用户名: 密码: 验证码:
γ-In_2Se_3溶液相调控合成和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究目标是探索和发展一种新的溶液相合成γ-In_2Se_3纳米材料的简单方法。研究中以乙醇溶剂热为体系研究不同反应条件对所制备γ-In_2Se_3纯相,切顶角六方双锥、球花多级结构的γ-In_2Se_3的形貌影响,并通过对所制备产物的进行表征和分析,探明球花多级结构的γ-In_2Se_3生长机理。主要内容总结如下:
     1.以四水合氯化铟,硒粉,乙醇为原料,在220 oC下反应20 h可以得到纯相的γ-In_2Se_3。反应温度,反应时间,反应物原料比例和浓度对产物的纯相合成影响较大。当InCl_3: Se粉的比例为1 : 1时产物不仅有γ-In_2Se_3,还有β-In_2Se_3和InSe;InCl_3: Se粉的比例为2: 3时,产物是γ-In_2Se_3和Se的混合物;高的InCl_3: Se粉的比例(4: 1)有利于得到纯相;温度低于220 oC时,Se粉未能完全反应;时间少于12 h时产物中也有硒粉未反应完全。此外还考察了加入其它反应溶剂,柠檬酸和聚乙二醇对产物形貌影响。
     2.在抗坏血酸的辅助下,以四水合氯化铟,硒粉220 oC下反应20小时首次合成出球花多级结构的γ-In_2Se_3。在该体系里,抗坏血酸同时作为还原剂和吸附剂。SEM, TEM和HRTEM等结果表明,球花多级结构的γ-In_2Se_3是由六方相γ-In_2Se_3纳米片组装而成。详细的时间追踪实验表明,球花多级结构是有普通球状的In_2Se_3通过Ostwald熟化转变而来。反应体系中的抗坏血酸的量和氯化铟的量对产物形貌的影响也做了仔细的研究。最后通过还通过将产物制备成膜测试了其电学性质,膜的电导率为2.6×10~(-6) S cm~(-1)。
The aim of this thesis is to develop a novel solution method for the synthesis of gamma phase indium selenide (γ-In_2Se_3) nanostructures. The effects on the structure and morphology of theγ-In_2Se_3 nanocrystals are investigated in the ethanol-solvothermal system route via the variation of reaction parameters. A possible growth mechanism of theγ-In_2Se_3 nanostructures is also proposed based on the characterization and analysis of products obtained in the process. The main contents of this work are summarized as follows:
     1. Pureγ-In_2Se_3 is fabricated by the reaction of indium chloride and selenium powders in the 220°C for 20 h in an ethanol-solvothermal system. The purity of the product is largely influenced by the reaction temperature, time and the quantity of reaction sources. When the ratio of InCl_3: Se is 1: 1, the product is a mixture ofγ-In_2Se_3,β-In_2Se_3 and InSe. While the ratio of InCl_3: Se is 1 : 1, we obtainγ-In_2Se_3 and Se. The pureγ- In_2Se_3 can be easily attained when the ratio of InCl_3: Se is 4: 1. However, with the high ratio of of InCl_3: Se, pureγ- In_2Se_3 is not synthesized if the temperature is lower than 220 oC nor the reaction time is less than 12 h. We also investigate the influence on the morphologies of the product by adding other solvents citric acid, or polyethylene glycol.
     2.γ-In_2Se_3 hierarchical flowerlike architectures have been facilely synthesized for the first time via the reaction of indium chloride and selenium powders with the assistance of ascorbic acid at 220°C for 20h in an ethanol-solvothermal system, in which ascorbic acid acts as both reducing and capping agent. SEM, TEM and HRTEM investigations show that these flowerlike In_2Se_3 architectures with hexagonalγ-phase structure are composed of thin sheet-like nanocrystals. The detailed time-dependent experiments illustrate that flowerlike architectures evolve from solid spheres via an Ostwald ripening process and the effects of the concentration of ascorbic acid and indium precursor on the phase and morphology evolution of In_2Se_3 flowerlike architectures are intensively studied. Meanwhile, the electrical property of theγ-In_2Se_3 film is investigated and the conductivity of the film is 2.6×10~(-6) S cm~(-1).
引文
[1] (a) S.-K. Hong, E. Kurtz, J.-H. Chang, T. Hanada, M. Oku, T. Yao, Appl. Phys. Lett. 2001, 78, 165; (b ) M. A. Haase, J. Qiu, J. M. DePuydt, H. Cheng, Appl. Phys. Lett. 1991, 59, 1272.
    [2] (a) S. Dayal, M. O. Reese, A. J. Ferguson, D. S. Ginley, G. Rumbles, N. Kopidakis, Adv. Funct. Mater. 2010, 20, 2629; (b ) S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, G. Rumbles, ACS Nano Letters 2010, 239.
    [3] A. Fu, W. Gu, B. Boussert, K. Koski, D. Gerion, L. Manna, M. Le Gros, C. A. Larabell, A. P. Alivisatos, Nano Lett. 2006, 7, 179.
    [4] C. M. Lieber, Nano Lett. 2002, 2, 81.
    [5] D. T. Schoen, H. L. Peng, Y. Cui, J. Am. Chem. Soc. 2009, 131, 7973.
    [6] S. V. Pol, V. G. Pol, J. M. Calderon-Moreno, S. Cheylan, A. Gedanken, Langmuir 2008, 24, 10462.
    [7] H. Peng, S. Meister, C. K. Chan, X. F. Zhang, Y. Cui, Nano Lett. 2006, 7, 199.
    [8] U. Philipose, A. Saxena, H. E. Ruda, P. J. Simpson, Y. Q. Wang, K. L. Kavanagh, Nanotechnology 2008, 19,215715.
    [9] B. Geng, J. You, F. Zhan, M. Kong, C. Fang, The Journal of Physical Chemistry C 2008, 112, 11301.
    [10] T. Y. Zhai, H. Z. Zhong, Z. J. Gu, A. D. Peng, H. B. Fu, Y. Ma, Y. F. Li, J. N. Yao, J. Phys. Chem. C 2007, 111, 2980.
    [11] C. Hye Jin, L. Jin Young, K. Dae Sung, Y. Sang Won, K. Ja Hee, P. Jeunghee, J. Phys. Chem. C 2007, 111, 519.
    [12] J. Yang, G.-H. Cheng, J.-H. Zeng, S.-H. Yu, X.-M. Liu, Y.-T. Qian, Chemistry of Materials 2001, 13, 848.
    [13] B. J. Xi, S. L. Xiong, D. C. Xu, J. F. Li, H. Y. Zhou, J. Pan, J. Y. Li, Y. T. Qian, Chemistry-a European Journal 2008, 14, 9786-.
    [14] S. L. Xiong, B. J. Xi, C. M. Wang, G. C. Xi, X. Y. Liu, Y. T. Qian, Chemistry-a European Journal 2007, 13, 7926.
    [15] S. L. Xiong, J. M. Shen, Q. Xie, Y. Q. Gao, Q. Tang, Y. T. Qian, Adv. Funct. Mater. 2005, 15, 1787..
    [16] W. T. Yao, S. H. Yu, S. J. Liu, J. P. Chen, X. M. Liu, F. Q. Li, J. Phys. Chem. B 2006, 110, 11704..
    [17] Q. Peng, Y. Dong, Z. Deng, Y. Li, Inorganic Chemistry 2002, 41, 5249..
    [18] Q. Peng, Y. J. Dong, Z. X. Deng, H. H. Kou, S. Gao, Y. D. Li, J. Phys. Chem. B 2002, 106, 9261.
    [19] Z. B. Zhuang, Q. Peng, J. Zhuang, X. Wang, Y. D. Li, Chemistry-a European Journal 2006, 12, 211..
    [20] F. Cao, W. D. Shi, L. J. Zhao, S. Y. Song, J. H. Yang, Y. Q. Lei, H. J. Zhang, J. Phys. Chem. C 2008, 112, 17095..
    [21] J. L. Wang, Q. Yang, Crystal Growth & Design 2008, 8, 660.
    [22] J. M. Ma, Y. P. Wang, Y. J. Wang, Q. Chen, J. B. Lian, W. J. Zheng, J. Phys. Chem. C 2009, 113, 13588.
    [23] Z. L. Sun, S. C. Liufu, X. H. Chen, L. D. Chen, Chemical Communications 2010, 46, 3101.
    [24] X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature 2000, 404, 59.
    [25] K. Yu, J. Ouyang, M. B. Zaman, D. Johnston, F. J. Yan, G. Li, C. I. Ratcliffe, D. M. Leek, X. H. Wu, J. Stupak, Z. Jakubek, D. Whitfiel, J. Phys. Chem. C 2009, 113, 3390.
    [26] Z. T. Deng, M. Mansuripur, A. J. Muscat, J. Mater. Chem. 2009, 19, 62016.
    [27] A. Y. Zhang, Q. Ma, M. K. Lu, G. J. Zhou, C. Z. Li, Z. G. Wang, J. Phys. Chem. C 2009, 113, 15492.
    [28] D. S. Wang, W. Zheng, C. H. Hao, Q. Peng, Y. D. Li, Chemistry-a European Journal 2009, 15, 1870.
    [29] L. P. Liu, Z. B. Zhuang, T. Xie, Y. G. Wang, J. Li, Q. Peng, Y. D. Li, J. Am. Chem. Soc. 2009, 131, 16423.
    [30] K. D. Oyler, X. L. Ke, I. T. Sines, P. Schiffer, R. E. Schaak, Chemistry of Materials 2009, 21, 3655.
    [31] B. Hou, Y. J. Li, Y. J. Liu, B. Yuan, M. F. Jia, F. Z. Jiang, Crystengcomm 2009, 11, 1789.
    [32] Z. P. Peng, M. Z. Liu, C. Yu, Z. L. Chai, H. J. Zhang, C. Wang, Nanoscale 2010, 2, 697.
    [33] W. K. Koh, A. C. Bartnik, F. W. Wise, C. B. Murray, J. Am. Chem. Soc. 2010, 132, 3909.
    [34] M. A. Franzman, C. W. Schlenker, M. E. Thompson, R. L. Brutchey, J. Am. Chem. Soc. 2010, 132, 4060.
    [35] W. J. Baumgardner, J. J. Choi, Y. F. Lim, T. Hanrath, J. Am. Chem. Soc. 2010, 132, 9519.
    [36] Y. H. Yu, P. V. Kamat, M. Kuno, Adv. Funct. Mater. 2010, 20, 1464.
    [37] D. D. Vaughn Ii, R. J. Patel, M. A. Hickner, R. E. Schaak, J. Am. Chem. Soc. 2010, 132,15170.
    [38] I. T. Sines, R. Misra, P. Schiffer, R. E. Schaak, Angewandte Chemie-International Edition2010, 49, 4638.
    [39] K. Wen Yin Lynn, H. G. Bagaria, S. Asokan, L. Kuan-Jiuh, M. S. Wong, J. Mater. Chem. 2010, 2474.
    [40] B. Koo, R. N. Patel, B. A. Korgel, J. Am. Chem. Soc. 2009, 131, 3134..
    [41] J. J. Wang, Y. Q. Wang, F. F. Cao, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc. 2010, 132, 12218.
    [42] A. Shavel, J. Arbiol, A. Cabot, J. Am. Chem. Soc. 2010.
    [43] Y. Jiang, Y. J. Zhu, G. F. Cheng, Crystal Growth & Design 2006, 6, 2174.
    [44] X. B. Cao, C. Zhao, X. M. Lan, G. J. Gao, W. H. Qian, Y. Guo, J. Phys. Chem. C 2007, 111, 6658.
    [45] D. M. Han, C. F. Song, X. Y. Li, Materials Chemistry and Physics 2009, 116, 41.
    [46] C. C. Wu, C. Y. Shiau, D. W. Ayele, W. N. Su, M. Y. Cheng, C. Y. Chiu, B. J. Hwang, Chemistry of Materials 2010, 22, 4185.
    [47] S. A. Gallagher, M. P. Moloney, M. Wojdyla, S. J. Quinn, J. M. Kelly, Y. K. Gun'ko, J. Mater. Chem. 2010, 20, 8350.
    [48] M. A. Sliem, A. Chemseddine, U. Bloeck, R. A. Fischer, Crystengcomm 2011, 13, 483.
    [49] N. Moloto, M. J. Moloto, N. J. Coville, S. S. Ray, J. Cryst. Growth 2009, 3924.
    [50] H. W. Chang, B. Sarkar, C. W. Liu, Crystal Growth & Design 2007, 7, 2691.
    [51] B. Gates, Y. Y. Wu, Y. D. Yin, P. D. Yang, Y. N. Xia, J. Am. Chem. Soc. 2001, 123, 11500.
    [52] X. Z. Guo, S. Y. Zhang, B. T. Jiang, B. K. Jin, Y. P. Tian, J. Phys. Chem. C 2008, 112, 17899.
    [53] T. Huang, L. Qi, Nanotechnology 2009, 20, 025606.
    [54] D. B. Seley, M. Nath, B. A. Parkinson, J. Mater. Chem. 2009, 19, 1532..
    [55] M. Pang, H. C. Zeng, Langmuir 2010.
    [56] H. S. Shim, V. R. Shinde, J. W. Kim, T. P. Gujar, O. S. Joo, H. J. Kim, W. B. Kim, Chemistry of Materials 2009, 21, 1875.
    [57] F. Dawood, R. E. Schaak, J. Am. Chem. Soc. 2009, 131, 424.
    [58] H. L. Wang, L. M. Qi, Adv. Funct. Mater. 2008, 18, 1249.
    [59] J. S. Son, X. D. Wen, J. Joo, J. Chae, S. I. Baek, K. Park, J. H. Kim, K. An, J. H. Yu, S. G. Kwon, S. H. Choi, Z. W. Wang, Y. W. Kim, Y. Kuk, R. Hoffmann, T. Hyeon, Angewandte Chemie-International Edition 2009, 48, 6861.
    [60] C.-C. Chen, C.-Y. Chao, Z.-H. Lang, Chemistry of Materials 2000, 12, 1516.
    [61] J. Xu, W. X. Zhang, Z. H. Yang, S. X. Ding, C. Y. Zeng, L. L. Chen, Q. Wang, S. H. Yang, Adv. Funct. Mater. 2009, 19, 1759.
    [62] S. M. Yang, D. F. Kelley, J. Phys. Chem. B 2005, 109, 12701.
    [63] K. H. Park, K. Jang, S. Kim, H. J. Kim, S. U. Son, J. Am. Chem. Soc. 2006, 128, 14780.
    [64] X. H. Sun, B. Yu, G. Ng, T. D. Nguyen, M. Meyyappan, Appl. Phys. Lett. 2006, 89.233121.
    [65] H. L. Peng, D. T. Schoen, S. Meister, X. F. Zhang, Y. Cui, J. Am. Chem. Soc. 2007, 129, 34.
    [66] M. D. Yang, C. H. Hu, J. L. Shen, S. M. Lan, P. J. Huang, G. C. Chi, K. H. Chen, L. C. Chen, T. Y. Lin, Nanoscale Research Letters 2008, 3, 427.
    [67] J. J. Wang, F. F. Cao, L. Jiang, Y. G. Guo, W. P. Hu, L. J. Wan, J. Am. Chem. Soc. 2009, 131, 15602.
    [68] T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. A. Yao, Y. Bando, D. Golberg, Acs Nano 2010, 4, 1596.
    [69] T. Y. Zhai, Y. Ma, L. A. Li, X. S. Fang, M. Y. Liao, Y. Koide, J. N. Yao, Y. Bando, D. Golberg, J. Mater. Chem. 2010, 20, 6630.
    [70] W. Yan, C. G. Hu, Y. Xi, B. Y. Wan, X. S. He, M. C. Zhang, Y. Zhang, Mater. Res. Bull. 2009, 44, 1205.
    [71] G. Sarasqueta, K. R. Choudhury, J. Subbiah, F. So, Adv. Funct. Mater. 2011, 21, 167.
    [72] (a) B. Yu, X. H. Sun, S. H. Ju, D. B. Janes, M. Meyyappan, Ieee Transactions on Nanotechnology 2008, 7, 496; (b )K. J. Lai, H. L. Peng, W. Kundhikanjana, D. T. Schoen, C. Xie, S. Meister, Y. Cui, M. A. Kelly, Z. X. Shen, Nano Lett. 2009, 9, 1265.
    [1] Y. C. Huang, Z. Y. Li, W. Y. Uen, S. M. Lan, K. J. Chang, Z. J. Xie, J. Y. Chang, S. C. Wang, J. L. Shen, J. Cryst. Growth 2008, 310, 1679.
    [2] C. H. d. Groot, J. S. Moodera, J. Appl. Phys. 2001, 89, 4336.
    [3] (a) J. L. Wang, Q. Yang, Crystal Growth & Design 2008, 8, 660.W. Tingting, W. Junli; (b) Z. Yongchun, X. Fei, C. Jie, Q. Yitai, Journal of the Physics and Chemistry of Solids 2010, 940.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700