麦草(Th.intermedium)的八倍体小偃麦“TAI7045”的抗病新品系,它兼抗小麦的白粉病和条锈病,其系谱来源为“76216穗96/TAI7045//京411”。温室抗性评价的结果显示,无论是苗期还是成株期CH5026对白粉病菌系E09均表现为免疫,且具有与其抗性供体TAI7045及TAI7045的野生亲本中间偃麦草相似的白粉病抗性,而CH5026和TAI7045的小麦亲本均为中、高感,表明存在于CH5026的白粉病抗性来自中间偃麦草。为进一步明确其白粉病抗性的遗传规律,用高感品种(系)晋太170、CH5065分别与CH5026杂交、回交,将其F_1、F_2、BC_1、F_3,代群体及其双亲分别在太原温室用白粉病E09菌系的15号生理小种接种,并按单株调查其抗感分离之比。结果表明:F_1对白粉病的感染分别为0或0;级。F_2、BC_1代的群体中,其抗感分离分别符合3R:1S和1R:1S;而且在F_3代的株系中,全抗:抗感分离:全感为1:2:1。说明衍生于TAI7045的抗病品系CH5026对白粉病的抗性受1对显性核基因控制。使用分离群体分组分析法(BAS)和SSR标记技术,发现小麦微卫星标记Xwmc41和Xgwm539与抗病基因连锁,遗传距离为14.8cM和7.9cM,将小麦抗白粉病新基因MlCH5026定位于染色体2DL上。
     2:CH7034是衍生于普通小麦—长穗偃麦草(Th.ponticum)的八倍体小偃麦“小偃7430”的多抗性新种质材料,兼抗小麦的白粉病和条锈病,通过普通小麦与八倍体小偃麦“小偃7430”杂交、回交选育而成,系谱来源为“京411/小偃7430//中8601”。为明确其白粉病抗性的遗传机制及抗性基因的染色体位置,用小麦高感品系“SY95-71”与CH7034杂交,所获F_1、F_2及其双亲在温室用白粉病E09菌系的15号小种接种,对CH7034的白粉病抗性进行鉴定和遗传分析。结果表明,无论是苗期还是成株期,CH7034对白粉病菌均表现为免疫,且具有与其抗性供体小偃7430及野生亲本长穗偃麦草相似的白粉病抗性,F_1代抗病反应型为0或0;级,F_2代抗感分离比符合3R:1S,说明CH7034抗性受显性单基因控制。用307对小麦微卫星引物对一个148株的F_2群体进行分析,发现小麦微卫星标记Xgwm311与抗病基因连锁,遗传距离为12.4cM。用中国春缺-四体和双端体材料进一步验证与抗病相关的片段位于2A染色体的长臂上,进而将CH7034所含的抗白粉病基因定位于小麦的2AL上。
Powdery mildew,caused by Blumeria graminis f.sp.tritici.is an important disease of wheat(Triticum aestivum)worldwide.Since the late 1970s.powdery mildew has gadually spread in China as a consequence of changing crop practices such as irrigation, increased nitrogen fertilization,and the use of semi-dwarf cultivars.Especially during 1980s-1990s,mainly due to the wide employment of 1B/1R translocations contained the single gene Pm8 and their derivatives in wheat breeding programs,the high frequency of virulence to Pm8 in Chinese B.graminis f.sp.tritici populations has remained stable at about 94%,resulting in the wheat area affected by powdery mildew increased to 12.0 million ha in 1996 from 2.9 million ha in 1981.
     Resistant wheat cultivars remain the most cost efficient and effective means for powdery mildew control,while the introgression of alien resistance gone from relatives of wheat is one of the efficient ways to deal with a 'short live" problem of monogenic resistance.Among the Thinopyrum species,the hexaploid Th.intermedium(2n = 6x = 42, JJ~SS) and decaploid Th.ponticum(2n = 10x = 70,JJJJ~sJ~s) are two of the most important perennial Triticeae species in wheat improvement.The wheat-Thinopyrum partial amphiploids and their derivatives have been widely used in wheat breeding programs throughout the world,as a valuable source of multiple disease and mite resistance for increasing genetic diversity available to wheat breeders.In 1992,the inter-genus hybridization between wheat and Thinopyrum programs at Institute of Crop Genetics of Shanxi Academy of Agricultural Sciences initiated a program of the introgression of Thinopyrum-derived alien resistance genes for powdery mildew and yellow rust,crossing susceptible wheat cultivars with resistant wheat-Thinopyrum partial amphiploids as donor parents.To date a lot of derived lines have been developed with multi-resistance genes incorporated from Th.intermedium and Th.ponticum.The objectives of this study are:1) To determine the inheritance of resistance to powdery mildew and identify the number of resistance genes in the germplasm lines CH5026 and CH7034:and 2) To identify chromosomal location of the resistance genes introgressed from Th.intermedium and Th. ponticum using SSR markers,which would be helpful in employing new resistance genes, especially for pyramidal complexes containing several resistance genes.
     1:CH5026,a wheat breeding line developed by backcrossing a partial wheat-Th. intermedium amphiploid TAI7045 with susceptible wheat cultivar,exhibits the resistance to both powdery mildew(Pro) and yellow rust.Greenhouse evaluation of resistance reactions at seedling and adult stage showed that CH5026 had Pm-resistance similar to its donor TAI7045 and Th.intermedium,whereas the wheat parents of both CH5026 and TAI7045 were susceptible,indicating that the Pm-resistance gene present in CH5026 derived from Th.intermedium,the grass parent of TAI7045.To investigate the inheritance mode of its Pro-resistance,CH5026 was crossed with the susceptible(S) cv.Jintai 170 and line CH5065.Parents and the resulted F1 plants,F2 and BC1 populations,and F2-derived F3(F2:3) lines were tested with mixed powdery mildew races,including Egt isolate E09, in the greenhouse.The F2 populations from two crosses segregated in a ratio of 3R:1S. and the BC1 population from a backcross of CH 5026(R) / Jintai170(S) // Jintai170(S) in a ratio of 1R:1S.The F2:3 lines from CH5026(R)×CH5065(S) exhibited a segregation pattern of 1(all R):2 segregating:1(all S).According to disease ratings of parents,and the F1,F2,and BC1 generations,and the F3 lines,the Pm-resistance in CH5026 was conferred by a single dominant gene.Using bulked segregant analysis(BAS),a CH5026(R)×CH5065(S) F2 population consisting of 161 individuals was screened with 349 wheat microsatellite(SSR) primer pairs to detect molecular markers linked to gene responsible for powdery mildew resistance.The results indicated that the microsatellite primer Xwmc41 and Xgwm539 on chromosomal arm 2DL was linked with the resistance gene,with the genetic distance 14.8 cM and 7.9cM
     2:Wheat germplasm line CH7034,developed by backcrossing a wheat-Th,ponticum partial amphiploid Xiaoyan7430 with susceptible wheat cultivars,was found to be resistant to both powdery mildew(Pm) and yellow rust.To determine the inheritance and chromosomal location of powdery mildew resistance gene,CH7034 was crossed with a susceptive wheat cultivar SY95-71.The seedling and adult tests of F1,F2 progeny plus parents were inoculated with Egt isolate E09 in greenhouse.F1 plants were consistent with their resistant parent CH7034 and resistant to Pro.In the F2 populations,the observed phenotypic classes for powdery mildew reaction satisfactorily fitted a 3R:1S segregation ratio,suggesting that the powdery mildew resistance in CH7034 was genetically controlled by a single dominant gene.Using bulked segregation analysis(BSA),a total of 148 F2 plants from the cross CH7034(R)/SY95-71(S) was screened with 307 wheat microsatellite(SSR) primer pairs to detect molecular markers linked to Pm resistance gene. The microsatellite marker linked to Pm resistance gene position were conformed using Chinese Spring nullitetrasomic and ditelosomic lines.The results indicated that the Pm resistance gene present in CH7034 was linked to microsatellite marker Xgwm311-2A with the genetic distance of 12.4cM and mapped to chromosome 2AL.
引文
[1]金善宝.中国小麦学[M].北京:中国农业出版社,1996:1-3.
    [2]钱拴,霍治国,叶彩玲.我国小麦白粉病发生流行的长期气象预测研究[J]自然灾害学报,2005,14(4):56-63.
    [3]刘万才.农作物预测预报的发展探讨[J].植保技术与推广,1998,18(5):39-40.
    [4]张增艳,陈孝,张超等.分子标记选择小麦抗白粉病基因Pm4b,Pm13和Pm21聚合体[J].中国农业科学,2002,35(7):789-793.
    [5]解超杰,杨作民,孙其信.小麦抗白粉病基因[J].西北植物学报,2003a,23(5):822-829.
    [6]Bennet F G A.Resistance to powdery mildew in wheat:a review of its use in agriculture and breeding programme[J]Plant Pathol,1984,33:279-300.
    [7]Saari E E,Wilcoxson R D.Plant disease situation of high-yielding dwarf wheats in Asia and Africa[J].Ann Rev Phytopath,1974,12:49-68.
    [8]Roelfs A P Foliar fungal diseases of wheat in the People's Republic of China[J]Plant Dis Rep,1977,61:836-841.
    [9]马贵龙.小麦白粉病抗性基因分析定位及分子标记[D].沈阳:沈阳农业大学2003:1-76.
    [10]李振歧.麦类病害[M].北京:中国农业出版社,1997:57-78.
    [11]刘万才,邵振润,姜瑞中.小麦白粉病测报与防治技术研究[M].北京:中国农业出版社,2000:1-340.
    [12]朱建祥.我国小麦白粉病逐年加重的原因分析及对策[[J].安徽农业科学,1992,20(2):174-180.
    [13]施爱农,陈孝,肖世和等.抗白粉病小麦新品系的选育及其抗性基因分析[J].植物病理学报,1998,28(3):209-214.
    [14]陶家凤,沈言章,秦家忠等.小麦的种和品种对白粉病抗性的初步研究[[J].植物病理学报,1982,12(2):7-14.
    [15]Bowen K L,Events K L,Leath S.Reduction in yield of winter wheat in North Carolina due to powdery mildew and leaf rust[J].Phyopathology,1991,81:503-511.
    [16]Evens K L,Leath S.Effect of early season powdery mildew on development,survival,and field contribution of tillers of winter wheat[J].Phytopathology,1992,82:1273-1278
    [17]司权民,张新心,段霞瑜等.小麦抗白粉病品种的基因分析与归类研究[J].植物病理学报1992,22(4):349-355.
    [18]Huang X.Q.,ROder M.S.,Molecular mapping of powdery mildew resistance genes in wheat:A review[J].Euphytica,2004,137:203-223.
    [19]Hsam,S.L.K.,and F.J.Zeller,Breeding for Powdery Mildew Resistance in common wheat(Triticum aestivum L.)In Bélanger,R.R.,W.R.Bushnell,A.J.Dik and T.L.W.Carver(ed).The powdery mildews:A comprehensive treatise.The American Phytopathological Society,St.Paul,MN,2002,219-238.
    [20]Jiang,J,B.Friebe,and B.S.Gill..Recent advances in alien gene transfer in wheat.Euphytica,1994,73:199-212.
    [21]Mains,E.B..Host specialization of Erysiphe graminis tritici,Proc.Nati.Acad.Sci.USA,1933,19:49-53.
    [22]Shi,A.N.,S.Leath,and J.P.Murphy.A major gene for powdery mildew resistance transferred to common wheat from wild eikorn wheat.Phytopathology,1998,88(2):144-147.
    [23]Murphy,J.P.,S.Leath,D.Huynh,R.A.Navarro,and A.Shi.Registration of NC96BGTD1,NC96BGTD2,and NC96BGTD3 wheat germplasm resistant to powdery mildew.Crop Sci,1998,38:570.
    [24]Miranda L.M.,Murphy J.P.,Marshall D..Pm34:a new powdery mildew resistance gene transferred from Aegilops tauschii Coss.to common wheat(Triticum aestivum L.).Theor Appl Genet 2006,113(8):1497-5042.
    [25]Miranda L.M.,Murphy J.P,Marshall D.,Cowger C.,Leath S..Chromosomal location of Pm35,a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat(Triticum aestivum L.).Theor Appl Genet 2007,114:1451-1456.
    [26]Zeller,F.J.,and S.L.K.Hsam.Progress in breeding for resistance to powdery mildew in common wheat(Triticum aestivum L.).In Slinkard,A.E.(ed).Proceedings of the 9th International Wheat Genetics Symposium.University of Saskatchewan,Saskatoon,Canada.1998,Vol.1:178-180.
    [27]Rong,J.K.,E.Millet,J.Manisterski,and M.Feldman.A new powdery mildew resistance gene:Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica,2000,115:121-126.
    [28]Liu,Z.,Q.Sun,Z.Ni,E.Nevo,and T.Yang.Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer.Euphytica,2002,123:21 -29.
    [29]Xie C J,Sun Q X,Ni Z F,et al.Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers [J].Theor.Appl.Genet., 2003,106:341-345.
    [30] Blanco,et.Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var.dicoccoides in durum wheat.Theor Appt Genet,2008,122.036-076
    [31]Chantret N.,Sourdillc M.,ROder M.,Tavaud M.,Bernard M.,Dossinault G. Location and mapping of the powdery mildew resistance gene M1RE and detection of a resistance QTL by bulked segregant analysis(BSA)with microsatellites in wheat. Theor. Appl. Genet 2000,100:1217-1224.
    [32]Grechter-Amitai,Z.K. and C.H.Van Silfhout.Resistance to powdery mildew in wild emmer(Triticum dicoccoides Korn.).Euphytica, 1984.33:273-280.
    [33]Zhu Z,Zhou R,Kong X,et al.Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat[J].Genome,2005,48(4):585-590.
    [34] Jarve,K.,H.O.Peusha,J.Tsymbalova,S.Tamm,K.M.Devos,and T.M.Eno. Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome,2000,43:377-381.
    [35]Murphy,J.P.,R.A. Navarro, and S. Leath. Registration of NC99BGTAG11 Wheat germplasm resistant to powdery mildew.Crop Sci.2002.42:1382.
    [36]Cenci,A.,R.D'Ovidio,O.A.Tanzarella,C.Ceoloni,and E.Porceddu. Identification of molecular markers linked to Pm13,an Aegilops longissimagene conferring resistance to powdery mildew in wheat. Theor.Appl.Genet, 1999,98:448-454.
    [37]Hsam,S.L.K.,V.Mohler,L.Hartl,G.Wenzel,and F.J.Zeller.Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome T1BL.1RS using molecular and biochemical markers.Plant Breed,2000.119:87-89.
    [38]Ren,S.X.,R.A.McIntosh, and Z.J.Lu.Genetic suppression of the cereal rye-derived gene Pm8 in wheat.Euphytica,1997.93:353-360.
    [39]Heun,M.,B.Friebe,and W.Bushuk.Chromosomal location of the powdery Mildew resistance gene of Amigo wheat.Phytopathology,1990,80:1129-1133.
    [40]Friebe,B.,M.Heun,N.Tuleen,F.J.Zeller,and B.S.Gill.Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat.Crop Sci,1994,34:621-625.
    [41]McIntoah R.A.,Devos K.M.,Dubcovsky J.,Rrogers W.J..Catalogue of gene symbols for wheat.2003,Supplement,http://wheat.pw.usda.gov/.
    [42]金善宝.中国小麦学[M].北京:中国农业出版社,1990.
    [43]Eser,V.Characterization of powdery mildew resistant lines derived from crosses between Triticum aestivum and Aegilops speltoides and Ae.mutica.Euphytica,1998.100:269-272.
    [44]McIntosh R.A,Devos KM,Dubcovsky J,et al.Catalogue of gene symbols forwheat [M]:2004 Supplement.http://wheat.pw.usda.gov/.
    [45]McIntosh R A,Hart G E,Devos K M,et al.Catalogue of gene symbols for wheat[M]:2005,Supplement.http://wheat.pw.usda.gov/.
    [46]庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003.
    [47]邱永春,张书绅.小麦抗白粉病基因及其分子标记研究进展.麦类作物学报,2004,24(2):127-132.
    [48]杨作民,唐伯让,沈克全.小麦育种的战略问题-锈病和白粉病第二线抗源的建立和利用.作物学报,1994.20:385-394.
    [49]Ma,Z.Q.,M.E.Sorrells,and S.D.Tanksley.RFLP markers linked to powdery mildew resistance genes Pm1,Pm2,Pm3,and Pm4 in wheat.Genome,1994.37:871-875.
    [50]Hartl L,Weiss H,Stephan U,et al.Molecular identification of powdery mildew re sistance genes in Common wheat(Triticumaestivum L.)[J].Theor.Appl.Genet.,1995,90:601-606.
    [51]Hartl L,Mohler F J,Zeller F J.et al.Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat(Triticumaestivum L.)[J].Genome,1999,42:322-329.
    [52]Mohler,V.,and A.Jahoor.Allele-specific amplification of polymorphic sites for the detection of powdery mildew resistance loci in cereals.Theor.Appl.Genet. 1996.93:1078-1082.
    [53]Liu,J.,D.Liu,W.Tao,W.Li,S.Wang,P.Chen,S.Cheng,and D.Gao.Molecular marker-fa cilitated pyramiding of different genes for powdery mildew resistance in wheat.Plant Breed,2000,119:21-24.
    [54]李振声,容珊,陈漱阳,等小麦远缘杂交.科学农业出版社,1985
    [55]Sourdille,P,P.Robe,M.Tixier,G.Doussinault,M.Pavione,and M.Bernard.Location of Pm3g,a powdery mildew resistance allele in wheat,by using a monosomic analysis and by identifying associated molecular markers.Euphytica,1999.110:193-198.
    [56]Tao,W.,D.Liu,J.Liu,Y.Feng,and P.Chen.Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis.Theor.Appl.Genet.2000.100:564-568.
    [57]Jia,J.,K.M.Devos,S.Chao,T.E.Miller,S.M.Reader,and M.D.Gale.RFLP-based maps of group-6 chromosomes of wheat and their application in the tagging of Pm12.a powdery mildew resistance gene transferred from Aegilops speltoides to wheat.Theor.Appl.Genet,1996.92:559-565.
    [58]Qi,L.,M.Cao,P.Chen,W.Li,and D.Liu.Identification,mapping,and application of pol ymorphic DNA associated with resistance gene Pm21 of wheat.Genome,1996.39:191-197.
    [59]Liu Z.Y.,Sun Q.X.,Ni Z.F.,Nevo E.,Yang T.M..Molecular characterization of a novel powdery mildew resistace gene Pm30 in wheat originating from wild ennner.Euphytica(In press).2001.
    [60]Liu Z.,Q.Sun,and T.Yang.Development of SCAR markers linked to the Pm21gene conferring resistance to powdery mildew in common wheat.Plant Breed,1999.118:215-219.
    [61]Perugini L.D.,Murphy J.P.,Marshall D.,Brown-Guedira G.,Pm3 7,a new broadly effective powdery mildew resistance gene from Triticum timopheevii.Theor Appl Genet,2007.
    [62]Hu,X.Y,H.W.Ohm,and I.Dweikat.Identification of RAPD markers linked to the gene PM1 for resistance to powdery mildew in wheat.Theor.Appl.Genet,1997.94:832-840.
    [63]Shi,A.N.Genetic analysis of wheat powdery mildew resistance.Ph.D.Thesis.North Carolina State University.1997.
    [64]Huang,X.Q.,S.L.K.Hsam,F.J.Zeller,G.Wenzel,and V.Mohler.Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding.Theor.Appl.Genet,2000a,101:407-414.
    [64]祁适雨,肖志敏 辛文利等.“远中”号小僵麦在小麦育种中的应用[[J].麦类作物学报,200020(1):10-15.
    [65]孙善澄.小偃麦新品种与中间类型的选育途径、程序和方法[[J].作物学1981.7(1):52-58,173-17.
    [66]张荣琦,陈春环,赵晓农等.八倍体小偃麦与普通小麦杂交选育优质小麦新品种的研究[[J],西北农林科技大学学报(自然科学版),2004,32(3):25-32.
    [67]陈漱阳,钟冠昌.小麦属远缘杂交育种研究的新进展[C].刘后利.作物育种研究与进[M],北京:中国农业出版社,1993:36-59.
    [68]韩方普,李集临小偃麦细胞遗传学[M].北京.中国农业科技出版社,1995:1-96.
    [69]王洪刚,张建民,刘树兵.抗白粉病小麦-中间偃麦草异附加系的细胞学和RAPD 鉴定[J].西北植物学报,2000b,20(1):64-67.
    [70]王洪刚,朱军,刘树兵.利用细胞学和RAPD技术鉴定抗病小偃麦易位系[[J].作物学报,2001,27(6):886-890.
    [71]刘树兵,王洪刚.抗白粉病小麦-中间偃麦草异附加系的选育及分子细胞遗传鉴定[J].科学通报,2002,47(19):1500-1504.
    [72]丁斌,王洪刚,孙海艳等.小麦-中间偃麦草双体异附加系的鉴定[J].西北植物学报,2003,23(11):1910-1915.
    [73]林小虎,王黎明,李兴锋等.抗白粉病小麦-中间偃麦草双体异附加系的鉴定[J].植物病理学报,2005a,35(11:60-65.
    [74]林小虎,王黎明,李兴锋等.抗白粉病八倍体小偃麦和双体异附加系的鉴定.作物学报,2005b,31(8):1035-1040.
    [75]赵逢涛,王黎明,李文才,林小虎,李兴锋,高居荣,王洪刚,小麦-中间偃麦草双体异附加系的选育和鉴定[[J].实验生物学报2005,38(2):867-872.
    [76]Liu S B,Wang H C,Zhang X Y.Molecular cytogenetic identification of a wheat-Thinopyron intermedium{Host) barkworth & D R Dewey partial amphiploid resistant to powderv mildew[J].J Integrative Plant Biol,2005,47(6):726-733.
    [77]钟冠昌,穆素梅,张荣琦等.八倍体小偃麦与普通小麦杂交育种的研究[[J].西 北植物学报,1995,15(1):6-9.
    [78]Chang Z J,Ren Z L,Zhang H Y.et al.Production of a new partial wheat-Thinopyrum intermedium amphiploid and its genome analysis using genomic in situ hybridization[C].In:Proceedings of 10th International Wheat Genetics Symposium.Italy:Paestum,2003,557-561.
    [79]王建荣,畅志坚,郭秀荣等.在小麦育种中利用偃麦草抗病特性的研究[[J].山西农业科学,2004,32(3):3-7.
    [80]马强,罗培高,任正隆,等.两个抗小麦白粉病新基因的遗传分析与染色体定位[J].作物学报,2007,33(1):1-8.
    [81]夏光敏,王槐,陈惠民.小麦与新麦草及高冰草的不对称体细胞杂交再生植株明.科学通报,1996,41(15):1423-1426.
    [82]夏光敏,向凤宁,周爱芬,等.小麦与高冰草的不对称体细胞杂交获可育杂种植株[[J].植物学报,1999,40(4):349-352.
    [83]王洪刚,赵吉平等.人工合成的十个优良小麦种质系的细胞学和性状特点的研究[J].山东农业大学学报,1989,(2):1-7.
    [84]张学勇,董玉探,杨欣明.小麦与长穗偃麦草、中间偃麦草杂种及其衍生后代的细胞遣传学研究[J].遗传学报,1995,22(3):217-222.
    [85]刘爱峰,王洪刚,郝元峰,段友臣,王玉海,吴新儒,李岩,朱玉丽,高居荣。抗条锈病小堰麦双体异附加系山农87074-519的鉴定。分子细胞生物学报,2007,40(3):227-233。
    [86]殷学贵,尚勋武,庞斌双.等.A-3中抗条锈新基因YrTp1和YrTp2的分子标记定位分析[J].中国农业科学,2006,39(1):10-17
    [87]马渐新,周荣华,董玉探,等.来自长穗偃麦草的抗小麦条锈病基因的定位[J].科学通报,1999,44(1):65-69.
    [88]Zhang X Y,Koul A,Petroski R,et al.Molecular verification and characterization of BYDV resistant germplasm derived from hybrid of wheat with Thinopyrum ponticum and Th.intermedium[J].Theor.Appl.Genet,1993,91:1033-1039.
    [89]王洪刚,李丹丹,高居荣,等.抗白粉病小偃麦异代换系的细胞学和RAPD鉴定[J].西北植物学报,2003,23(2):280-284.
    [90]刘树兵,贾继增等.长穗堰麦草与普通小麦间的多态性及E组染色体的特异RAPD 标记[J].作物学报,1998,24(6):687-690.
    [91]刘爱峰,王洪刚,郝元峰,段友巨,王玉海,关新儒,李宕,朱土朋,高后荣。抗条锈病小偃麦双体异附加系山农87074-519的鉴定。分子细胞生物学报,2007,40(3):227-233。
    [92]周阳,何中虎,张改生,夏兰琴等.1BL/1RS易位系在我国小麦育种中的应用[J].作物学报.2004,30(6):531-535
    [93]Fedak G,Han F.Characterization of derivatives from wheat-Thinopyrum wide crosses.Cytogenet Genome Res,2005.109:360-367
    [94]畅志坚,赵怀生,李生海.小麦与天蓝偃麦草远缘杂交中结实性的研究[J].山西农业科学.1992,02:7-10
    [95]畅志坚,胡河生,王志国.矮化型八倍体小偃麦的选育[J].中国生态农业学报.1996,02:
    [96]畅志坚.几个小麦-偃麦草新种质的创制分子细胞遗传学分析[D].四川农业大学博士学位论文,1999.
    [97]盛宝钦.用反应型记载小麦白粉病[J].植物保护,1988,14(1):49.
    [98]Roder M S,Korzun V,Wendehake K,Plaschke J,Tixier M-H,Leroy P,Ganal M W.A microsatellite map of wheat.Genetics,1998,149:2007-2023.
    [99]Michelmore R.W,Paran I.,and Kesseli R.V.,,Identification of markers linked to disease resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions using segregation populations,Proc Natl Acad Sci USA,1991,88(21):9828-9832.
    [100]Kosambi D.D.,The estimation of map distances from recombination values,Ann.Eugen.,1944,12:172-175.
    [101]Chen Q,Conner RL,Laroche A,et al.Genome analysis of Thinopyrum intermedium and Th.ponticum using genomic in situ hybridization.Genome 1998,41:580-586.
    [102]Zhang X Y,Koul A,Wang R C.et al.Molecular verification and characterization of BYDV-resistant germplasms derived from hybrids of wheat with Thinopyrum ponticum and Th.intermedium.Theor Appl Genet,1996,93:1033-1039.
    [103]张海泉,贾继增,张宝石,周荣华.染色体定位粗山羊草抗小麦白粉病基因PmAeY1.中国农业科技导报,2006,8(4):19-22.
    [104]Hsam S.L.K.,Lapochkina I.F.,and Zeller F.J.,Chromosomal location of genes for resistance to powdery mildew in common wheat(Triticum aestivum L.em.Thell.) gene Pm32 in a wheat-Aegilops speltoides translocation line,Euphytic a,2003,133(3):367-370.
    [105]Zhu Z.D.,Zhou R.H.,Kong X.R.,Dong Y.C.,and Jia J.Z.,Microsatellite markers linked to 2 powdery mildery resistance genes introgressed from Triticum carthicum accession PS5 into common wheat,Genome,2004,48(4):585-590.
    [106]Somers D.J,Isaac P.,and Edwards K.,A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.),Theoretical and Applied Genetics,2004,109(6):1105-1114.
    [107]Roder M.S.,Korzun V.,Wendehake K.,Plaschke J.,Tixier M.H.,Leroy P.,and Ganal M.W.,A microsatellite map of wheat,Genetics,1998,149:2007-2023.
    [108]Sourdille P.,Singh S.,Cadalen T.,Guedira G.L.,Gay G.,Qi L.,Gill B.S.,Dufour P.,Murigneux A.,and Bernard M.,Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat(Triticum aestivum L.),Functional & Integrative Genomics,2004,4(1):12-25.
    [109]陈松柏,蔡一林,周荣华,贾继增,小麦抗白粉病基因Pm4的STS标记.西南农业大学学报,2002,24:231-234

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700