用户名: 密码: 验证码:
当江—多彩俯冲型蛇绿岩及其岩浆弧特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金沙江蛇绿混杂带是青藏高原二十条蛇绿混杂带的一分子,其物质组成、结构构造及俯冲闭合时限、极性等方面的研究长期以来为地学界所关注。治多地区的多彩沟蛇绿构造混杂岩带是其西段,本文通过构造剖面测制,蛇绿岩和岛弧带相关样品的采集,构造样式的调研,几何学、运动学标志的收集,构造分期和配套关系的建立,剖面内部物质组成的厘定以及同位素地质年代学测试等工作,结合前人已有研究成果,对金沙江蛇绿混杂带治多段开展了相关研究,取得了如下认识与进展:
     1.通过野外和室内对不同岩片内部构造样式的解析,认为多彩蛇绿混杂岩经历了四期变形特征:
     ①以复理石碎屑岩内部发育的无根勾状褶皱为特征,属于地壳深部构造层次变形,指示NNW向左行韧性剪切(枢纽Lb:330-350°∠60-73°),可能代表了最早期的俯冲变形;
     ②以碎屑岩中透入性片理构成的小型顶厚-相似褶皱、紧闭褶皱为代表,运动学特征指示其为近NE向的挤压和NW向的左行剪切作用(枢纽Lb:125-140°∠55-70°),属于主俯冲期的构造群落;
     ③以NE-SW向的中浅构造层次的逆冲型韧性剪切变形为特征,切割第二期的顶厚褶皱为特点,指示NNW向左行韧性剪切(S剪:50-65°∠55-65°),代表了碰撞期的构造群落;
     ④以碎屑岩中发育的枢纽倾角变陡的大尺度倾竖褶皱(Lb:310-330°∠70-85°)和拉伸线理(La:130-150°∠0-10°)为代表,均反映了近NW向左行走滑剪切的运动学指向,代表后期隆升期构造特征。
     2.多彩蛇绿岩主要由辉长岩、堆晶辉长岩和玄武岩(基性熔岩)组成。其中,基性熔岩可分为板内洋岛玄武岩(OIB)和过渡型(MORB-IAT)两种系列。系列一属于碱性系列,来源于富集地幔的Em2端元,不属于蛇绿岩成分,与地幔柱或热点作用有关;系列二属于拉斑玄武系列,可分为洋脊型(MORB)和岛弧型(IAT)两种类型,并且具有过渡的特点,反映了其构造位置上处于洋中脊向海沟的偏海沟区域。辉长岩地球化学特征与系列二中的IAT组分相似,来源于原始地幔与亏损地幔之间的过渡带,为二者具有岛弧带特征提供了佐证。
     3.多彩蛇绿混杂岩带中出露三种不同类型的熔岩(OIB-MORB-IAT),前两者的出现可能暗示了金沙江洋经历了板内裂谷向大洋的转化,而IAT的出现则说明与板块消减作用相关。
     4.蛇绿混杂岩剖面中以出现绿泥石(Chl)+绿帘石(Ep)+阳起石(Act)组合为主,属于绿片岩相变质。除了受后期热液接触变质而在石英脉体中出现矽线石(Sil)外,在岩石本身并未发现相关的高温高压变质矿物。
     5.当江火山岩岩性组合以流纹岩-英安岩-安山岩为主,是一套典型的高Si、低Ti、富Na的钙碱性岩石组合,富集大离子亲石元素(Rb、Ba等),亏损高场强元素(Nb、Ta等)和P等元素,轻稀土元素富集,轻重稀土分馏较强以及轻度的Eu负异常等特点,指示其形成于与活动大陆边缘有关的岛弧构造环境。
     6.堆晶辉长岩LA-ICP-MS单颗粒锆石U-Pb测年为252.5±0.58(MSWD =0.95),指示多彩蛇绿岩形成于晚二叠世末期,可能代表了金沙江洋在多彩一带于晚二叠世存在与俯冲相关的弧前扩张事件年龄。当江岛弧带流纹斑岩LA-ICP-MS单颗粒锆石U-Pb年龄为237.6±1.7Ma(MSWD=2.3),代表了当江火山岩中流纹斑岩的结晶时代。说明金沙江洋俯冲作用在晚二叠世仍在继续,可能持续到后继中三叠纪的弧火山岩的出现。
     7.多彩蛇绿混杂岩基性熔岩的地球化学特征和判别图解显示:其为一套与俯冲相关的岛弧型蛇绿岩。而当江火山岩与多彩蛇绿岩在时空和成因上存在同源性和成对性,不但进一步证实了蛇绿岩为SSZ型,也指示了其由北东向南西的俯冲极性。
     8.依据多彩蛇绿混杂岩岩片变形、变质特征,接触关系等特征以及对比分析蛇绿岩三种主要的就位机制类型,认为多彩蛇绿岩的就位机制属于俯冲拼贴刮削式。
Abstract:As one of the twenty opholite mélange zones in Qinghai-Tibet Plateau, the material composition, structure and tectonics, subduction and closure age and subduction polarity of Jinsha ophiolite mélange zone had attracted more and more attention in the long term. Based on the research of the anterior research fruit of other people, through measureing and making tectonic cross sections, collecting related samples of Duocai ophiolite and Dangjiang volcanic rocks(gabbro, basalt, greenschist, rhyolite, dacite, andesite, etc.), investigating and researching of tectonic patterns, gathering geometry and kinematics characteristics, building tectonic stage and matching relationship, identificating material composition and analyzing isotopic geochronology, etc. of Duocai ophiolite mélange in Zhiduo area , west part of Jinsha ophiolite méglange belt, the following thoughts and conclusions were obtained:
     1. By the field and interior research in the tectonic patterns of different sliver, the deformations of Duocai ophiolite mélange can be divided into four stages:
     ①The first stage was characterized by the rootless hook-shaped folds in the flysch clastic which represent the early subduction stage, belonged to the deep tectonic arrangement and indicated the NNW-trending ductile shearing.
     ②The second stage was characterized by the pint-sized similar fold and top-thickness fold developed from the penetrational schistosity which present the mainly subduction stage, indicated the NE-trending extrusion and NW-trending laevogyrate shearing.
     ③The third stage was characterized by the trust ductile shearing from NE-SW which incised the top-thickness fold of the second stage and presented the collisional stage, belong to middle-shallow arrangement, suggested the NNW-trending ductile shearing.
     ④The fourth stage was characterized by the large-scale steep plunging vertical fold which presented the late uplift stage, indicated NW-trending laevogyrate strike-slip ductile shearing in accordance with the NW-trending stretching lineation in the first sliver of the section.
     2. The Duocai ophiolites mainly consist of gabbro, cumulate gabbro and basalt(basic lavas), and the basic lavas can be divided into OIB and MORB-IAT two series: seriesⅠwere alkalescent, related with the mantle plume or hotspot, derived from the Em2 of enriched mantle, didn’t belong to the member of ophiolite. seriesⅡare tholeiitic and also can be divided into MORB and IAT two transitional series. The geochemistry of gabbros were similar to the basalt of seriesⅡand derived from the transitional zone between the prime mantle and depleted mantle which provide the evidence of both have the characteristic of island arc.
     3. There were three basic lavas of different component in Duocai ophiolites(OIB-MORB-IAT), the combination of OIB and MORB indicated that the Jinsha Ocean may have experienced the transitional process from the continental rift to ocean, while the exit of IAT suggested that the opiolites were related to the subduction of plate.
     4. The metamorphic minerals of ophiolite mélange were mainly composed of chlorite, epidote and actinolite and have no mineral of high temperature and high pressure expect there existed some sillimanites in quartz veins by the later hydrothermal contact metamorphism.
     5. The combination of rhyolite, dacite and andesite in Dangjiang volcanic rocks were rich in SiO2 and Na2O and poor in TiO2, belonging to calc-alkaline type rocks. The chondrite-normalized REE-patterns were characterized by LREE enrichment(Rb,Ba)with variable degree of negative Eu anomalous values and the primary mantle-normalized trace elements-parterns by HFSE depleted as well as P element, indicating that it formed in the island arc environment related to active continental margin.
     6. The single zircon U-Pb age of cumulate gabbro was 252.5±0.58Ma (MSWD=0.95) which showed that Duocai ophiolites formed in the end of late permian, may present the age of for-arc spreading related to the subduction in Zhiduo area of the Jinsha Ocean. The single zircon U-Pb age of rhyolite porphyry of Dangjiang volcanic rocks was 237.6±1.7Ma(MSWD=2.3)which presented the crystallization age. The two group of ages suggested that the subduction was continuing in the end of Permian and lasted to the occurrence of arc volcanic rocks in middle Triassic.
     7. The geochemistry characteristic and the discrimination diagrams of basic lavas showed that the ophiolites were formed in the environment of island-arc. The well matching in time, space and causes which not only indicated the ophiolites belong to SSZ type, but also suggested the subduction polarity were from northeast to southwest.
     8. By systematical analyzing the characteristics of deformation, metamorphosis, contact relationship in ophiolite méglanges and throuth the contrastive analysis of the mainly three emplacement mechanism types related with continental movement, we concluded that the emplacement mechanism of Duocai ophiolite méglange belonged to subduction scrape adhesion type.
引文
[1] Beccaluva L, Ohnenstetter D, Ohnentstetter M, Paupy A. Two magmatic series with island arcs affinities within the Vourinos ophiolites. In: Atti del Congresso della Societa Italiana di Mineralogia e Petrologia Translated Title: Proceedings of the Congress of the Italian Society of Mineralogy and Petrology. Rendiconti della Societa Italiana di Mineralogia e Petrologia. 1982, 38 (2):900~901
    [2] Boudier F, Nicolas A. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments. Earth Planet. Sci. Lett., 1985, 76(1-2): 84~92
    [3] Bourgois J, Martin H, Lagabrielle Y, Le Moigne J and Frutos Jara J.1996. Subduction erosion related to spreading-ridge subduction:Taitao Peninsula (Chile margin tripe junction area). Geology, 24(8):723-726
    [4] Carmichael I S E, Turner F J, Verhoogen J. Igneous petrology. New York: McGraw- Hill,1974
    [5] Cliff R A. 1985. Isotopic dating in metamorphic belts. Geological Society of London, 142:97- 100
    [6] Coish RA, Hickey R, Frey FA, 1982. Rare earth element geochemistry of the Betts Cove ophiolilte, Newfound- land:complexities in ophiolite formation. Geochim. Cosmochim. Acta, 46:2117-2134
    [7] Coleman R G, Keith T E. A chemical study of serpentinization Burro Mountain, California. J. Petrol., 1971, 12:311-328
    [8] Coleman R G. Ophiolites, Printed by Springer Verlag Berlin Heidelberg in Germany,1977.
    [9] Coleman R G. The diversity of ophiolites. Geologien Mijinboow, 1984, 63:141-150.
    [10] Coleman.蛇绿岩.北京:地质出版社, 1982,1-140
    [11] Condie K C. High field strenches element ratios in Archean basalts:a window to evolving sources of mantle plumes? Lithos, 2005,79:491-504
    [12] Condie K C. Plate tectonics and crustal evolution (2nd edition). Pergamon Press,1982
    [13] Dewey J F, Bird J. Origin and emplacement of the ophiolite suite:Appalachian ophiolites inNewfoudland. J. Geophy. Res., 1971, 76:3179-3206
    [14] Dickinson W R. Plate tectonics in geologic history.Science,1971, 174: 107-113
    [15] Dietz R S. Alpine serpentines as oceanic rind fragments.Geol.Soc. Am. Bull., 1963, 74:947-952
    [16] Dobretsov N L, Kepezhinscas V V. Three types of ultrabasic magmas and their bearing on the problem of ophiolites. Ofioliti, 1981, 6(2~3):221~236
    [17] Elthon D. Geochemical evidence for formation of the Bay of Islands ophiolite above a subduction zone. Nature, 1991, 354:140-143
    [18] Fitton J G, James D, Leeman M P. Basic magmatism associated with Late Cenozoic extension in the western United States:compositional variation in space and time. Geophys Res, 1991,96:13693-13711
    [19] Gill J B.1981. Orogenic Andesites and Plate Tectonics. Berlin:Springer-Verlag, 358-360
    [20] Griffin W L, Belousova E A, Shee S. Crustal evolution in the northern Yilarn Craton:U-Pb and Hf isotope evidence from detrital zircons. Precambr Res, 2004,131(3-4): 231-282
    [21] Hoskin P W O,Black L P. Metamorphic zircon formation by solid-state recrystalli- zation of protolith igneous zircon.J Metamorph Geol, 2000,18: 423-439
    [22] Hyndman D W. Petrology of igneous and metamorphic rocks (2nd edition). New York: McGraw-Hill,1985
    [23] Karsten JL, Klein EM and Sherman SB. Subduction zone geochemical characteristics in ocean ridge basalts from the southern Chile Ridge:Implications of modern ridge subduc- tion systems for the Archean. Lithos, 1996,37:143-161
    [24] Liati A, Gebauer D and Wysoczanski R. U-Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone(N Greece):Evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism. Chemical Geology, 2002,184(3-4):281 -299
    [25] Lytwyn J, Casey J, Gilbert S and Kusky T. 1997. Arc-like mid-ocean ridge basalt formed seaward of a trench-fore- arc system just prior to ridge subduction:An example from subaccteted ophiolites in southern Alaska. Journal of Geophysical Research, 102:10225- 10243
    [26] Marlina A E, John F. Geochemical response to varying tectonic settings:An example fromsouthern Sulawesi(Indonesia). Geochimica et Cosmochimica Acta, 1999,63(7/8):1155- 1172
    [27] Miyashiro A. Classification, characteristics and origin of ophiolites. J. Geol., 1975, 83: 249~281
    [28] Moore J M, Thompson P. The Flinton Group:a late Precambrian metasedimentary sequence in the Grenville province of eastern Ontario. Canadian J. Earth Science, 1980,17:1685~1707
    [29] Moores E M. Origin and emplacement of ophiolites. Rev. Geophys. Space Phys. 1982, 20: 730~760
    [30] Müller D, Rock N M S, Groves D L. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings:a pilot study.Mineralogy and Petrology, 1992,46:259-289
    [31] Pearce J A and Norry M J. Petrogenetic in plications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol, 1979,69:33-47
    [32] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett, 1973,19:290-300
    [33] Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Marginal Basin Geology, 1984,16:77-94
    [34] Pearce J A. A“users guide”to basalt discrimination diagrams. Overseas Geology, 1984, 4:1-13
    [35] Pearce J A. The role of sub-continental lithosphere in magma genesis at destructive plate margins [C]//Hawkesworth . Continental basalts and mantle xenoliths. Nantwich: Shiva Press, 1983: 230-249
    [36] Pearce J A. The role of sub-continental lithosphere in magma genesis at destructive plate margins. In:Continental Basalts and Mantle Xenoliths (Hawkesworth et al. eds.), Nantwich Shiva, 1983,230-249
    [37] Perfit MR, Cust D A, Bence A E, Arculus A R, Taylor S R . Chemical charac- teristics of island-arc basalts: implications for mantle sources. Chem. Geol., 1980,30: 227-256
    [38] reuil M A . Global geochemical model of uranium distribution and concentration involcanic rock series [C]//Uranium deposits in volcanic rock. Vienna: International Atomic Energy Agency, 1985:53-67
    [39] Rivers T. Lithotectonic elements of the Grenville Provence:review and tectonic implication. Precambrian Research, 1997,86:117~154
    [40] Robertson A H F. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan regin. Lithos, 2002,65:1-67
    [41] Rubatto D and Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM microprobe:Some examples from the western Alps. Cathodoluminescence in Geoscience. Germany: Springer Verlag Berlin Heidelberg, 2000,73-400
    [42] Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 2002,184: 123~138
    [43] Ryerson F J, Watson E B. Rutile saturation in magmas: implications for Ti-Nb- Ta depletion in island-arc basalts. Earth Planet. Sci. Lett., 1987,86: 225-239
    [44] Sission VB and Pavlis TL. Geologic consequences of plate reorganization;an example from the Eocene Southern Alaska fore arc. Geology, 1993, 21(10):913-916
    [45] Sun S S, Nesbitt R W. Geochemical regularities and genetic significance of ophiolitic basalts. Geology.1978, 6:689-693
    [46] Sun SS, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Saunders A D, Norry M J. eds. Magmatism in the Ocean Basins. Special Publication, Geological. Society of London, 1989,42:313-345
    [47] Thompson R N , Morrison M A, Hendry GL, et al. An assessment of the relative roles of a crust and mantle in magma genesis:an elemental approach. Phil. Trans. R. Soc. Lond, 1984,A310:549-590
    [48] Vysotsky S V. Mineralogy and petrology of ophiolites from the North Primorye; evidences of high-pressure crystallization. In: 29th international geological congress; abstracts, 1992, 29:134
    [49] White WM, Patchett J. Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth Planet. Sci. Lett. , 1984, 67:167-185
    [50] Wilson M. Igneous Petrogenesis. London: Unwin Hyman, 1989, 1-464
    [51] Wyllie P J, Ryabchikov I D. Volatile components, magmas, and critical fluids in upwelling mantle. Jour. Petrology. 2000, 41(7):1195-1206
    [52] Yuan HL, Gao S, Liu XM, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry. Geostandard and Geoanalytical Research , 2004, 2008:353-370
    [53] Zhong D,Wang Y. Paleo-Tethys tectonic evolution In western Yunnan, SW China. in: Proc. First Inter. Symp. IGCP 321. Abstract,1991, 280~285
    [54]白云山,李莉,牛志军,等.羌塘中部各拉丹冬一带鄂尔陇巴组火山岩特征及其构造环境.地球学报,2005,26(2):113-120
    [55]陈健,李建放,安勇胜等.风火山地区西金乌兰湖—金沙江蛇绿构造混杂带的物质组成及发展演化特征.西北地质, 2007,40(3) :36-41
    [56]陈练武.金沙江岛弧系甘孜—理塘反极性带火山岩组合特征.西安矿业学院学报, 1998,18(1):64-67
    [57]陈曼云,等.变质岩鉴定手册.北京:地质出版社, 2009,1-232
    [58]戴宗明,孙传敏.松潘—甘孜造山带西部碰撞结合带古生代裂解史初探.四川地质学报, 2009,29:1-7
    [59]戴宗明,孙传敏.松潘-甘孜造山带义敦岛弧中段三叠纪火山—沉积盆地的演化.地质通报, 2008,27(6):799-813
    [60]单文琅,等.构造变形分析的理论、方法和实践.武汉:中国地质大学出版社, 1991,1-150
    [61]邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳—幔成矿系统.地学前缘(中国地质大学,北京), 1999, 6(2):259-270
    [62]邓晋福,罗照华,苏尚国,等. 2004.岩石成因、构造环境与成矿作用.北京:地质出版社, 1-381
    [63]邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004: 231-236
    [64]邓晋福,莫宣学,魏启荣,等.蛇绿混杂岩—俯冲岩浆弧的成对性及火山岩石构造组合推导的“三江”地区特提斯演化模型.见:中国西部特提斯构造演化及成矿作用学术讨论会文集.成都:电子科技大学出版社,1991
    [65]邓万明,黄萱,钟大赉.滇西金沙江带北段的富碱斑岩及其与板内变形的关系.中国科学,1998,28(2):111 -117
    [66]冯庆来,葛孟春,谢德凡.滇西北金沙江带被动陆缘地层层序和构造演化.地球科学, 1999, 24(6):553-557
    [67]韩松,贾秀勤,黄忠祥,等.云南金沙江蛇绿岩的地球化学特征及其成因的初步研究.岩石矿物学杂志, 1996,15(3):203-212
    [68]郝治国,王希斌,鲍佩声等.新班西准噶尔地区两类蛇绿岩的地质特征及其成因研究.岩石矿物学杂志, 1989,8:299~310
    [69]何龙清.金沙江造山带的大地构造环境及演化模式.现代地质, 1998,12(2):185-190
    [70]侯广顺,杨贺杰.俯冲带环境下的火成岩岩石组合及其意义.科技信息, 2009,18:21-23
    [71]侯增谦,侯立纬,叶庆同,等.三江地区义敦岛弧构造—岩浆演化与火山成因块状硫化物矿床[M].北京:地质出版社,1995
    [72]侯增谦,卢记仁,李红阳,等.中国西南特提斯构造演化—幔柱构造控制.地球学报,1996, 17(4):339-451
    [73]侯增谦,莫宣学,谭劲.等.“三江”义敦岛弧带玄武岩喷发序列与裂谷—岛弧转化.地球科学,1993,49-65
    [74]侯增谦,莫宣学,朱勤文,等.“三江”古特提斯地幔热柱—洋中脊玄武岩证据.地球学报, 1996 , 17(4): 362- 374
    [75]侯增谦,莫宣学."三江"地区义敦岛弧的构造-岩浆演化特征[A].青藏高原地质文集[C],1991,21:153-163
    [76]侯增谦,莫宣学.义敦岛弧的形成演化及其对“三江”地区块状硫化物矿床的控制作用.地球科学, 1991, 16(2) :153-163
    [77]侯增谦,曲晓明,周继荣,等.三江地区义敦岛弧碰撞造山过程:花岗岩记录.地质学报, 2001:75(4):484-497
    [78]侯增谦,杨岳清,曲晓明,等.三江地区义敦岛弧造山带演化和成矿系统.地质学报, 2004,78 (1):109-120
    [79]黄汲清.特提斯—喜马拉雅构造域初步分析.地质学报, 1984, 1:1-17
    [80]贾大成,胡瑞忠,卢炎.湘东南汝城盆地火山岩的元素地球化学及源区性质讨论.现代地质, 2003,17(2):131-136
    [81]简平,刘敦一,孙晓猛.滇川西部金沙江石炭纪蛇绿岩SHRIMP测年:古特提斯洋壳演化的同位素年代学制约.地质学报, 2003,77(2):217~228.
    [82]简平,刘敦一,孙晓猛.滇西吉岔阿拉斯加型辉长岩SHRIMP测年:早二叠世俯冲事件的证据.地质学报, 2004,78(2) :166-169
    [83]简平,汪啸凤,何龙清,等.金沙江蛇绿岩中斜长岩和斜长花岗岩的U-Pb年龄及其地质意义.岩石学报, 1999, 15(2):590– 593
    [84]赖绍聪,刘池阳.2003.青藏高原安多岛弧型蛇绿岩地球化学及成因.岩石学报, 19(4):675-682
    [85]李才,黄小鹏,翟庆国,等.2006.龙木错—双湖—吉塘板块缝合带与青藏高原冈瓦纳北界,13(4):136-147
    [86]李才,翟庆国,董永胜,等.2008.冈瓦纳大陆北缘早期的洋壳信息——来自青藏高原羌塘中部早古生代蛇绿岩的证据.地质通报, 27(10):1605-1612
    [87]李康,钟大赉.滇西高黎贡断裂带糜棱岩的显微变形特征及其构造意义.岩石学报,1991, 3:65-71
    [88]李莉,白云山,马丽艳,等.羌塘东部治多县索加一带甲丕拉组火山岩特征及其构造环境.地质调查与研究, 2009,32(1):8-14
    [89]李荣社,计文化,杨永成,等.2008a.昆仑山及邻区地质.北京:地质出版社,1-400
    [90]李荣社,徐学义,计文化.2008b.对中国西部造山带地质研究若干问题的思考.地质通报, 27(12):2020-2025
    [91]李善平,马海州,陈有顺,等.青藏高原北羌塘盆地治多地区松赛弄一带火山岩的特征及构造意义.中国地质, 2009,36(1):85-92
    [92]李善平,马海州等.青藏高原北羌塘盆地治多地区松赛弄一带火山岩的特征及构造意义.中国地质, 2009,36(1):85-91
    [93]李曙光. 1993.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图.岩石学报, 9(2):146 -157.
    [94]李曙光. 1994.εNd-La/Nb、Ba/Nb、Nb/Th图对地幔不均一性研究的意义—岛弧火山岩分类及EMⅡ端元的分解.地球化学, 23(2):105-114
    [95]李兴振,徐效松,潘桂棠.泛华夏大陆群与东特提斯构造域演化.岩相古地理,1995, 15(4):1- 12
    [96]梁云海,李文铅,李卫东,等.新疆蛇绿岩就位机制.新疆地质, 1999,17(4):344-349
    [97]刘宝田,江耀明,曲景川.四川理塘—甘孜一带古洋壳的发现及其对板块构造的意义[A].青藏高原地质文集[C]. 1983 ,12:119-128
    [98]刘本培,冯庆来, Chonglakmani C,等.滇西古特提斯多岛洋的结构及其南北延伸.地学前缘, 2002, 9(3):161– 171
    [99]刘本培,冯庆来,方念乔,等.滇西南昌宁—孟连和澜沧江带古特提斯多岛洋构造演化.地球科学—中国地质大学学报, 1995,18(5):529-539
    [100]刘希军,许继峰,侯青叶,等.新疆东准噶尔克拉麦里蛇绿岩地球化学:洋脊俯冲的产物.岩石学报, 2007,23(7):1591-1602
    [101]刘银,李荣社,计文化,等.青海治多地区多彩蛇绿混杂岩带南侧当江荣二叠纪—三叠纪岩浆弧的确定.地质通报, 2010, 29(12):1840-1850
    [102]卢松年,李怀坤,于海峰.地质事件、序列和事件群.地质论评, 2001,47(5):521-526
    [103]卢松年.从罗迪尼亚到冈瓦纳超大陆—对新元古代超大陆研究几个问题的思考.地学前缘(中国地质大学,北京), 2001,8(4):442-449
    [104]马杏垣.解析构造学.北京:地质出版社,2004,1-437
    [105]莫宣学,邓晋福,董方浏,等.西南三江造山带火山岩-构造组合及其意义.高校地质学报,2001,7(2):121-137
    [106]莫宣学,邓晋福,董方浏,等.西南三江造山带火山岩-构造组合及意义.高校地质学报, 2001,7(2):121-138
    [107]莫宣学,邓晋福.西藏—“三江”地区几对蛇绿岩—弧岩浆岩带的构造意义.见:亚洲的增生.北京:地震出版社, 1993, 61-64
    [108]莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿[M].北京:地质出版社, 1993,1-267
    [109]潘桂棠,陈智樑,李兴振,等.东特提斯多弧—盆系统演化模式.岩相古地理,1996, 16(2):52 -64
    [110]潘桂棠,丁俊,王立全,等.青藏高原区域地质调查重要新进展.地质通报, 2002,21(6) :787-793
    [111]潘桂棠,徐强,侯增谦,等.西南“三江”多岛弧造山过程成矿系统与资源评价.北京:地质出版社, 2003,1-420
    [112]青海地质调查研究院,1:25万治多县幅区域地质调查报告,2006
    [113]饶荣标.论特提斯-喜马拉雅构造域刚瓦那大陆的北界.四川地质学报, 1989,9(1):18-26
    [114]任纪舜,肖黎薇.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质通报, 2004,23(1):1-11
    [115]邵济安,唐克东,等.中国东北地体与东北亚大陆边缘演化.北京:地质出版社, 1995,1-185
    [116]孙晓猛,简平.滇川西部金沙江古特提斯洋的威尔逊旋回.地质论评, 2004,50(4):343-350
    [117]孙晓猛,杨遵义,张梅生,等.滇西北金沙江古特提斯造山带地层及构造演化.长春科技大学学报, 1999,29(1):20-24
    [118]孙勇,陈亮,冯涛,等.一种古特提斯演化的动力学模型—来自中国古特提斯蛇绿岩的证据.西北大学学报(自然科学版), 2002, 32(1):1-6
    [119]汪啸风,Ian Metcalfe,简平,等.金沙江缝合带构造地层划分及时代厘定.中国科学(D辑),1999, 29(4) :289-297
    [120]汪啸风,简平,何龙清,等.金沙江缝合带元古宙残留基底的发现—来自同位素地质年龄的证据.华南地质与矿产,1999,2:53-57
    [121]王立全,潘桂棠,李定谋,等.金沙江弧-盆系时空结构及地史演化.地质学报, 1999,73(3) :206-218
    [122]王永文,王玉德,李善平,等.西金乌兰构造混杂岩带特征.西北地质, 2004,37(3):15-20
    [123]王中刚,于学元,赵振华等.稀土元素地球化学[M].北京:科学出版社,1989:190-210
    [124]吴根耀.藏东碧土地区古特提斯主洋盆中的亚速尔型洋岛玄武岩.地质通报, 2006, 25(7):772-781
    [125]吴根耀.蛇绿岩和造山带研究中的若干判据.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社, 1996,25-28
    [126]吴功建,肖序常,李廷栋.青藏高原亚东—格尔木地学断面.地质学报, 1989,4:285-295
    [127]夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩.岩石矿物学杂志, 2007,26(1):77-89
    [128]许志琴,侯立伟.中国西南部松潘—甘孜中生代碰撞型造山带的薄壳构造及前陆逆冲系.中国地质科学院院报,1990, 20:126-129
    [129]许志琴,侯立玮.松潘—甘孜造山带构造研究新进展.中国地质,1991,12:14-15
    [130]许志琴,徐惠芬,张建新,等.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.地质学报,1994,(2):1-15
    [131]许志琴,杨经绥,姜枚,等.青藏高原北部东昆仑-羌塘地区的岩石圈结构及岩石圈剪切断层.中国科学, 2001,31:1-6
    [132]许志琴,杨经绥,李海兵,等.造山的高原—青藏高原的地体拼合、碰撞造山及隆升机制.北京:地质出版社, 2007,1- 458
    [133]杨开辉,莫宣学.滇西南晚古生代火山岩与裂谷作用及区域构造演化.岩石矿物学杂志, 1993,12(4) :207- 309
    [134]杨文强,冯庆来,刘桂春,滇西北甘孜—理塘构造带放射虫地层、硅质岩地球化学及其构造古地理意义.地质学报, 2010,78-85
    [135]叶培盛,江万,吴珍汗,等.西藏泽当—罗布莎蛇绿岩的地球化学特征及其构造意义.现代地质, 2006,20(3):370-377
    [136]殷鸿福,黄定华.早古生代镇淅地块与秦岭多岛洋小洋盆的演化.地质学报, 1995, 69(3):193-203
    [137]殷鸿福,吴顺宝,杜远生,等.华南是特提斯多岛洋体系的一部分.地球科学, 1999,24(1):1-12
    [138]尹显科.甘孜—理塘断裂带北段玄武岩地球化学特征及构造意义.四川地质学报,1993, 13(3):201-207
    [139]张建新,许志琴.北祁连中段加里东俯冲—增生杂岩/火山弧带及其变形特征.地球学报,1995,(2):153-163
    [140]张旗,赵大升,李达周.云南新平县双沟蛇绿岩中地幔岩初始熔融物.岩石学报,1991,1:1-17
    [141]张旗,周国庆,王焰.中国蛇绿岩的分布、时代及其形成环境.岩石学报, 2003,19(1):1-8
    [142]张旗,周国庆.中国蛇绿岩.北京:科学出版社, 2001,1-200
    [143]张旗.蛇绿岩的分类.地质科学, 1990,25(1):54-61
    [144]张旗.蛇绿岩研究的进展.地学前缘,1994,1(1-2):98-103
    [145]张旗.蛇绿岩研究中的几个问题,岩石学报, 1995,11 (增刊):228-240
    [146]张旗.蛇绿岩与地球动力学研究.北京:地质出版社, 1996,1-230
    [147]张旗.中国蛇绿岩研究中的几个问题.地质科学, 1992,增刊:139-146
    [148]张世涛,冯庆来,王义昭.甘孜—理塘构造带泥盆系的深水沉积.地质科技情报, 2003, 19(3):17-20
    [149]张玉泉,谢应雯,涂光炽.哀牢山—金沙江富碱侵入岩及其与裂谷构造关系初步研究.岩石学报, 1987,1:17-26
    [150]张之孟,金蒙.川西南乡城—得荣地区的二种混杂岩及其构造意义.地球科学,1979,3:205 -213
    [151]赵靖,钟大赉,王毅.滇西澜沧变质带的变形序列与变质作用初步研究.地质科学,1994, 29(4):366-372
    [152]赵伦山,张本仁.地球化学[M].北京:地质出版社,1988:11-165
    [153]钟大赉,等.滇川西部古特提斯造山带.北京:科学出版社, 1998, 1-231
    [154]周国庆.蛇绿岩研究新进展及其定义和分类的再讨论.南京大学学报,2008,44(1):1-24
    [155]周国庆.蛇绿岩的概念及其演变.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,1996,15-20
    [156]朱宝清,王来生,王连晓.1987.西准噶尔西南地区古生代蛇绿岩.中国地质科学院西安地质矿产研究所所刊, (17):3~64
    [157]朱迎堂,伊海生,杨延兴,等.青海西金乌兰湖地区移山湖晚泥盆世辉绿岩墙群-西金乌兰洋初始裂解的重要证据.沉积与特提斯地质, 2004,24(3):38-41
    [158]朱云海,潘元明,张克信,等.蛇绿岩就位机制研究.地质科技情报, 2000,19(1):16- 18
    [159]邹光富,侯立玮,尹显科.甘孜—理塘蛇绿混杂岩带特征及其构造意义.四川地质学报, 1994 ,14(1):17 -24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700