用户名: 密码: 验证码:
磁悬浮永磁直线同步电机的设计与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线永磁交流伺服系统省掉了机械传动机构,以零传动方式,消除了机械变换机构所带来的一些不良影响,极大地提高了进给系统的快速反应能力和精度,直线驱动技术在数控机床领域中得到了广泛的应用。然而,由于动子与静止导轨之间的摩擦,特别是在低速时的非线性摩擦以及由摩擦引起的热变形,降低了直线伺服系统的性能及其加工精度。因此,如何有效的减小或消除摩擦引起了普遍的关注。在此提出一种新型直接磁悬浮永磁直线同步电动机的结构,以消除动子与导轨之间的摩擦。论文的主要研究内容如下:
     (1)针对数控机床无摩擦进给的要求,提出一种动子双绕组结构的磁悬浮永磁直线同步电机。该电动机的动子上有两套绕组,一套为推力绕组,用于产生电磁推力,另一套为悬浮绕组,用于产生可控的磁悬浮力。
     (2)建立磁悬浮永磁直线同步电动机的数学模型,对其控制策略进行分析研究。采用Maxwell应力张量法推导电机的电磁力模型;在i1d=0、i2q=0的控制策略下,用Ansoft对不同永磁材料电动机的电磁推力和磁悬浮力进行有限元计算分析。
     (3)设计电机的电枢绕组结构型式与次级结构,并研究气隙长度对悬浮力与推力的影响,选择合适的气隙长度,使电机能够产生足够大的气隙磁场来满足推力与悬浮力的要求,以及保证动子上产生均匀的可控悬浮力来实现电机稳定悬浮和满足高性能运行要求。
     (4)磁悬浮永磁直线同步电动机的Matlab电磁计算程序设计。根据国家自然科学基金课题的研究要求,设计一台磁悬浮永磁直线同步电动机研究样机,并对其进行电磁计算。
Permanent magnet linear servo system cuts the mechanical transmission institutions and eliminates some adverse effects caused by the mechanical commutation institutions. This linear drive technology of permanent magnet linear synchronous motor has been widely used in the field of CNC machine, which greatly improves rapid response capability and motion precision of the feeding system. However, the friction between the mover and the static guide causes thermal deformation, especially in the low speed and nonlinear, which reduces the linear servo properties and processing precision. Therefore, how to effectively reduce or eliminate the friction caused widespread concern. This dissertation proposes a new direct maglev structure of permanent magnet linear synchronous motor to eliminate the friction between the mover and the static guide. The major research content of dissertation as follows:
     (1) Aim at NC machine tools friction-free feeding requirements, the dissertation proposes a kind of double windings structure of magnetic levitation permanent magnet linear synchronous motor. One is the thrust winding, which is used to generate electromagnetic thrust, the other is the levitation winding, which is used to generate magnetic levitation force.
     (2) The control strategy is analyzed through the establishment of motor mathematical model. The mathematical model of the motor electromagnetic thrust and levitation force will be derived by the Maxwell stress tensor method. In the control strategy of i1d=0、i2q=0, Ansoft is used for making finite element analysis of the motor electromagnetic thrust and levitation force, which permanent magnetic materials are different.
     (3) Designing the motor armature winding structural type and secondary structure, and researching the influence of the air gap height on levitation force and thrust. By choosing the appropriate air gap height, this motor can generate enough air-gap magnetic field to satisfy the requirements of thrust and levitation force, and levitation force of mover is uniform, which meets the high performance requirements of motor.
     (4) A Matlab electromagnetic calculation program is designed for a magnetic levitation permanent magnet linear synchronous motor. According to the national natural science fund projects research requirement, a magnetic levitation permanent magnet linear synchronous motor is designed, and finished its electromagnetic computing.
引文
[1]宋文荣,于国飞,孙宝玉等.微电子制造领域的磁悬浮精密平台的结构设计研究.光学精密工程,2002,6(3):271-275.
    [2]郭庆鼎,王成元,周美文等.直线交流伺服系统的精密控制.北京:机械工业出版社,2000.
    [3]Bleuler H. A survey of magnetic levitation and magnetic bearing types. E International Journal, 1992,5(3):335-342.
    [4]Czajkowski,Stephen.Eidelberg,Boaz. Linear motors:The future of high-performance machine tools. American Machinist,1996,140(9):4-8.
    [5]Braembussche P V,Swevers J, Brussel H V et al.Accurate tracking control of linear synchronous motor machine tool axes. Mechatronics,1996,6(5):507-521.
    [6]江思敏,王先逵,石忠东等.中凸变椭圆活塞加工用高性能直线伺服系统的研究.机械工程学报,2001,37(9):58-61.
    [7]张伯霖,潘珊珊.直线电机及其在超高速机床上的应用.中国机械工程,1997,8(4):85-88.
    [8]Doyle, J., K. Glover, P. Khargonekar and B. A. Francis. State-space Solutions to Standard H∞ and H∞ Control Problems. IEEE. Trans. Automatic Control,1989,34(8):831-848.
    [9]Xie, L.,Fu,M. and de Souza,C.E..H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback. IEEE Trans. Automat Contr.,1992,37(8):1253-1256.
    [10]Carsten W.Scherer.Multiobjective H2/H∞ Control.IEEE Trans.Automatic Control,1995, 40(6):1054-1062.
    [11]Zames G..Feedback and optimal sensitivity:model reference transformations,multiplicative seminorms, and approximate inverse. IEEE Trans. Automat. Contr.,1981,AC-26:301-320.
    [12]Ni,M.L. and W, H.X..A Riccati equation approach to the design of linear robust controllers. Automatica,1995,29(6):1603-1605.
    [13]Shi, G. Zhou, Y. and Yang, C..An algebraic approach to robust H∞ control via state feedback. Syst.Contr.Lett.,1992,18:365-370.
    [14]Alter,D. M. Tsao,Tsu Chin.Control of linear motors for machine tool feed drives:Design and implementation of H∞ optimal feedback control.Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control,1996,118(6):649-656.
    [15]Chintae Choi,Tsu-Chin Tsao,Atsushi Matsubara.Control of linear motor machine tool feed drives for end milling:Robust MIMO Approach.Proceedings of the American control conference,San Diego,California,1999,118(6):3723-3727.
    [16]Z.Z.Liu,F.L.Luo,M.H.Rashid.Robust high speed and high precision linear motor direct-drive XY-table motion system.Proc.IEEE control theory and application,2004,151 (2):166-173.
    [17]Yao Bin,Xu Li.2DOF control for the motion of a magnetic suspension positioning stage d riven by inverter-fed linear motor.Mechatronics,2003,13(7):677-697.
    [18]王伟进,陈宏平.永磁直线交流伺服系统及其控制.微特电机,2004,32(2):26-28.
    [19]徐月同.高速精密永磁直线同步电机进给系统及控制技术研究:(博士学位论文).杭州:浙江大学,2004.
    [20]Jinming,Yang Jie,Wu Cheung et al.Passivity-based control for speed regulation in permanent-magnet linear motors. Proceedings of the Seventh IASTED International Multi-Conference-Power and Energy Systems.2003,7(5):340-344.
    [21]胡晓军,崔红娟.基于H∞方法的直线电机模型匹配控制.微特电机,2004,07(29):31-34.
    [22]孙宜标,郭庆鼎.基于RBF神经网络补偿的直线伺服系统滑模鲁棒跟踪控制.控制理论与应用,2004,21(02):102-106.
    [23]蓝益鹏,郭庆鼎,孙宜标.永磁直线伺服系统的速度H∞控制器优化设计.电工技术学报,2004,19(5):76-80.
    [24]杨霞,李强,郭庆鼎等.基于数控机床进给用磁悬浮直线电机摩擦的消除.组合机床与自动化加工技术,2005,7:41-45.
    [25]宋文荣,于国飞,孙宝玉等.微电子制造领域的磁悬浮精密平台的结构设计研究.光学精密工程,2002,6(3):271-275.
    [26]罗成,李云钢.磁浮列车悬浮系统的神经网络建模研究.计算机仿真,2006,23(1):144-146.
    [27]王凤翔,干宝国,徐隆亚.一种新型混合转子结构无轴承电动机磁悬浮力的矢量控制.中国电机工程学报,2005,25(5):98-103.
    [28]年珩,贺益康.感应型无轴承电机磁悬浮力精确模型及其反馈控制.中国电机工程样学报,2003,23(11):139-144.
    [29]王宝国,王凤翔.磁恳浮无轴承电机悬浮力绕组励磁及控制方式分析.中国电机工程学报,2002,22(5):105-108.
    [30]张爱林,徐龙祥.基于LF2407ADSP的主动磁轴承数字控制系统的研究:(硕士学位论文).南京:南京航空航大大学,2004.
    [31]Trum H Fper DL,Queen M.A.Precision magnetic suspension linear bearing.NASA lnternation symposium on magnetic suspension technology.USA,HamPton:NASA Langley Research Center, 1991,1(8):19-23.
    [32]曹建荣,虞烈,谢友柏.主动磁悬浮的解耦控制.西安交通大学学报,1999,33(12):44-48.
    [33]刘德生.基于反馈线性化的EMS型磁悬浮列车非线性悬浮控制器设计.国防科技大学学报,2005,27(2):96-101.
    [34]曹建荣,虞烈,谢友柏.磁悬浮电动机的状态反馈线性化控制.中国电机工程学报,2001,21(9):22-26.
    [35]Kee-Bong Choi, Young Geun Cho,Tadahiko Shinshi.Stabilization of one degree-of-freedom Control type levitation table with permanent magnet repulsive forces.Mechatronics,2003, 13(6):587-603.
    [36]田录林,张靠社,王德意等.永磁导轨悬浮和导向磁力研究.中国电机工程学报,2008,28(21):135-139.
    [37]刘德君,郭庆鼎,翁秀华.直线电机驱动的磁悬浮平台推力动态解耦控制.沈阳工业大学学报,2005,27(1):43-46.
    [38]Oshima M,Chiba A,Fukao T, et al.Characteristics of a permanent magnet type bearing less motor. IEEE Trans.on IA,1996,32(2):363-370.
    [39]李勇,胡育文,黄文新等.基于空间电压矢量调制的定子双绕组感应发电机系统电压控制技术.中国电机工程学报,2008,28(23):112-118.
    [40]陈翩.混合励磁式直线同步电动机及其驱动系统的研究:(硕士学位论文).杭州:浙江大学,2004.
    [41]卢琴芬.直线同步电机的特性研究:(博士学位论文).杭州:浙江大学,2005.
    [42]汪旭东.永磁直线同步电机统一解析理论及应用研究:(博十学位论文).西安:西安交通大学,2002.
    [43]张盛锋.永磁直线同步电动机关键技术的研究:(硕士学位论文).沈阳:沈阳工业大学,2007.
    [44]年珩.无轴承电机的设计与控制研究:(博士学位论文).杭州:浙江大学,2005.
    [45]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997.
    [46]石佳.机床进给磁悬浮系统的非线性控制方法研究:(硕十学位论文).沈阳:沈阳工业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700