1. [地质云]滑坡
东海赤潮高发区中的多胺及在赤潮演替中的作用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过国家藻华973项目2010年春季航次MC2010-1和MC2010-2及国家自然基金共享航次现场调查和实验室藻体培养实验,测定了2010年4月、5月、6月、10月东海海水和围隔试验中游离态2-苯基乙胺、腐胺、亚精胺和精胺含量,中肋骨条藻生长过程中体内和体外游离态多胺的变化,对实验室和现场观察到的现象进行了深入分析,得到了以下结论:
     腐胺和亚精胺是我们检测到的中肋骨条藻体内的主要游离态多胺。藻体内游离态多胺浓度在培养过程中浓度一直增加,且在消亡期增长率更大。腐胺/亚精胺与藻密度有较好的相关性(R2 = 0.9972),可较好地反应细胞周期的变化。精胺/亚精胺先于藻密度的变化,符合多胺对细胞生长的调节模式。培养液中主要的游离态多胺为腐胺和亚精胺,藻体在生长过程中既可以从环境中吸收多胺,也可以向环境中释放多胺,消亡期藻体会释放大量多胺。
     2010年4、5月份海水中精胺的含量最高,亚精胺最低。在赤潮爆发的断面,4种游离态多胺的浓度大都较高。5月份腐胺、精胺和亚精胺的总体水平与4月份相比均有所下降,且垂直分布不同,但组成比例变化不大。5月份腐胺和精胺的大面分布和叶绿素a较为相似。腐胺和精胺可能在赤潮的演替中发挥着重要作用。围隔实验发现,盐度的变化,硝氮、氨氮和磷酸盐的添加比例及添加方式均会对藻体的生长造成影响,进而影响水体中多胺的浓度。
     2010年6月份海水中腐胺的含量最高,浓度为5.16~62.28 nmol/L,占总组成的比例为62%±15%。亚精胺的含量最低,浓度为0~6.98 nmol/L,占总组成的比例为6%±5%。从大面分布看,4种多胺在长江口和杭州湾附近浓度大都较高。从各断面的垂直分布看,2-苯基乙胺、亚精胺和精胺在大多数断面的中层浓度均高于底层浓度。腐胺在大多数断面的底层浓度高于表层浓度。夜光藻赤潮爆发处多胺的浓度相对较高。
     2010年10月份东海主要的游离态多胺浓度为亚精胺和腐胺,分别占到比例组成的43%±15%和37%±15%。从大面分布看,多胺的高值出现在杭州湾及长江口附近的赤潮高发区。从各断面的垂直分布看,2-苯基乙胺在大多数断面的中层浓度大于表层浓度,腐胺在大多数断面的表层浓度大于中层浓度;亚精胺在所有断面的底层浓度大于表层浓度,精胺在大多数断面的中层浓度最高。
Based on the survey of MC2010-01 and MC2010-02 and alage cultivation experiments, we used HPLC measured the contents of free free 2-Phenylethylamine, putrescine, spermidine, and spermine in waters collected in East China Sea in April, May, June and October, and Changes in intracellular and extracellular free putrescine, spermidine, and spermine during the growth cycle of Skeletonema costatum were also studied.
     Putrescine and spermidine were the main intracellular free polyamines detected in Skeletonema costatum. The intracellular concentration of free polyamines kept increasing during the growth cycle and the ratio of putrescine to spermidine increased with cell density. Changes in the ratios of spermine/spermidine in Skeletonema costatum, however, occurred before changes in cell density, suggesting that polyamines can regulate cell growth and replication. Putrescine was the most abundant free polyamine in the culture medium, followed by spermidine and spermine. Changes to the media polyamines contents implied that Skeletonema costatum could absorb free polyamines from the culture solution as well as release free polyamines into the medium during different growth periods, especially during the decline phase. These results suggest that masses of dead algae in the population decline phase would release abundant free polyamines into the environment.
     Spermine and putrescine were the main polyamine in seawater in April and May and the concentration of spermidine was the lowest. Most polyamines concentrations were high where the red tide occurred. The concentrations of free putrescine, spermidine and spermine in May were all lower than that of in April and vertical distributions were different, but the composition proportion of polyamines did not change significantly. The horizontal distribution of putrescine and spermine on May were the same to that of chlorophyll a. Putrescine and spermine might have an important role in the red tide succession. The contents of salinity, NO3-N, NH4-N and PO4-P all got influences on the growth of the alage, which induces changes of free polyamines contents in seawater.
     Putrescine was the main polyamine in seawater in June with the concentration changed from 5.16 nmol/L to 62.28 nmol/L, accounting for 62%±15% of overall. Spermidine was the lowest with the concentration changed from undetectable to 6.98 nmol/L, accounting for 6%±5% of overall. Most polyamines concentrations were high near the Changjiang River Estuary and the Hangzhou Bay. Higher concentrations of 2-Phenylethylamine, spermidine, and spermine in middle layer than in bottom layer, and higher contents of putrescine in bottom layer than in surface layer were detcted in most sections. Polyamine concentrations were higher where the red tide of Noctiluca scintillans occurred.
     Spermidine and putrescine was the main polyamine in seawater in October, accounting for 43%±15% and 37%±15% of overall. Most polyamines concentrations were high near the Hangzhou Bay and Changjiang River Estuary. Higher concentrations of 2-Phenylethylamine in middle layer than in bottom layer, and higher contents of putrescine in surface layer than in middle layer, and higher contents of spermidine in bottom layer than in surface layer were detcted in most sections. Spermine got the highest contents in Middle layers in most sections.
引文
[1]段辉国,袁澍,刘文娟等. 2005.多胺与植物逆境胁迫的关系.植物生理学通讯. 41(4): 531—536.
    [2]郭玉洁,杨则禹.长江口区浮游植物的数量变动及生态分析.海洋科学集刊.1992, 33:167-189.
    [3]黄学林,李攸菊.乙烯和多胺生物合成与植物体细胞胚胎产生.植物生理学通讯. 1995, 31(2): 81-85.
    [4]黄益玲,王艳林.多胺代谢与抗肿瘤治疗新靶点研究进展.陕西医学杂志. 2009, 37(9): 8321.
    [5]孔垂华,胡飞,谢华亮.外源多胺对水稻萌发和前期生长的作用及其在土壤中的滞留.应用生态学报. 1996, 7(4): 377-380.
    [6]李六林,张绍玲.多胺在植物花发育中的作用.西北植物学报. 2006, 26(6): 1282-1289.
    [7]李瑞香,朱明远,王宗灵等.东海两种赤潮生物种间竞争的围隔实验.应用生态学报. 2003, 14(7): 1049 -1054.
    [8]李志军,吴永宁,刘浩等.葡萄酒中生物胺多组分的UVD/FLD串联HPLC方法研究.卫生研究. 2005, 34(5): 577-580.
    [9]李志军,薛长湖,封锦芳等.柱前衍生-RP-HPLC方法测定水产品中生物胺.中国海洋大学学报. 2007, 37(3): 427-431.
    [10]林定波,刘祖祺,张石城.多胺对柑桔抗寒力的效应.园艺学报. 1994, 21(3): 222—226.
    [11]刘俊.外源多胺对盐胁迫下玉米叶绿体结合态多胺水平和光合作用的影响.西北植物学报. 2006, 26(2):254-258.
    [12]乔成栋,宋平顺,严祥等. 5种生物胺的毛细管胶束电动色谱分离.分析化学. 2007, 35(1): 95-98.
    [13]齐雨藻,王艳.我国东海原甲藻赤潮该属哪种?应用生态学报. 2003, 14(7): 1188-1190.
    [14]齐雨藻.中国沿海赤潮.第一版,北京,科学出版社. 2003,146-168.
    [15]孙文全.多胺代谢与园艺作物开花的关系.园艺学报. 1989, 16(3): 178-183.
    [16]孙冷,黄朝迎.赤潮及其影响.灾害学. 1999, 14(2): 51-64.
    [17]沈慧娟,谢寅峰.多胺与几种植物的胁迫反应.南京林业大学学报,自然科学版. 1997, 21(4): 26-30.
    [18]田长恩,梁承邺.多胺对水稻CSM系及其保持系幼穗蛋白质、核酸和活性氧代谢的影响.植物生理学报. 1998, 25(3): 222-227.
    [19]田长恩.多胺在离体培养的植物组织形态建成中的作用.植物生理学通讯. 1992, 28(3): 230-232.
    [20]汪沛洪.植物多胺代谢的酶类与胁迫反应.植物生理学通讯. 1990, 1: 1-7.
    [21]王勇,陆旺金,张昭其等.ABA和腐胺处理减轻香蕉果实贮藏冷害.植物生理与分子生物学学报.2003, 29(6): 549-554.
    [22]吴玉霖,傅月娜,张永山等.长江口海域浮游植物分布与径流关系.海洋与湖沼. 2004, 35(3): 246-251.
    [23]徐韧,洪君超,王桂兰等.长江口及邻近海域的赤潮现象.海洋通报. 1994, 13(5): 25-29.
    [24]许振柱.土壤干旱对冬小麦旗叶乙烯释放多胺积累和细胞质膜的影响.植物生理学报. 1995, 21(3): 295-301.
    [25]邢更生,周功克,李志孝等.水分胁迫下山黧豆多胺代谢与N一草酰一L一二氨基丙酸积累相关性的研究.植物学报. 2000, 42(10): 1039—1044.
    [26]张秋明,郑玉生,魏岳荣等.植物多胺代谢及其对生长结果的调控.湖南农业大学学报. 2000, 26(4): 271-273.
    [27]张伟,李秀缺,陆荣等.浅谈食品中生物胺的检测方法.食品工程. 2007, 4: 55-57.
    [28]曾骧,吴显荣,孟昭清等.金冠苹果短枝芽和叶片在花芽分化期氨基酸变化的初步研究Ⅰ.花芽大量开始分化期酸、碱氨基酸的含量和动态变化.北京农业大学学报. 1985, 11(1): 59-67.
    [29]周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学. 2001, 13(2): 53-59.
    [30]周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探.应用生态学报. 2003, 14(7): 1031-1038.
    [31]周名江,朱明远.“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展.地球科学进展. 2006, 21 (7): 673-679.
    [32]朱成,黄涛,曾广文.次室温下腐胺对水稻种子萌发的影响.武汉植物学研究. 1995, 13(2): 152-156.
    [33]禚鹏基.化感作用对东海赤潮演替的影响(硕士学位论文). 2008: 28-34.
    [34] Altman A, Levin N, Cohen P et al. Polyamines in growth and differentiation of plant cell cultures. In: Progress in Polyamine Research (Zappia V et a1. eds) New York: Plenum Press, 1988, 250: 559-572.
    [35] Aiainura M M, Tomsaal M A. Photoperiod and putrescine affect flower neuformation in normal and rolB-transformed tobacco thin cell layers. Plant Physio1. Biochem. 1998, 36(6): 441-448.
    [36] Alcazer R, Marco F, Cuevas J C et al. Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett. 2006, 28: 1867-1876.
    [37] Anderson D M, Garrison D J. Ecology and oceanography of harmful algal Blooms. Limnology and Oceanography. 1997, 42(2): 1009-1305.
    [38] Anli R E, Vural N, Yilmaz S et al. The determination of biogenic amines in Turkish red wines. J Food Comp Anal, 2004, 17(1): 53-62
    [39] Auvinen M, Laine A., Paasine-Sohns A et al. Human ornithine decarboxylase overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer Res. 2007, 57: 3016-3025.
    [40] Auvin-Guette C, Rips R. Polyamines and corresponding aminoacids measured together. Chromatographia. 1988, 26: 60.
    [41] Awan M A, Fleet I, Thomas C L P. Determination of biogenic diamines with a vaporization derivatization approach using solid-phase microextraction gas chromatography -mass spectrometry. Food Chem. 2008, 111(2): 462-468.
    [42] Bachrach U, Wang Y C, Tabib A. Polyamine: New cues in cellular signal transduction. News Physiol. Sci. 2001, 16: 106-109.
    [43] Badini L, Pistocchi R, Bagni N. Polyamine transport in the seaweed Ulva Rigida (Chlorophyta). Journal of Phycology. 1994, 30: 599-605.
    [44] Bagni N, Adamo P, Serafini-Fracassini D. RNA, proteins and polyamines during tube growth in germinating apple pollen. Plant Physiol. 1981, 68: 727-730.
    [45] Basu A, Sethi U, Guha-Mukherjee S. Induction of cell division in leaf cells of coconut palm by alteration of pH and its correlation with glyoxalase-I activity. J. Exp. Bot. 1988, 39: 1735-1742.
    [46] Beninati S, Sartori C, Argento-Ceru M P. A new method for qualitative and quantitative determination of di- and polyamines in animal tissues by gas-liquid chromatography. Anal. Biochem. 1977, 80 :101.
    [47] Bettuzzi S, Davalli P, Astancolle S et al. Coordinate changes of polyamine metabolism regulating proteins during the cell cycle of normal human dermal fibroblasts. FEBS Letters. 1999, 446: 18-22.
    [48] Bouchereau A, Aziz A, Larher F et al. Polyamines and environmental challenges: recent development. Plant Sci. 1999, 140: 103-125.
    [49] Brooks J B, Moore W E. Gas chromatographic analysis of amine and other compounds produced by several species of Clostridium. J. Microbiol. 1969, 15: 1433.
    [50] Busto O, Guasch J, Borrull F. Determination of biogenic amines in wine after precolumn derivatization with 6-aminoquinoly-N-hydroxysuccinimidy1 carbamate. J Chromatogr A .1996 ,737 (1) :205-213.
    [51] Badini L, Pistocchi R, Bagni N. Polyamine transport in the seaweed Ulva Rigida (Chlorophyta). Journal of Phycology. 1994, 30: 599-605.
    [52] Becciolini A, Porciani S, Lanini A. et al. Polyamine levels in healthy and tumor tissues of patients with colon adenocarcinoma. Dis. Colon Rectum.1991, 34, 167.
    [53] Berdinskikh N K, Ignatenko N A, Zaletok S P et al. Ornithine decarboxylase activity and poly amine content in adenocarcinomas of human stomach and large intestine. Int. J. Cancer. 1991, 47: 496.
    [54] Berry M D. Mammalian central nervous system trace amines, Pharmacologic amphetamines, physiologic neuromodulators. J. Neurochem. 2004, 90: 257-271.
    [55] Biass R, Bagin N, Costa G. Endogenous polyamines in apple and their ralationship to fruit set and fruit growth. Physiologia Plantarum. 1988, 73: 201-205.
    [56] Bontemps J, Laschet J, Dandrifosse G. Analysis of dansyl derivatives of polyamines in mouse brain, human serum and duodenal biopsy specimens by high-performance liquid chromatography on a standard reversed-phase column. J. Chromatogr. 1984, 311: 59.
    [57] Brunton V G, Grant M H, Wallace H M. Spermine toxicity and glutathione depletion in BHK-21/C13 cells. Biochem. 1990, 40: 1893.
    [58] Busto O, Miracle M, Guasch J et al. Determination of biogenic amines in wine by high performance liquid chromatography with on column luorescence derivatization. J Chromatogr A. 1997 ,757 (2) :311-318.
    [59] Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Natl. Aca. Sci. USA. 2004, 101: 9909-9 914.
    [60] Cason A L, Ikeguchi Y, Skinner C et al. X-linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. Eur. J. Hum. Genet. 2003, 11: 937-944.
    [61] Cinquina A, Caly A, Longo F et al. Determination of biogenic amine sin fish tissues by ion-exchange chromatography with conductivity detection. Journal of Chromatography A. 2004, 1032: 73-77.
    [62] Coffino P. Regulation of cellular polyamines by antizyme. Nat. Rev. Mol. Cell Bio. 2001, 2: 188-194.
    [63] Cohen R J, Fujiwara K, Holland J W et al. Polyamines in prostatic epithelial cells and adenocarcinoma; the effects of androgen blockade. Prostate. 2001, 49: 278.
    [64] Draisci R, Volpe G, Lucentini L et al . Determination of biogenic amines with an electrochemical biosensor an its application to salted anchovies. Food Chem. 1998, 62 (2): 225-232.
    [65] Emonds A, Driessen O. Determination of polyamines in plasma by capillary gas chromatography and some applications. Methods Find. Exp. Clin. Pharmacol. 1983, 5: 391.
    [66] Evans L V, Malmberg R L. Do polyamines have a role in plant development? Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40: 235-269.
    [67] Feith D J, Shantz L M, Shoop P L et al. Mouse skin chemical carcinogenesis is inhibited by antizyme in promotion“sensitive and promotion”resistant genetic backgrounds. Mol. Carcinog. 2007, 46: 453-465.
    [68] Flores H E, Galston A W. Analysis of Polyamines in Higher Plants by High Performance Liquid Chromatography. Plant Physiol. 1982, 69: 701-706.
    [69] Fujihara S, Nakashima T, Kurogochi Y. Determination of derivapolyamines in human blood by electron-capture gas–liquid chromatography. J. Chromatogr. 1983, 277: 53.
    [70] Galston A W, Sawhney K R. Polyamine in plant physiology. Plant Physiol. 1990, 94: 406-410.
    [71] Galston A W, Sawhney K R, Altabella T et al. Plant polyamines in reproductive activities and response to abiotic stress. Bot. Acta., 1997, 110: 197-207.
    [72] Gentien P. Bloom dynamics and ecophysiology of the Gymnodinium mikimotoi complex. Anderson D M, Cembella A D, Hallegraeff G M. Physiological Ecology of Harmful Algal Blooms. NATOASI Series, Springer-Verlag, Berlin. 1998, 155-173.
    [73] Gehrke C W, Kuo K C, Zumwalt R.W.et al. in: Polyamines in Normal and Neoplastic Growth, Raven Press, New York, 1973, p. 343.
    [74] GEOHAB. Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan. Glibert P and Pitcher G eds. Baltimore and Paris:SCOR and IOC. 2001, 86.
    [75] Guillard R R, Ryther J H. Studies of marine planktonic diatoms. I.Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 1962, 8: 229-239.
    [76] Guye M G,Vigh L,Wilson J M.Polyamine titre in relation to chill-sensitivy in Phasedus sp.J. Exp. Bot. 1986, 37:1036-1043.
    [77] Groppa M D, Benavides M P. Polyamines and abiotic stress:recent advances. Amino Acids. 2007, 34: 35-45.
    [78] Hallegraeff G M. A review of harmful algal blooms and their apparent global increase. Phycologia. 1993, 32:79-99.
    [79] Hamasaki-Katagiri N, Katagiri Y, Tabor C W, Tabor H. Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant.Gene. 1998, 210: 195-201.
    [80] Heideman R L, Fickling K B, Walker L J et al. Free and total putrescine in cerebrospinal fluid quantified by reversed phase liquid chromatography. Clin. Chem. 1984, 30: 1243.
    [81] Hobbs C A, Paul B A, Gilmour S K. Deregulation of polyamine biosynthesis alters intrinsic histone acetyltransferase and deacetylase activities in murine skin and tumors. Cancer Res. 2002, 62: 67.
    [82] Hwang B S, Wang J T, Choong Y M. A rapid gas chromatographicmethod for the determination of histamine in fish and fish products. Food Chem. 2003, 82(2): 329-334.
    [83] Innocente N, Agostin P D. Formation of biogenic amine in a typical semihard itlian cheese. J Food Protect. 2002, 65 (7): 1498-1501.
    [84] Iwasaki H. Growth physiology of red-tide microorganisms. Microbiol Sci. 1984, 1: 179-182.
    [85] Kabra P M, Lee H K, Lubich W P et al. Solid phase extraction and determination of dansylderivatives of chromatographic determination of unconjugated and acetylated polyamines by reversed-phase liquid chromatography: improved separation systems for polyamines in cerebrospinal fluid, urine and tissue. J. Chromatogr. 1986, 380: 19.
    [86] Kai M, Ogata T, Haraguchi K et al. High-perstationary formance liquid chromatographic determination of free and total polyamines in human serum as fluorescamine derivapolyamines. J. Chromatogr. 1979, 163: 151.
    [87] Kakkar R, Ral V K. Plant polyamines in flowing and fruit ripening. Phytochmistry. 1993, 33: 1281-1288.
    [88] Kasukabe Y et al. Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol. 2006, 23: 75-83.
    [89] Kasukabe Y, He L, Nada K et al. Overexpression of spermidine synthase enhances tolerance to multipule environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol. 2004, 45: 712-722.
    [90] Kirschbaum J, Rebscher K, Brückner H. Liquid chromatographic determination of biogenic amines in fermented foods after derivatization with 3, 5-dinitrobenzoyl chloride. J Chromatogr A. 2000, 881: 517-530.
    [91] Koski P, Helander I M, Sarvas M et al. Analysis of polyamines as their dansyl derivatives by reversed-phase high-performance liquid chromatography. Anal. Biochem. 1987, 164: 261.
    [92] Kotzabasis K, Senger H. Free, conjugated and bound polyamines during cell cycle in synchronized cultures of Scenedesmus obliquus. C. J. Biosc. 1994, 43: 181-185.
    [93] Kramer D L, Diegelman P, Jell J et al. Polyamine acetylation modulates polyamine metabolic flux, a prelude to broader metabolic consequences. J. Biol. Chen. 2008, 283: 4241-4251.
    [94] Kubo S, Tamori A, Nishiguchi S et al. Relationship of polyamine metabolism to degree of malignancy of human hepatocellular carcinoma. Oncol. Rep. 1998, 5: 1385.
    [95] Kurihara H, Matsuzaki S, Yamazaki H et al. Relationship between tissue polyamine levels and mimalignancy in primary brain tumors. Neurosurgery. 1993, 32: 372.
    [96] Lange J, Thomas K, Wittmann C. Comparison of a capillary electrophoresis method with high performance liquid chromatography for the determination of biogenic amines in various food samples. Journal of Chromatography B. 2002, 779: 229-239.
    [97] Lange J, Wittmann C. Enzyme sensor array for the determination of biogenic amines in food samples. Anal. Bioanal. Chem. 2002, 372: 276-283.
    [98] Leeuwenhoeckvan A. Observationes de Anthonii Leeuwenhoeck, de natis esemine genital aminalculis. Phil.Trans. 1678, 12: 1040-1043.
    [99] Legrand C, Johnsen G, Graneli E et al. Effect of polyamines on growth and toxicity of Chrosochromulina leadbeateri(Haptophyte). In: Harmful Algal Blooms 2000. Hallegraeff G M , Blackburn S I , Bolch C J and lewis R J ed. Intergovernmental Oceanographic Commission of UNESCO 2001. p. 332-335.
    [100] Legrand C, Johansson N, Johnsen G et al. Phagotrophy and toxicity variation in the mixotrophic Prymnesium patelliferum. Limnol.Oceanogr. 2001, 46(5): 1208-1214.
    [101] Lin W C, Lin C E, Lin E C. Capillary zone electrophoretic separation of biogenic amines: influence of organicmodifier. J Chromatography A. 1996, 55(1):142-146.
    [102] Loser C., Wunderlich U., Folsch U. Reversed-phase liquid chromatographic separation and simultaneous fluorimetric detection of polyamines and their monoacetyl derivatives in human and animal urine, serum and tissue samples: an improved, rapid and sensitive method for routine application. J. Chromatogr. 1988, 430: 249.
    [103] Liu J H, Kitashiba H, Wang J et al. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol. 2007, 24: 117-126.
    [104] Lorenz B, Francis F, Gempel K et al. 1998. Spermine deficiency in Gy mice caused by deletion of the spermine synthase gene. Hum. Mol. Genet. 2007, 7: 541-547.
    [105] Lu Y H, Hwang D F. Polyamine profile in the paralytic shellfish poison-producing algae. Alexandrium minutum. J. Plankton Res. 2002, 24: 275-279.
    [106] Mach M, Kersten H, Kersten W. Measurement of polyamines and their acetylated derivatives in cell extracts and physiological fluids by use of an amino acid analyser. J. Chromatogr. 1981, 223: 51.
    [107] Mackintosh C A, Pegg A E. Effect of spermine synthase deficiency on polyamine biosynthesis and content in mice and embryonic fibroblasts, and the sensitivity of fibroblasts to 1, 3-bis-(2-chloroethyl)-N-nitrosourea. Biochem. J. 2000, 351: 439-447.
    [108] Maestrini S Y, Balode M, Bechemin C et al. Nitrogenous organic substances as potential nitrogen scources, for summer phyplankton in the Gulf of Riga, eastern Baltic Sea. Plankton Biol. Ecol. 1999, 46(1): 8-17.
    [109] Makita M, Yamamoto S, Kono M. Rapid determination of polyamines in human urine by electron capture gas chromatography. Clin. Chim. Acta. 1975, 61:403.
    [110] Marce M, Brown D S, Capell T et al. 1995. Rapid high-performance liquid chromatographic method for the quantitation of polyamines as their dansyl derivatives:application to plant and animal tissues. J. Chromatogr. 1999, 666: 329-335.
    [111] Mcgregor R F, Sharon M S, Atkinson M et al. An improved isolation procedure for the gas chromato graphic analysis of urinary polyamines. Prep. Biochem.1976, 6: 403.
    [112] Menashe M, Faber J, Bachrach U. Formation of N-acetylputrescine and N1-acetylspermidine in cultured human lymphocytes, Biochem. J. 1980, 188: 263.
    [113] Milano G, Schneider M., Cambon P et al. An improved method for routine analysis of polyamines in biological fluids with a conventional amino acid analyser. J. Clin. Chem. Clin. Biochem. 1980, 18: 157.
    [114] Minocha R, Long S. Simultaneous separation and quantitation of amino acids and polyamines of forest tree tissues and cell cultures within a single high-performance liquid chromatography run using dansyl derivatization. Journal of Chromatography A. 2004, 1035(1): 63-73.
    [115] Minocha R, Smith D R, Reeves C et al. Polyamines levels during the development of zygotic and somatic embryos of Pinus Radiata. Physiologia Plantarum. 1999, 105: 155-164.
    [116] Minocha R, Long S. Simultaneous separation and quantitation of amino acids and polyamines of forest tree tissues and cell cultures within a single high-performance liquid chromatography run using dansyl derivatization. Journal of Chromatography A. 2004, 1035(1): 63-73.
    [117] Miyamoto S, Kashiwagi K, Watanabe S et al. Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Arch. Biochem. Biophys. 1993, 300: 63-68.
    [118] Moret S, Conte L S. High-performance liquid chromatographic evaluation of biogenic amines in foods an analysis of different methods of sample preparation in relation to food characteristics. J. Chromatogr A. 1996, 729: 363-369.
    [119] Morgan D.M. Polyamines and cellular regulation: perspectives. Biochem. Soc. Trans. 1990, 18: 1080.
    [120] Muskiet F A. J, Berg G A. van den, Kingma A W et al. Total polyamines and their non-alpha-amino acid metabolites simultaneously determined in urine by capillary gas chromatography, with nitrogen–phosphorus detector; and some clinical applications. Clin. Chem. 1984, 30:687.
    [121] Nishibori N, Nishio S. Occurrence of polyamines in bloom forming toxic dinoflagellate Alexandrium tamarense. Fisheries Science. 1997, 63: 319-320.
    [122] Nishibori N, Nishii A, Takayama H. Detection of free polyamine in coastal seawater using ion exchange chromatography. Journal of Marine Science. 2001a, 58: 1201-1207.
    [123] Nishibori N, Yuasa A, Sakai M et al. Free polyamines in coastal seawater during phytoplankton bloom. Fisheries Science. 2001b, 67: 79-83.
    [124] Nishibori N, Matuyama Y, Uchida T. Spatial and temporal variations in free polyamine distributions in Uranouchi Inlet, Japan. Marine Chemistry. 2003, 82: 307-314.
    [125] Nishibori N, Nishijima T. Changes in polyamine levels during growth of a red-tide causing phytoplankton Chattonella antiqua (Raphidophyceae). Eur. J. Phycol. 2004, 39(1): 51-55.
    [126] Nishibori N, Fujihara S, Nishijima L T. Changes in intracellular polyamine concentration during growth of Heterosigma akashiwo (Raphidophyceae). Fisheries Science. 2006, 72(2): 350-355.
    [127] Oshmarina V I, Shevyakova N I, Shamina Z B. Dynamics of free amino acids and amides in Nicotiana sylverstris cell cultures at different concentrations of putrescine in the medium. Sov Plant Physiol. 1982, 29: 477-481.
    [128] Pegg A E. McCann P. P. Polyamine metabolism and function. Am. J. Physiol. 1982, 243: 212.
    [129] Pegg A E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988, 48: 759.
    [130] Pereira V, Pontes M, Camara J S et al. Simultaneous analysis of free amino acids and biogenic amines in honey and wine samples using in loop orthophthalaldeyde derivatization procedure. J. Chromatogr. A. 2008, 1189: 435-443.
    [131] Prussak C A, Russell D H. Single-step high-performance liquid chromatographic method for the analysis of acetylated polyamines. J. Chromatogr. 1982, 229: 47.
    [132] Rastogi R,Sawhney V K. Polyamines and flower development in the male sterile stamenless-2 mutlmt of tomato Lyeopersilav esalenturn Mill. II. Efects of polyamines and their biosynthetic inhibitors on the development of normal and mutlmt floral buds culturedin vitro. Plant Physiology. 1990, 93: 446-452.
    [133] Rattenbury J M, Lax P M, Blau K et al. Separation and quantification of urinary di- and polyamines by gas chromatography with electron capture detection. Clin. Chim. Acta. 1979, 95: 61.
    [134] Rhee H J, Kim J K. Physiological polyamines: simple primordial stress molecules. J. Cell Mol. Med. 2007, 84: 374-380.
    [135] Rodriguez I, Lee H K, Li S F Y. Separation of biogenic amines by micellar electrokinetic chromatography. J.Chromatogr. A. 1996, 745(2): 255-262.
    [136] Rohn G, Els T, Hell K et al. Regional distribution of ornithine decarboxylase activity and polyamine levels in experimental cat brain tumors. Neurochem. Int. 2001, 39: 315.
    [137] Romano M, Santacroce M A, Bonelli P et al. Differences in polyamine metabolism between carcinomatous and uninvolved human breast tissues. Int. J. Biol. Markers. 1986, 1: 77.
    [138] Ronald F C. Polyamine effects on cell function: possible central role of plasma membrane PI (4, 5) P2. Cellular Physiology. 2009, 221: 544-551.
    [139] Rosenheim O. Theisolationofsperminephosphatefromsemenandtestis. Biochem. J. 1924,18: 1253-1263.
    [140] Russell D H. Increased polyamine concentrations in the urine of human cancer patients. Nature. 1971, 233: 144.
    [141] Russell D H, Ellingson J D, Davis T P. Analysis of polyamines and acetyl derivatives by a single automated amino acid analyser technique. J. Chromatogr. 1983, 273: 263.
    [142] Russo F, Linsalata M, Giorgio I et al. Polyamine levels and ODC activity in intestinal-type and diffuse-type gastric carcinoma. Dig. Dis. Sci. 1997, 42: 576.
    [143] Sabri M, Soiefer A I, Kisby G E et al. Determination of polyamines by precolumn derivatization with 9-fluorenylmethyl chloroformate and reversed-phase high performance liquid chromatography. J. Neurosci. Methods. 1989, 29: 27.
    [144] Saeki Y, Uehara N, Shirakawa S. Sensitive fluorimetric method for the determination of putrescine, spermidine and M. spermine by high-performance liquid chromatography and its application to human blood. J. Chromatogr. 1978, 145: 221.
    [145] Saftner R A, Baldi B G. Polyaminelevels and tomato fruit development possible interaction with ethylene.Plant Physiol. 1990, 92: 547-550.
    [146] Sasaki K, Abid M R, Miyazaki M. Deoxy hypusine synthase genes essential for cell viability in the yeast saccharomyces cerevisiae. FEBS Lett. 1986, 384: 151-154.
    [147] Scoccianti V, Torrigiani P, Bagni N. Distribution of diamine oxidase activity and soybean seedlings at different stages of germination. Physiol. Plant. 1990, 80: 515-519.
    [148] Seiler N, Knodgen B, Eisenbess F. Determination of polyamines by high-performance liquid chromatographic separation of their 5-dimethylaminonaphthalene-1-sulfonyl derivatives. J. Chromatogr. 1978, 145: 29.
    [149] Serrano M, Martinez-Mrid M C, Riquelme F et al. Endogenous levels of polyamines and abscisic acid in pepper fruits during growth and ripening. Physiologia Plantarum. 1995, 95: 73-76.
    [150] Shakila J R, Vasundhara T S, Kumudavally K V. A comparison of the TLC–densitometry and HPLC method for the determination of biogenic amines in fish and fishery products. Food Chemistry. 200l, 75: 255-259.
    [151] Shalaby A R. Simple, rapid and valid thin layer chromatographic method for determining biogenic amines in foods. Food Chem. 1999, 65(1): 117-121.
    [152] Shen H J, Galston A W. Correlations between polyamine ratios and growth patterns in seeding roots. Plant Growth Regulation. 1985, 3: 353-363.
    [153] Shintani H. Handbook of capillary electrophoresis applications. London, Blackie Academic and professional. 1997, 1258-2110.
    [154] Shiozaki S,Ogata T, Horiuchi S. Endogenous polyamines in pericarp and seed of the grape berry during devdopment and ripening. Scientia Horticulture. 2000, 83: 33-41.
    [155] Shipe J R, Savory J. High-performance liquid chromatographic separation and fluorescence detection of polyamines in plasma and erythrocytes. Ann. Clin. Lab. Sci. 1980, 20:128.
    [156] Silla S M. Biogenic amines: their importance in foods. International Journal of Food Microbiology. 1996, 29: 213-231.
    [157] Shilo M. Formation and mode of action of algal toxins. Bact. Rev. 1967, 31: 180-193.
    [158] Slemr J, Beyermann K. Determination of biogenic amines in meat by combined ion-exchange and capillary gas chromatography. J. Chromatogr. 1984, 283 : 241.
    [159] Smith T A. Polyamines. Annu. Rev. Plant Physiol. 1985, 36: 117-143.
    [160] Stobaugh J F, Repta A J, Stemson L A et al. Factors affecting the stability of fluorescent isaindoles derived from reaction of o-phthalaldehyde and hydroxyalkylthiols with primary amines. Anal Biochem. 1983, 135: 495-504.
    [161] Suzuki S, Kobayashi K, Noda J et al. Simultaneous determination of biogenic amines by reversed-phase high-performance liquid chromatography. J. Chromatogr. 1990, 508: 225.
    [162] Tabor C W , Tabor H. Polyamines. Annu Rev Biochem. 1984, 53: 749-790.
    [163] Tada K, Tada M, Maita Y. Dissolved free amino acids in coastal seawater using a modified fluorometric method. Journal of Oceanography. 1998, 54: 313-321.
    [164] Tamim N M, Bennett L W, Shellem A et al. Hight-performance liquid chromatographic determination of biogenic amine in poultry carcasses. J Agric Food Chem. 2002, 50: 5012-5015.
    [165] Tassoni A, Buuren M V, Fraceschetti M et al. Polyamine content and metabolism in Arabidopsis thaliana and efect of spemaidine on plant devdopment.Plant Physiol Biochem. 2000, 38(5): 383-393.
    [166] Theiss C, Bohley P, Voigt J. Regulation by polyamine of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol. 2002, 128: 1470-1479.
    [167] Tiburcio A F, Campos J L, Figueras X, Besford R T. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regulation. 1985, 12: 331-340.
    [168] Torrigiani P, Altamura M M, Capitani F et a1. De novo root formation in thin layer cultures of tobacco: changes in free and bound polyamines. Physiol. Plant. 1989, 77: 294-301.
    [169] Walle T. Gas chromatography–mass spectrometry of polyamines in human urine: identification of monoacetylspermidine as a major metabolic product of spermidine in a patient with acute myelocytic leukaemia, in: D H Russell (Ed.), Polyamines in Normal and Neoplastic Growth, Raven Press, New York, 1973, p. 355.
    [170] Tsuji T, Kataurano M, Ibaragi S et al. Ornithine decarboxylase antizyme upregulates DNA-dependent protein kinase and enhances the nonhomologous endjoining repair of DNA double-strand breaks in human otal cancer cell. Biochemistry. 2007, 46: 8920-8932.
    [171] Urano K, Yoshiba Y, Nanjo T et al. Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant, Cell Environment. 2003, 26: 1917-1926.
    [172] Urano K, Yoshiba Y, Nanjo T et al. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 isrequired for accumulation of putrescine in salt tolerance. Biochem. Biophys. Res. Commun. 2004, 313: 369-375.
    [173] Urano K, Hobo T, Shinozaki K. Arabidopsis genes involved in polyamine biosynthesis are essential for seed development. FEBS Letters, 2005, 579: 1557-1564.
    [174] Verkoelen C F, Romijn J C, Schroeder F H et al. Quantitation of polyamines in cultured cells and tissue homogenates by reversed phase high-performance liquid chromatography of their benzoyl deraviratives. J. Chromatogr. 1988, 426: 41.
    [175] Vinci G, Antonelli M L. Biogenic amines: quality index of freshness in red and white meat. Food Control. 2002, 13(8): 519-524.
    [176] Yadav J S, Rajarn M V. Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in eggplant.Plant Physiol. 1998, 116: 617-625.
    [177] Yamamoto S, Yokogawa M, Wakamatsu K.et al. Gas chromatographic method for the determination of urinary acetylpolyamines. J. Chromatogr. B. 1982, 233: 29.
    [178] Walden R, CordeiroA, Tibureios A F. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol. 1997, 113: 1009-1013.
    [179] Watanabe S, Kusama-Eguchi K, Kobayashi H et al. Estimation of polyamine binding to macromolecules and ATP in bovine lymphocytes and rat liver. J.Biol.Chem. 1991, 266: 20803-20809.
    [180] Wallace H M,Mackearel A J. Regulation of polyamine acetylation and efflux in human cancer cells. Biochem Soc Trans. 1998, 26(4): 571-575.
    [181] Walters D R. Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol. 2003, 159: 109-115.
    [182] Walters D R. Polyamines and plant disease. Phytochemistry. 2003, 64: 97-107.
    [183] Wen X P, Pang X M, Matsuda N et al. Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res. 2007, 17:251-263.
    [184] Yamakawa K, Takahashi Y, Berberich T et al. A protective role for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiol. 2007, 118: 213-222.
    [185] Yamakawa K, Takahashi Y, Berberich T et al. The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Letters. 2006, 580: 783-788.