用户名: 密码: 验证码:
黑龙江省逊克县东安金矿矿床地质特征及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东安金矿位于黑龙江省东安县境内,为近年来发现的一个大型金矿床。大地构造位置上处于松嫩地块和佳木斯地块之间的伊春—延寿加里东中期造山带,茂林—木兰褶皱造山带北段乌底河断陷盆地中库尔滨凹陷与宝山隆起衔接地带。该地区是我国重要的贵金属有色金属矿产地之一,区内成矿地质条件复杂,其邻近地区有三道湾子金矿、团结沟金矿等多个大中型浅成低温热液金矿床存在。区内地质研究程度较高,学界对于该地区的地层、构造、岩浆—火山活动及成矿作用等方面都进行过较多的研究工作,对于区内诸多地质事件还存在不同认识,但对于东安金矿的成因问题认识较为一致。本文在充分收集前人研究资料的基础上,通过野外调研、岩矿综合鉴定、TCP—MS分析、流体包裹体测试等方法和手段,并结合东安金矿的区域成矿地质背景,详细研究了该矿床的地质特征、矿区火山岩的地球化学特征、成矿物理化学条件,进而探讨了矿床的成因问题。通过与国内外典型浅成低温热液金矿床的对比研究认为,东安金矿严格受断裂构造控制,具有冰长石化、绢云母化等典型的浅成低温热液矿床蚀变特征,成矿流体以大气降水为主,形成深度较浅,为低硫化型浅成低温热液金矿床。
Dongan gold deposit is located in the northern section of Xiaoxing'anling, lying between the Songnen block and Jiamusi block, and belonging to Caledonian orogenic belt of Yichun-Yanshou section. Affected by the subduction of the Pacific during Mesozoic period, it is at the active zone of continental margin which is a stretching geodynamic environment, and the effect of extensional rift is great. From early Jurassic to early Cretaceous, with the happening of intense Yanshan movement, together with large-scale Fault activity,a series of NE, NW, and SN trending fault are produced and Wudi River basin is formed. Ku'erbin fault is important for the formation of rock and ore deposits.
     The research is started from the regional geological setting and geological features of Dong'an gold deposit. In this article,detailed studies on isotope geochemistry, physical and chemical conditions, and geochemical characteristics of volcanic rocks are made. According to the contrast of epithermal gold deposits between home and abroad, we have summarised temporal and spatial characteristics, alteration characteristics, tectonic setting, and the material sources and mechanism of mineralization of the deposit.
     Strata exposed in the ore deposit include:medium-acid volcanic lava and pyroclastic rocks of Guanghua group (K1gn) of lower Cretaceous, glutenite of Sun Wu group(N1-2S) of middle- Upper Tertiary, basalt of the Big Bear Hill group of the lower Pleistocene of Quaternary, glutenite of Leshan group(Q2l) of Middle Pleistocene, and flood alluvial soil of Holocene(Q42).
     Fault is the main structure of the deposit. Kuerbin fault is located in the northwest of the deposit,trending 60°, inclined to SE. It resulted in the formation of SN, NNE, NNW, NW-trending faults, and the shallow intrusion of complex rocks in late Yanshan period and formation of volcanic apparatus. SN and NW-trending faults are the main faults in the area which controlled the formation of volcanic rock and ore deposit, and it belongs to the secondary faults of Kuerbin. Under the control of the fault, fine-grained alkali feldspar granite of the Yanshanianc and granite porphyry were formed. In the volcanic apparatus, the ore favorable position is volcanic channel, especially the explosive breccia pipe. EW-trending faults are post- mineralization fault,which damaged the ore body and have a character of dextral shift.
     Magmatic activities are strong and have a characteristic of multi-phase,multi-stage. It can be divided into three stages,which are Caledonian, Indosinian,and Yanshanian. The intrusive rocks of middle Caledonian and Late Indosinian are mainly base rock, and only a small part of them are rock stocks. During the late Yanshan, The intrusive rocks mainly are stock rocks or dikes, which are often contemporary with medium-acidic explosive rocks. The main wall rock of Dong'an gold deposit mainly are coarse and fine-grained alkali feldspar granite, rhyolite, dacite volcanic rocks of Yanshanian.
     Seven gold ore body groups and 58 rock ore bodies are found, of which No.5 is the largest, and ore bodies occur in quartz veins.Ore body is mainly controlled by SN, NNW, and NW-trending faults. Ore minerals mainly are pyrite, arsenopyrite, galena, and chalcopyrite. Ore texture is mainly xenomorphic granular structure. Ore structures mainly are breccia, disseminated, vein and stockwork. Wall rock alteration include silicification, chlorite, sericite, adularia, fluorite and so on, of which silicification and adularia are close to the mineralization.
     The deposit is formed by the superposition of multi-stage mineralization. Which can be devided into hydrothermal period and hypergene period. Hydrothermal period can be further divided into three stages, namely:pyrite-quartz stage,multi-Metal sulfide phase, and chalcedony-fluorite phase. Hypergene period mainly formed limonite, illite, muscovite and kaolinite and so on.
     According to systematic study of fluid inclusions of Dong'an gold deposit, fluid inclusions are mainly two-phase inclusions including gas and liquid, and the latter one is more. The salinity is low, the peak of which is 0.7~1.6% NaCl. The peak of density concentrated at 0.72-0.84g/cmJ, and the homogenization temperature is at around 150~200℃. The fluid belongs to a low temperature,low salinity, low density fluid. The main mineralization pressure is 10-12MPa, depth of which is 1.0~1.2km. It is a typical environment for low sulfide epithermal deposit to form.
     Hydrogen and oxygen isotope geochemistry analysis showed that the ore-forming fluid is a mixture of atmosphere water and magmatic water, and is mainly atmosphere water. The magmatic water of upward migration extracted ore forming materials from the base rocks, with the join of the atmosphere water, and then transferred into ore fluids, and in the end Au precipitated.
     Geochemical analysis of volcanic rocks showed that the rock type are rhyolite, dacite rhyolite-dacite, and trachyte, which is a peraluminous acidic volcanic rocks. Rare earth distribution pattern showed enrichment in LREE but flat in HREE.In the trace element spider diagram, the samples generally rich in highly incompatible elements such us Rb, Th, but lack of Nb, Ta, Sr, which reflect the geochemical characteristics of arc volcanic rocks.
     Diagrams for discriminating tectonic settings show that the volcanic rock was formed in a transferred environment, which is syn-collision, arc volcanic to post-collision. In the end, the formation of volcano of Dong'an may be of very complex, possibly arc volcanic to post collision orogeny setting, which is the transition from compression to expansion.
引文
[1]Cooke D R, Deyell C L. Descriptive names for epithermal deposits:Their implications for inferring fluid chemistry and ore genesis[C].Eliopoulos. eta.l Proceedings of the Seventh Biennial SGA Meeting-Mineral Exploration and Sustainable Development. Rotterdam: Mill-press Science Publishers,2003:457-460.
    [2]CorbettG.Epithermal gold for explorationists[J].AIG Journal-Ap-plied Geoscientific Practice and Research in Australia.2002,1-26.
    [3]David R. Cooke and D. C. McPhail. Epithermal Au-Ag-Te Mineralization, Acupan, Baguio District, Philippines:Numerical Simulations of Mineral Deposition [J]. Economic Geology, 2001,96:109-131.
    [4]Heald P, et al.Comparative anatomy of volcanic-hosted epithermal deposit:acid-sulfate and adularia-sericite types[J]. Econ.Geol,1987,82(1):1-26.
    [5]Hedenquist J W, Izawa E, Arribas A, White N C. Epithermal gold deposits:styles, Characteristics, and exploration[J]. The Society of Resource Geology,1996.
    [6]Karen D. Kelley. Steve Ludington. Cripple Creek and other alkaline-related gold deposits in the southern Rocky Mountains, USA:influence of regional tectonics [J]. Mineralium Deposita,2002,37:38-60.
    [7]Kerrich Robert, Cassidy Kevin F.Temporal relationships of lode gold mineralization toaccretion, magmatism, metamorphism and deformation-Archean to present:A review [J]. Ore Geology Reviews,1994,9:263-310.
    [8]LindgrenW.Mineral Deposits[M].4th ed. NewYork:McGraw Hil,1933:1-930.
    [9]Pals, DW; Spry, PG. Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji[J]. Mineralogy and Petrology,2003,79:285-307.
    [10]Roedder E. Fluid inclusions[J]. Reviews in Mineralogy,1984,12:25-35.
    [11]S. F. Tombros & K. St. Seymour &A. E. Williams-Jones & P. G. Spry. Later stages of evolution of an epithermal system:Au-Ag mineralizations at Apigania Bay, Tinos Island, Cyclades, Hellas, Greece[J]. Miner Petrol,2008,94:175-194.
    [12]曹圣恩.黑龙江省金矿特征及找矿方向[J].黄金地质科技,1994,8(4):34-51.
    [13]陈根文,夏斌,肖振宇等.浅成低温热液矿床特征及在我国的找矿方向[J].地质与资源,2001,10(3):165-171.
    [14]陈海明,刘智明.东安金矿床控矿地质条件的研究[J].黄金科学技术,2005,13(3):17-20.
    [15]陈衍景,张静,赖勇.大陆动力学与成矿作用[C].北京:地震出版社,2001,5-72.
    [16]冯剑萍等.黑龙江省百万分之一航磁图件的编制及其解释.黑龙江省地质物探队研究队,1982.
    [17]郭玉乾,方维萱,刘家军.浅成低温热液金银多金属矿床矿化分带及找矿标志[J].矿床与地质,2009,23(1):7-14.
    [18]黑龙江省区域地质调查第一队.逊克县、常家屯、新兴公社、富饶公社、白桦林场幅1/20万区域地质调查报告,1981
    [19]胡朋,赫英,张义,等.浅成低温热液金矿床的研究进展[J].黄金地质,2004,14(1):48-53.
    [20]霍亮,孙丰月.黑龙江东安金矿床流体包裹体特征及矿床成因研究[J]黄金,2010,31(3): 8-14.
    [21]江思宏,聂凤军,张义,等.浅成低温热液型金矿床研究最新进展[J].地学前缘,2004,11(2):401-411.
    [22]姜泽春,章振根.金的气相迁移探索[J].地质地球化学,1996,(2):23-26.
    [23]李碧乐,张晗.浅成低温热液型金矿床研究的某些进展[J]矿物学报,2010,30(1):90-95.
    [24]李朝阳.中国低温热液矿床集中分布区的一些地质特点[J].地学前缘,1999,6(1):163-170.
    [25]李晶,陈衍景,等.华北克拉通若干脉状金矿的黄铁矿标型特征与流体成矿过程[J].矿物岩石,2004,24(3):93-102.
    [26]梁俊红,金成洙,王建国.延边地区浅成低温热液-斑岩型金矿成矿系列的氢、氧同位素特征[J].地质找矿论丛,2003,18(2):108-112.
    [27]刘伟,余友,张秀鸿.黑龙江省东安金矿地球物理勘查应用效果[J]地质与勘探,2010,46(4):657-663.
    [28]刘智明,敖贵武等.东安浅成低温热液型金矿床矿物学特征[J].地质找矿论丛,2004,19(3):177-180.190.
    [29]庞奖励.浅成低温热液金矿研究现状及其趋势[J].黄金地质,1995,1(3):34-38.
    [30]祁进平,陈衍景,Franco Pirajno.东北地区浅成低温热液矿床的地质特征和构造背景[J].矿物岩石,2005,25(2):47-59.
    [31]祁进平,陈衍景.东北地区浅成低温热液矿床的地质特征和构造背景[J].地质与资源,2005,25(2):47-59.
    [32]邱检生,王德滋,任启江,等.我国首例碲金型浅成低温热液金矿床—山东平邑归来庄金矿床[J].地质与勘探,1994,30(1):7-12.
    [33]沙德铭,苑丽华.浅成低温热液型金矿特点、分布和找矿前景[J].地质与资源,2003,12(2):115-124.
    [34]石耀军,敖贵武,陈海明.高密度电阻率法在东安岩金矿床勘探中的应用[J].矿产与地质,2004,18(3):278-281.
    [35]苏仁奎,于建波,储耀君,宋长葆.黑龙江东安金矿区地质特征及找矿前景[J].黄金科学技术,2006,14(1):10-13.
    [36]孙丰月,金巍,李碧乐,等.关于热液脉状金矿成矿深度的思考[J].长春科技大学学报地球科学版,2000,30(增刊):27-30.
    [37]孙国胜,姚凤良,等.玲珑金矿田矿体富集规律及其控制因素[J].大地构造与成矿学,2001,25(4):464-470.
    [38]陶卫星,齐永生,刘学波.逊克县东安金矿矿床成因及找矿标志[J].吉林地质,2006,25(3):29-33.
    [39]王洪黎,李艳军,徐遂勤,等.浅成低温热液型金矿床若干问题的最新研究进展[J].黄金地质,2009.30(7):9-13.
    [40]王建波,苏仁奎,刘智明.东安金矿床控矿因素及成矿物质来源浅析[J].黄金科学技术,2005,13(6):8-11.
    [41]韦永福,裘有守,余昌涛.中国东部金矿地质研究[M].地质出版社,1993,99-106.
    [42]卫万顺,刘贵阁等.黑龙江东部主要金矿床稀土元素地球化学特征[J].黄金地质,1998,4(3):61-65.
    [43]吴国学,刘连登.浅成热液金矿研究综述[J].世界地质,2001,20(3):262-266.
    [44]向树元,叶俊林.新的金矿类型-与碱性岩有关的金矿床[J].矿产与地质,1995,9(2):73-76.
    [45]许红艺,常克明.中国浅成低温热液矿床集中区的一些地质特点[J].科技资讯,2009.22:195.
    [46]鄢云飞,谭俊,李阎华,等.中国浅成低温热液型金矿床地质特征及研究现状[J].资源环境与工程,2007,21(1):7-11.
    [47]闫升好.浅成热液金矿成因研究现状与讨论[J].黄金科学技术,1998,6(2):11-17.
    [48]闫升好.浅成热液金矿成因研究现状与讨论[J].黄金科学技术,1998,6(2):11-17.
    [49]杨继权,王秀琴,刘殿生,孔含泉,刘海鹏.黑龙江省大地构造单元划分及特征[J].世界地质.2007,26(4):426-434.
    [50]姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006.
    [51]应汉龙.浅成低温热液金矿床的全球背景[J].贵金属地质,1999,8(4):241-250.
    [52]翟欲生等.走向21世纪的矿床学[J].矿床地质,2001(20):10-14
    [53]张德会.浅成热液成矿系统模型研究评述[J].地球科学进展,1996,11(6):563-568.
    [54]张理刚.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社,1985.
    [55]张文淮,等.流体包裹体地质学[M].中国地质大学出版社,1993.
    [56]赵爱林,景春,王力,等.金矿床研究的回顾与展望[J].地质与资源,2003,12(2):125-128.
    [57]赵利青,李占芳,李志宏等.现代金矿成矿理论的若干进展[J].黄金地质,2004,10(2):59-68.
    [58]周阜成等.黑龙江省百万分之一区域重力调查成果报告.黑龙江省地矿局物探大队研究队重力报告编写组.1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700