用户名: 密码: 验证码:
不锈钢表面Fe_3Si型金属硅化物渗层的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
0Cr18Ni9奥氏体不锈钢在非常苛刻的氧化条件下,开始阶段氧化增重缓慢,但是在某一个临界点其氧化增重现象明显,导致氧化皮的大量剥落。因此0Cr18Ni9不锈钢很难应用在对环境有严格要求的场合。Fe_3Si作为金属硅化物的一种,具有优越的高温抗氧化性能,其原因是保护性氧化膜SiO_2的生成。但是,Fe_3Si的室温脆性限制了其作为结构材料方面的应用。因此,将Fe_3Si用于材料的表面改性涂层材料则可以避开Fe_3Si的脆性,从而拓展Fe_3Si的应用领域。通过在0Cr18Ni9不锈钢表面渗硅并形成Fe_3Si金属间化合物渗层不仅提高不锈钢表面强度、硬度、耐磨性的同时,同时提高0Cr18Ni9不锈钢的高温抗氧化性。
     基于上述思想,本研究通过熔融盐非电解法在0Cr18Ni9不锈钢表面制备了不同含硅量的Fe_3Si型金属硅化物渗层。采用X射线衍射仪(XRD)分析了渗硅层的物相组成,用扫描电子显微镜(SEM)和附带能量色散谱仪(EDS)研究了渗层截面的形貌和成分,通过调整熔盐体系、渗硅温度和渗硅时间等工艺参数,研究了渗硅层对0Cr18Ni9不锈钢的综合力学性能特别是高温抗氧化性能,得到如下几条具有意义的结论:
     (1)利用NaCl:KCl:NaF=2:2:1中性熔融盐作为载体, Na_2SiF_6和Si粉做为渗硅剂采用不同的渗硅工艺,可以在0Cr18Ni9不锈钢表面获得不同质量和厚度的金属硅化物渗层。XRD分析表明:渗硅体系1和2在800℃下保温10h后的渗层表面物相均以Fe_3Si相为主。SEM对硅化物渗层断面分析表明:渗硅体系1和2在800℃下渗硅处理后渗层和基体结合紧密,并且在不同体系中保温不同时间后在基体和渗层交界处仍然存在由于Si,Fe原子扩散系数不一样而导致的柯肯达尔空隙带。渗层断面EDS分析表明:在渗硅处理过程当中发生了Fe,Cr,Ni元素向基体外的扩散和Si元素的向内扩散,并且在渗层和基体组织交界处发生了Si元素含量的突变。
     (2)对经渗硅处理5h和10h后的0Cr18Ni9不锈钢轴向拉伸力学性能分析表明,渗硅试样的比例极限大于不经过渗硅处理的0Cr18Ni9不锈钢,渗硅处理5h和10h后对0Cr18Ni9不锈钢的抗拉强度影响不大,硅化物渗层除了在试样表面呈台阶状断裂外,同时还沿柯肯达尔孔隙带断开,导致渗层的横截面积减小,是导致试样在弹性形变过程中出现不同弹性模量的原因。
     (3)研究了渗硅温度,渗硅时间,和渗硅体系对硅化物渗层生长速度和质量的影响,试验表明:渗硅温度越高硅化物渗层生长速度越快;当硅化物渗层达到一定厚度的时候,保温时间的延长并不能够很有效的增加硅化物渗层的厚度;在相同的保温时间和渗硅温度下,体系2所获得的渗层厚度明显大于体系1,但是相对于体系1而言体系2制备的渗层却存在比较多的缺陷。
     (4)高温氧化试验表明:Fe_3Si基硅化物渗层表现出了较0Cr18Ni9不锈钢优越的高温抗氧化性能。Fe_3Si基硅化物渗层在800℃和900℃条件下的高温循环氧化动力学曲线均表现为二次抛物线型。由于高温下生成了连续的SiO_2保护膜,使得900℃下的抗氧化性能更优。试验分析表明,试样在800℃下氧化层由Fe_2O_3和SiO_2组成,而在900℃下氧化层则是由Fe_2O_3、SiO_2和Cr_2O_3组成的混合氧化物。渗硅试样在800℃循环氧化过程中,硅化物渗层局部和0Cr18Ni9不锈钢基体之间结合比较紧密;而在900℃下循环氧化过程中,渗层与基体之间通过Si、Cr元素相互扩散使二者结合强度得到了增强。渗硅试样在900℃下形成的氧化膜比800℃下形成氧化膜更为致密,800℃下渗层表面氧化100h后的物相以Fe_2O_3为主,另外还有少量的SiO_2;900℃下SiO_2在氧化层表面的衍射峰大大加强。
In very harsh Oxidation conditions,the weight gain of a0Cr18Ni9 austenitic stainless steel, is very slow ,But at some point the growth rate become largely ,lead to Large Oxide loss. For this reason 0Cr18Ni9 stainless steel is hard to use in Such occasions that have Strict requirements.Fe_3Si as a metal silicide has excellent oxidation resistance,the formation of SiO_2 play an imporant role in the oxidation resistance , but the room temperature brittleness limite silicide Fe_3Si as a structural material. But Fe_3Si used as a coating in the field of surface modification of materials which can avoid the brittleness of Fe_3Si and to expand the applications of Fe_3Si. Diffusion Coatings on 0Cr18Ni9 austenitic stainless steel in one hand can significantly increase strength, hardness, wear resistance on the surface of the 0Cr18Ni9 austenitic stainless steel and in the other hand can also increase High temperature oxidation resistance.
     Based on the above thoughts,Fe_3Si type silicide layer containing Cr and Ni alloying elements with different Si concent deposited on 0Cr18Ni9 austenitic stainless steel stainless steel were formed in molten salts. phase composition of silicon layer Analysis by x-ray diffraction By scanning electron microscopy (SEM) and energy dispersive spectrometer attached (EDS) of the diffusion layer cross-section of the morphology and composition.By means of Adjustment Molten Salt System, Temperature, and time.To improve the structure and performance of silicon coating and thus increase Mechanical properties and high temperature oxidation resistance of 0Cr18Ni9 austenitic stainless steel. Some useful conclusions are drawed :
     (1) using molten mixture of Na_2SiF_6:Si=8:2 as siliconizing agent and the molten halogenide of alkali metals of NaCl:KCl:NaF=2:2:1 as siliconizing agent carrier,can get different quality silicide coating. XRD analysis shows that: the surface of the sample after siliconized for 10h at 800℃in Silicon infiltration system 1 and 2 is Fe_3Si multivariate transition metal silicide.SEM image of cross-section of the silicide layer indicate that : combition betwween silicide coating and substrate. Is very tight but Kekendae Porosity zone exist betwween silicide coating and substrate dispite different Experimental parameters ,EDS analysis on cross–section showed that:in proceed of the experment Fe Cr Ni element spread from substrate to Silicide coating In contrast with the Si element,in junction between substrate and Silicide coating Occurred Sudden change of Si element concent.
     (2) Analysis showed that the axial tensile mechanical properties Proportional limit that siliconized for 10h and 5h larger than 0Cr18Ni9 austenitic stainless steel, siliconized for 10h and 5h have little effect on the tensile strength of stainless steel, silicide coating in addition to step-like fracture surface of the sample was outside, but also with a break along the Kekendaer pores, leading to the cross section of coating area decreases,and the reason for different elastic modulus of the sample.
     (3) The study concern influence of siliconized Temperature, siliconized time and siliconized System on Growth rate and quality of the Silicide coating. Analysis shows that: Growth rate Increase With siliconized Temperature up , When the silicide coating reaches a certain thickness, holding time is not very effective to increase the thickness of coating, In the same holding time and temperature , the infiltration system 2 obtained significantly greater than the thickness of system 1, but there is more penetrating layer defects infiltration system 2 than infiltration system 1.
     (4) Aspects of high temperatur oxidation Fe_3Si Silicide coating have good High-temperature oxidation resistance than bare 0Cr18Ni9 austenitic stainless steel . Cyclic oxidation kinetics of Fe_3Si Silicide coating at 800℃、900℃Performance Parabolic law In the high temperature oxidation process. As quickly form a continuous SiO_2 protective film,making the 900℃for better oxidation resistance. Experimental analysis shows that the composition of the Oxide layer is mixed with Fe_2O_3, SiO_2 and Cr_2O_3. In the high temperature oxidation process,at 800℃Silicide combine well with the 0Cr18Ni9 Stainless steel substrate In the high temperature oxidation process at 900℃Si ,Cr atom diffusion Strengthening the combine of the coating with the substrate. Oxide film on Silicide coating at 900℃is dense than at 800℃, Fe_2O_3 phase and small amount of SiO_2 was found in the Oxide layer ,the Peaks of SiO_2 at 900℃enhance greatly .
引文
[1]潘邻.表面改性热处理技术与应用[M].北京,机械工业出版社, 2005
    [2]卢凤喜.日本开发冲片加工性和磁性优良的高速高效马达用电工钢板[J].电工材料.2009,2:12-13
    [3]庄光山,陈增清,徐英,等.机械能助渗硅的研究[J].金属热处理, 2000,25(9):12-13.
    [4]罗新民,王金兰,陈康敏,等. Crl8Ni9奥氏体不锈钢表面渗硅层及脆性相分析[J].热处理.2008,23(3):36-37
    [5]钟太彬,林均品,陈国良.Fe_3Si基合金的制备及研究进展.[J]功能材料,1999.30(4):337
    [6] Westbrook J H, Fleischer R L. Structural applications of intermetallic compounds[M]. New York: John Wiley & Sons, 2000:221.
    [7] JIA Jian-gang, MA Qin, LU Jin-jun. Reciprocating sliding friction and wear property of Fe_3Si based alloys containing Cu in water lubrication[J]. Tribol Lett, 2008,30(2):113-121.
    [8] J H Westbrook, R L Fleischer. Structural Applications of Intermetallic Compounds[M]. New York: John Wiley & Sons, 2000:221.
    [9]周琦,赵红顺,贾建刚等Fe_3Si基金属间化合物的研究进展[J].甘肃科技学报.2007,19(7):30-31
    [10]王金兰,罗新民,陈康敏,潘励.Cr18Ni9奥氏体不锈钢表面粉末渗硅层精细结构研究.热加工工艺,2008,37(2):57-63
    [11]罗新民,王金兰,陈康敏,潘励. Cr18Ni9奥氏体不锈钢表面渗硅层及脆性相分析.热处理,2008,23(3):36-39
    [12]迟泽浩一郎(日).不锈钢-耐蚀钢的发展[M].北京:冶金T业出版社,2007:4-6.
    [13]王正樵,吴幼林等.不锈钢[M].北京,化学工业出版社,1991:100-101
    [14]冶金工业部钢铁研究院.合金钢手册(下册).北京,机械工业出版社,1964
    [15]赵红顺.Fe_3Si基金属间化合物的制备与抗氧化性能研究:[兰州理工大学硕士学位论文].兰州:兰州理工大学材料科学与工程学院,2008,1-2
    [16]贾建刚.Fe_3Si基有序合金材料及其摩擦学与抗氧化性能研究:[兰州理工大学博士学位论文].兰州:兰州理工大学材料科学与工程学院,2008,2
    [17]丁毅,黄星路,顾伯勤.渗铝Q235钢的渗层组织和抗高温氧化性能[J].化工机械.28(4):197-198
    [18] Hua-Ping Xiong, Wei Mao, Yong-Hui Xie, Yao-Yong Cheng.Formation of silicide coatings on the surface of a TiAl-based alloy and improvement in oxidation resistance[J]. Materials Science and Engineering.2005 .391:10-11
    [19] M.L.Holland,H.J.de Bruyn.Metal dusting failure in methane reforming plant[J].Theinternational journal of pressure vessels and piping,1996,66(3):125—133.
    [20] S.Strauss,H.J.Grabke.Role of alloying elements in steels on metal dusting[J].Materials and corrosion,1998(49):321-327.
    [21]李成明,徐重,谢锡善.离子渗金属技术现状[J].太原工业大学学报,1997,28(1):1-6.
    [22] Dalibor Vojte, Toma′s Kubat?′k. Intermetallic protective coatings on titanium[J]. Intermetallics,2006,14:1181-1186
    [23]Maex,Karen,van,rossum,properities of metal.[M].1-1,London:INSPEC, theinstitution of Electrical Engineers , 1995,24
    [24] CHEN Yong-chong , ZHANG Yong-gang et.al. Diffusion mechanisms in the Fe_3Si alloys[J]. chinese journal of atomic and molecular physics, 2003. 20 (2) :143-148
    [25] E.Rabki, B.Straumal et.al.The infusence of an ordering transition on the interdiffusion in Fe-Si alloys[J]. Acta.metall.mater, 1995,43 (8):3075-3083
    [26] H. Mehrer, M. Eggersmann, et.al. Diffusion in intermetallic phases of the Fe–Al and Fe–Si systems [J]. Materials Science and Engineering A, 1997, 239–240:889-898
    [27] F. Fitzer, J. Schlichting. Coatings containing chromium aluminum and silicon for high temperature alloys[J]. High Temperature Corrosion,1981, 2–6:604–614
    [28]罗新民,王金兰,陈康敏. Crl8Ni9奥氏体不锈钢表面渗硅层及脆性相分析[J].热处理2008,23(3):36-37、
    [29]卢燕平,于福州.渗镀[M].北京,机械工业出版社,1985:98-102
    [30]徐如人,庞文琴.无机合成与制备化学[M].北京,高等教育出版社.2003,257
    [31]沈复初,毛志远.铜表面气体渗硅涂层的抗氧化性能研究[J].腐蚀科学与防护技术.1999,9(3)208—209
    [32]卢凤喜,王爱华6.5%Si渗硅工艺新进展. [J ]金属功能材料2008,15(1):41—43
    [33] F.J. Pérez, MP. Hierro, M.C. Carpintero, et. al. Siliconysilicon oxide coating on AISI 304 stainless steel by CVD in FBR: analysis of silicides and adherence of coating [J]. Surface and Coatings Technology, 2002, 160: 87-88
    [34] F.J. Bolívar, L. Sánchez, S.A. Tsipas, et. al. Silicon coating on ferritic steels by CVD-FBR technology [J]. Surface & Coatings Technology, 2006, 201: 3952
    [35] M. Rebhan , M. Rohwerder, M. Stratmann. CVD of silicon and silicides on iron [J]. Applied Surface Science, 1999,140:99-102
    [36]闰鹏勋,杨思泽,李兵.用高能量密度等离子体在室温下制备氮化钦薄膜[J].科学通报1994,39(17):1547
    [37] Nayak B, Misra M. The electro deposition of aluminum on brass from a molten aluminum chloride-sodium chloride bath[J]. Applied electro chemistry.1977,7 (7):45-50
    [38] Li J C, Nan S H, Jiang Q.Study of the electro deposition of Al-Mn amorphous alloys from molten salts[J]. Surface and Coatings Technology, 1998, 106(2): 135-139
    [39]李运刚,蔡宗英,唐国章.熔盐电沉积硅的基础研究[J].有色金属.1994.3:25-26
    [40] Ryosuke O. Suzuki, Masayori Ishikawa1, Katsutoshi Ono. NbSi2 coating on niobium using molten salt. Journal of Alloys and Compounds.2002,(336):280–285
    [41] K. Tatemoto, Y. Ono, R.O. Suzuki.Silicide coating on refractory metals in molten salt journal of physics and chemistrt of solids.2005,(66):526-529
    [42]Huang H L,Lee T Y ,Gan D.The microstructure of siliconized type 310 stainless steel[J].Materials Science and Engineering, 2006, (422): 259-265
    [43] Ryosuke O. Suzuki, Masayori Ishikawa, Katsutoshi Ono.MoSi coating on molybdenumusingmoltensalt.JournalofAlloysandCompounds.2000,(306):285–291
    [44]李处森,杨院生.金属材料在高温碳气氛中的结焦与渗碳行为[J].中国腐蚀与防护学报,2004,24(3):188-192.
    [45] Sil”m an G I,Kamynin V V,Kharitonenko S A.Effect of silicon On the structure and Properties of high-strength spherulitic iron [J].Metal Science and Heat Treatment,2006,48(5-6):268-271.
    [46] Liang W,Zhao X G,Scripta Mater.2001,44:1049-1054
    [47]田民波.磁性材料[M].北京,清华大学出版社2000,48
    [48] M. Vilasi, M. Francois, R. Podor and J. Steinmetz. New silicides for new niobium protective coatings[J]. Journal of Alloys and Compounds,1998, 264(1-2):244-251
    [49] A. Favre, H. Fuzellier, J. Suptil. An original way to investigate the siliconizing of carbon materials [J]. Ceramics International.2003(29):235-236
    [50]何小凤,李运刚,李智慧.KCl-NaCl-NaF-(SiO_2)熔盐体系初晶温度的研究.有色金属.2008,(4):21
    [51]何小凤,李运刚,田薇,等. SiO_2在KCI-NaCI-NaF体系中的溶解度及溶解机理[J].中国有色金属学报,2008,18 (5):932-933.
    [52] YAN Jianhui, XU Hongmei, ZHANG Houan, etal. MoSi2 oxidation resistance coatings for Mo5Si3/MoSi2 composites [J]. Rare Metals, 2009, 28 (4):418-419.
    [52] Dalibor Vojtech,Toma′s Kubat?′k, Marke′ta Pavl?ckova. Intermetallic protective coatings on titanium [J]. Intermetallics.2006,(14):1183-1184
    [53]秦开明,刘冬梅,于翔,顾艳红.温度对离子渗氮渗层厚度及表面硬度的影响.河南石油.2004, 18(5):60-61
    [54] U. R. Evans,金属的腐蚀和氧化[M],北京:机械工业出版社,1976:691-695 [55 ]李铁藩.金属高温氧化和热腐蚀[M] .北京:化学工业出版社,2003.
    [56] P S N Stokes, F H Stott, G C Wood. The influence of laser surface treatment on thehigh-temperature oxidation of Cr_2O_3-forming alloys[J]. Materials Science and Engineering A, 1989, 120-121(2): 611-617.
    [57] Y Wu, F Gesmundo, Y Niu. The effect of silicon on the oxidation of a Ni-6 at.%Al alloy in 1 atm of pure O2 at 900℃[J]. Oxidation of metlas, 2006, 65(2): 53-74.
    [58] H W Hsu, W T Tsai. High temperature corrosion behavior of siliconized 310 stainless steel[J]. Materials Chemistry and Physics, 2000, 64: 147–155.
    [59] D T Hoelzer, B A Pint, I G Wright. A microstructural study of the oxide scale formation on ODS Fe-13Cr steel[J]. Journal of Nuclear Materials, 2000, 283-287: 1306-1310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700