用户名: 密码: 验证码:
基于溶剂热法制备CuInSe_2、CuIn(S_xSe_(1-x))_2薄膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1976年[1]被发现以来,混合物半导体CIS(CuInSe_2、CuIn(S_xSe_(1-x))_2、CuInS_2)就作为当今热门的太阳能材料而广受关注。作为黄铜矿相的半导体,CuInSe_2、CuIn(S_xSe_(1-x))_2、CuInS_2分别具有从1.04eV到1.55eV的带隙宽度区间,而最适合吸收太阳光的带隙宽度是1.45eV,所以CIS很适合做高效率太阳能电池的材料。另外,CIS还具有长期稳定、无毒等优点。本论文研究的是溶剂热法制备的CIS。溶剂热法制备的CIS纳米颗粒可以制备成电池器件,目前已经可以做到6.7%的效率[2]。不同于传统的制备CIS电池的真空法,诸如真空蒸镀法[3-5]和溅射法[6-11],溶剂热法具有相对简单的制备过程和低廉的成本,适合做薄膜太阳电池的大规模工业化生产。
     溶剂热法制备CuInSe_2、CuIn(S_xSe_(1-x))_2、CuInS_2薄膜的具体工艺稍有不同。CuInSe_2和CuInS_2都可以用溶剂热法直接产生,然后分别经硒化和硫化后制成CuInSe_2和CuInS_2薄膜。CuIn(S_xSe_(1-x))_2有两条工艺路径,一条是先用溶剂热法制成CuInSe_2粉体,涂膜后硫化制成CuIn(S_xSe_(1-x))_2薄膜。另一条是用溶剂热法制备CuIn(S_xSe_(1-x))_2粉体,然后硒化或硫化制成薄膜。本论文只研究了溶剂热制备CuIn(S_xSe_(1-x))_2粉体,没有研究后期成膜的过程。
     影响溶剂热法产物的主要因素有前驱溶剂的元素比例,高温反应的温度,以及反应的时间。通过调节这三个要素,不但可以控制反应产物的质量,还可以控制CuIn(S_xSe_(1-x))_2中S和Se的元素比例,制备相应的CuIn(S_xSe_(1-x))_2粉体。在粉体成膜方面,主要影响因素为硒化或硫化的时间,以及硒化或硫化的温度。实验发现,薄膜结晶度,致密度,均匀度,以及CuIn(S_xSe_(1-x))_2薄膜的S/Se比例,都受到硒化或硫化温度和时间的控制。
     通过扫描电子显微镜(SEM)、电子能谱(EDS)、XRD以及Raman等测试仪器,对薄膜的性质进行了表征。
The compound semiconductor CIS(CuInSe_2、CuIn(S_xSe_(1-x))_2、CuInS_2) has been attracted interest for use in photovoltaic solar cells since 1976 [1]. As a chalcopyrite semiconductor, CuInSe_2, CuIn(S_xSe_(1-x))_2 and CuInS_2 had band gaps range from 1.04eV to 1.55eV. The theoretical optimum value for photovoltaic’s applications is 1.45eV, so CIS is suitable for preparing high conversion efficiency solar cell. What’more, CIS thin film solar cells have other advantages, such as long-term stability and nontoxic.
     In this paper, we studied CIS prepared by solvothermal method. CuInSe_2 nanoparticles which were synthesized by solvothermal method can be made as solar cells. Using this method, solar cells with efficiency of 6.7% have been fabricated [2]. Be differ from vacuum-based methods, such as evaporation [5-7] and sputtering [8-13], solvothermal method was used here due to its relatively simple procedures and low cost. These two advantages made solvothermal method suited for large-scale industrialization of solar cells.
     There were differences in specific process routes of preparing CuInSe_2, CuIn(S_xSe_(1-x))_2 and CuInS_2 by solvothermal method. CuInSe_2 and CuInS_2 thin films can be prepared by reacting CuInSe_2/CuInS_2 nanoparticles in Se/H2S, and CuInSe_2 and CuInS_2 nanoparticles can be synthesized by solvothermal method directly. Two routes to CuIn(S_xSe_(1-x))_2 thin films had been reported. First route was the reaction of CuInSe_2 which were synthesized by solvothermal method with H2S. The other route was selenization or sulphurization of CuIn(S_xSe_(1-x))_2 prepared by solvothermal method. In this paper, only the process of synthesizing CuIn(S_xSe_(1-x))_2 nanoparticles was studied in the second route.
     There were three main factors which affected the product prepared by solvothermal method: ratio of elements in precursor, temperature of the reaction and time of the reaction. By controlling these three factors, we can synthesize nanoparticles with high quality, and the ratio of Se and S of CuIn(S_xSe_(1-x))_2 nanoparticles can also be controlled. On the other hand, temperature and time of the selenization or sulphurization were main factors on making thin films. It was found that the compositions, degree of crystallinity, homogeneity and ratio of Se and S of the final CuIn(S_xSe_(1-x))_2 thin films were controlled by temperature and time of the selenization or sulphurization.
     XRD, SEM, EDS, Raman are used to characterized the property of the CIS thin film.
引文
[1] L. L. Kazmerski, F.R. White, G.K. Morgan. Appl. Phys. Lett. 29 (1976) 268
    [2] Guo. Q, Kim, S. J. Kar. Nano Lett. 2008 8 (9) 2982–2987
    [3] J. Bekkera, V. Albertsa, A. W. R. Leitchb, J. R. Bothab. Thin Solid Films 431–432 (2003) 116–121
    [4] V. Alberts, F. D. Dejene. J. Phys. D: Appl. Phys. 35 (2002) 2021–2025
    [5] S. Bandyopadhyaya, S. Roy, S. Chaudhuri, Vacuum 62 (2001) 61-73
    [6] C J Sheppard, V. Alberts, J. Phys. D. Appl. Phys. 39 (2006) 3760–3763
    [7] J. Djordjevic, E. Rudigier, R. Scheer. Journal of Crystal Growth 294 (2006) 218–230
    [8] Jovana Djordjevic, Christian Pietzker, Roland Scheer. Journal of Physics and Chemistry of Solids 64 (2003) 1843–1848
    [9] J. Bekker. Solar Energy Materials & Solar Cells 93 (2009) 539–543
    [10] V. Alberts. Thin Solid Films 517 (2009) 2115–2120
    [11] V. Alberts. Materials Science and Engineering B107 (2004) 139–147
    [12]车孝轩.太阳能光伏系统概论.武汉:武汉大学出版社,2006
    [13] Y. Hamakawa, Solar Energy Material & Solar Cell, 2002,74 13-23
    [14] J.Zhao, A.Wang, M.A.Green, Appl.Phys.Lett 1998, 73 199l-1993
    [15] T.L.Chu, S.S.Chu, Prog. Photovolt. Res. Appl., 1993, l 31-42
    [16] I.Repins, M. A. Contreras, et a1. Progress in PhotovoItaic, 2008, 16 235-239
    [17]中国可再生能源发展项目办公室.中国光伏产业发展研究报告.北京:中国环境科学出版社,2004,l-2
    [18]太阳能电池培训手册
    [19] H. Hahn, et a1., Z. Anorg. Allg. Chem., 1953, 271: 153-170
    [20] J. Shay, J. Wemick, Ternary Chalcopyrite Semiconductors. Pergamon Press, Oxford, l974
    [21] S. Wagner, J. Shay, P. Migliorato, H. Kasper, Appl. Phys. Lett.1974, 25:434-435
    [22] L. KazmerSki, F. White, G. Morgan, Appl. Phys. Lett.1976, 29: 268-269
    [23] R. Mickelsen, W. Chen, Proc. 15th IEEE Photovoltaic Specialist Conf. 1981 800-804
    [24] Repins I, Contreras M A, Egaas B, DeHart C, Scharf J. Photovolt. 16235
    [25]日太阳能电池模块实现了15.9%的光电转换效率.现代材料动态2008, 11, 25-26
    [26]刘广荣,半导体信息,2008,4
    [27]美国科学家利用纳米技术开发红外太阳能电池.节能与环保2009, 3,51-51
    [28]张晓科,王可,解晶莹.电源技术2005, 29 (12), 849-852
    [29] Jiang Y, Wu Y, Mo X. Inorg Chem. 2000,39(14):2964-2965
    [30] Peng S J, Liang J, Zhang L. J Cryst Growth.2007,305(1):99-103
    [31] Zhang A Y, Ma Q, Lu M K. Cryst Growth Des.2008,8(7):2402-2405
    [32] Changlin Yu, Jimmy C. Yu. Materials Letters 63 (2009) 1984–1986
    [33] Qijie Guo, Suk Jun Kim, Mahaprasad Kar. NANO LETTERS 2008 Vol. 8, No. 9 2982-2987
    [34] Bonil Koo, Reken N. Patel. Chem. Mater. 2009, 21, 1962–1966
    [35] Bonil Koo, Reken N. Patel. J. AM. CHEM. SOC. 2009, 131, 3134–3135
    [36] Li, B, Xie, Y. Advanced Materials 1999, 11 (17), 1456-1459.
    [37] Xiao, J. P, Xie, Y. Journal of Materials Chemistry 2001, 11 (5), 1417-1420.
    [38] Jianping Xiao, Yi Xie. J. Mater. Chem., 2001, 11, 1417–1420
    [39] Ahn, S, Kim, C, Yun, J, Lee, J, Yoon, K. Solar Energy Materials and Solar Cells 2007, 91 (19), 1836-1841.
    [40] Kaelin, M, Rudmann, D, Kurdesau, F, Meyer, T, Zogg, H, Tiwari, A. N. Thin Solid Films 2003, 431, 58-62
    [41] J. Bekker. Solar Energy Materials&Solar Cells 93 (2009) 539–543
    [42] C J Sheppard, V Alberts. J. Phys. D: Appl. Phys. 39 (2006) 3760–3763
    [43] Erees Queen, B. Macabebe. Thin Solid Films 517 (2009) 2380–2382
    [44] R H Bari, L A Patil. Bull. Mater. Sci., Vol. 30, No. 2, April 2007, pp. 135–139.
    [45] S. Chavhan, R. Sharma. Journal of Crystal Growth 293 (2006) 52–56
    [46] S. Chavhan, R. Sharma. Journal of Physics and Chemistry of Solids 67 (2006) 767–773
    [47] Rahana Yoosuf, M.K. Jayaraj. Thin Solid Films 515 (2007) 6188–6191
    [48] Qijie Guo, Grayson M. Ford. NANO LETTERS 2009 Vol. 9, No. 8 3060-3065
    [49] Shikui Han, Mingguang Kong. Materials Letters 63 (2009) 1192–1194
    [50] J. Alvarez-Garcia, J. Marcos-Ruzafa, A. Perez-Rodriguez. Thin Solid Films 361–362 (2000) 208
    [51] I. Oja, M. Nanu, A. Katerski, M. Krunks. Thin Solid Films 480–481 (2005) 82–86
    [52] M. Ishii, K. Shibata, H. Nozaki. J Solid State Chem. 105 (1993) 504
    [53] A′lvarez-García J, Barcones B, Pe′rez-Rodríguez A. Phys. Rev. B 2005; 71: 054303
    [54] M. Ishii, K. Shibata, H. Nozaki. J. Solid State Chem. 105, 504 (1993)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700