用户名: 密码: 验证码:
高通量筛选和鉴定具ACC脱氨酶的细菌
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在遭受胁迫时产生乙烯。高浓度乙烯抑制植物生长。具1-氨基环丙烷-1羧酸(ACC)脱氨酶的细菌能通过降解乙烯合成前体ACC而降低植物产生乙烯的水平。在恶化的农田生态下,接种具ACC脱氨酶的细菌往往比接种具其他促植物生长特性的细菌,如固氮菌,更易产生促植物生长的效应。于是,本研究致力于从固氮菌和能在无氮培养基上生长的细菌中筛选具ACC脱氨酶的细菌并应用于农作物生产。
     分离具ACC脱氨酶细菌通用的方法是用以ACC为唯一氮源的基本培养基来筛选,但对于能在无氮培养基上生长的细菌,这种筛选方法显然不够灵敏。而对于从大量能在无氮培养基上生长的细菌中筛选具ACC脱氨酶的细菌则需要新的高通量筛选方法。本研究以乙二醇为溶剂加入抗坏血酸配制茚三酮试剂,在沸水浴上加热聚丙烯96孔烟囱型PCR板中的反应液,测定反应后液体在570 nm处的吸光值计算ACC的浓度,建立了高通量的茚三酮-ACC比色法用于测定细菌对ACC的消耗。接着,以43个从甘蔗分离的固氮菌和68个从玉米分离的能在无氮培养基上生长的菌株为材料,快速筛选到6个能消耗ACC的细菌,用2,4-二硝基苯肼比色法检测证实这6个菌株都具有ACC脱氨酶活性。因此,高通量茚三酮—ACC比色法适合高通量筛选具ACC脱氨酶活性细菌。用该法进一步从153个从甘蔗分离的能在无氮培养基上生长的菌株和268个从水稻或东南景天分离的能在以ACC为唯一氮源的基本培养基上生长的菌株中筛选出52个具ACC脱氨酶活性的细菌。
     在分子水平鉴定具ACC脱氨酶的细菌是通过用简并引物扩增ACC脱氨酶结构基因acdS或用DNA杂交检测acdS。已发表的研究往往参考少数菌株的acdS序列设计了简并引物,扩增特异性差,还不如菌落杂交有效;而菌落杂交也需要针对不同类型的acdS用相应类型的探针,探针的广谱性弱。本研究根据ACC脱氨酶的蛋白结构、氨基酸保守性分析及其与同源蛋白D-半胱氨酸脱巯基酶在结构上的区别,用CODEHOP法则设计了广谱特异的acdS简并引物:CodehopACCf1、CodehopACCf2、CodehopACCf3和CodehopACCr,并成功扩增得到所有58株具ACC脱氨酶细菌的acdS基因片段,实现了在分子水平高通量鉴定具ACC脱氨酶的细菌。在这58株细菌的acdS基因片段中,有一些归于新的acdS类群。而且,通过构建所有已知具有ACC脱氨酶活性细菌的acdS和相应16S rDNA的系统进化树揭示了acdS存在广泛的基因水平转移现象。
     本研究还对从玉米和水稻分离筛选的43株具ACC脱氨酶细菌的多种促植物生长特性包括分泌IAA、固氮、溶磷、分泌嗜铁素和拮抗病原真菌做了分析,发现这些细菌还具有一种以上其他促植物生长的特性,显示出促植物生长的应用潜能。其中16株伯克氏菌不仅能解磷和分泌嗜铁素,而且具有广谱的拮抗病原真菌的能力,但这些伯克氏菌在亲缘关系上与包含机会致病菌的洋葱伯克氏菌群接近。虽没有从这些伯克氏菌中检测到BCESM致病因子,但多数菌株对洋葱有害。基因水平转移acdS有可能使病原菌具有了ACC脱氨酶。因此,在应用具ACC脱氨酶活性细菌促植物生长时,要严格检测菌株可能存在的致病性。
When plants are exposed to stressful conditions, they often respond by producing ethylene. High level of ethylene inhibits plant growth. Plant growth-promoting bacteria that contain the enzyme 1-aminocyclopropane-l-carboxylate (ACC) deaminase can catalyze the cleavage of ACC, the immediate precursor of ethylene in plants, and thus lower the ethylene levels. Under current deteriorated field ecosystems in China, inoculation of bacteria containing ACC-deaminase often leads to a better plant growth than inoculation of some other plant growth-promoting bacteria, such as nitrogen-fixing bacteria. Hence, this study is focused on screening the bacteria containing ACC-deaminase from bacteria that are able to fix N2 or grow on nitrogen-free media and use them to promote crop production.
     Selective minimal media supplying ACC as the sole nitrogen source are widely used to isolate bacteria containing ACC-deaminase. However, this isolation method is not sensitive for bacteria that are able to grow on nitrogen-free media. And a high-throughput method is required to screen bacteria containing ACC deamianse from a large number of bacterial isolates that are able to grow on nitrogen-free media. This study developed a high-throughput colorimetric method based on ninhydrin reaction with ACC to measure bacterial consumption of ACC. In this method, ethylene glycol was used as the solvent to stabilize the ninhydrin regent and color development, ascorbic acid was used as the reducing regent to prevent the oxidation of the hydrindantin, and polypropylene chimney-top 96-well PCR plates were heated on boiling water bath, ACC concentration was determined by measurement of the absorbance at 570nm. By using this method six bacterial isolates consuming ACC were rapidly screened out from 43 nitrogen-fixing bacteria isolated from sugarcane and 68 bacterial isolates that were able to grow on nitrogen-free media and were isolated from maize. And the six isolates were demonstrated to possess ACC deaminase activity by using the colorimetric 2,4-dinitrophenyl-hydrazine assay. Therefore, the 96-well plate ninhydrin-ACC assay enables a high-throughput screening of bacteria containing ACC deaminase from large numbers of isolates. Furthermore, other 52 isolates containing ACC deaminase were screened out from 153 isolates that were able to grow on nitrogen-free medium and were isolated from sugarcane, and 268 isolates that were able to grow on minimal media containing ACC as the sole nitrogen source and were isolated from rice or Sedum alfredii.
     Molecular identification of bacteria containing ACC deaminase usually uses PCR amplification or DNA hybridization of the ACC deaminase structural gene (acdS). Previous studies designed degenerative primers based on a few available sequences. PCR amplification based on these primers was not as efficient as hybridization to detect acdS and yielded nonspecific amplicons whereas hybridization of different groups of acdS required different probes. This study designed broad-spectrum specific degenerative primers of CodehopACCf1、CodehopACCf2、CodehopACCf3 and CodehopACCr to amplify acdS based on the protein structures of ACC deaminases, differentiation of the conserved amino acids between ACC deaminase and D-cysteine desulfhydrase, and the CODEHOP strategy. PCR amplification based on the CODEHOP primers successfully amplified acdS from all the 58 bacterial isolates containing ACC deaminase and thus accomplished a high-throughput molecular method to identify bacteria containing ACC deaminase. Phylogenetic analysis of acdS showed that some acdS sequences obtained in this study were grouped into new acdS groups. And phylogenetic analysis of acdS and corresponding bacterial 16S rDNA revealed a broad horizontal gene transfer of acdS.
     This study further determined other plant growth-promoting traits including IAA secretion, nitrogen fixation, phosphate solubilization, siderophore secretion, and pathogen antagonism for 43 isolates isolated from maize and rice. They all showed more than one of these traits. Among them,16 isolates belonged to the genus Burkholderia were able to solubilize phosphate, secrete siderophore, and antagonize broad pathogenic fungi. Although no Burkholderia cepacia epidemic strain marker was detected from these isolates, they were close related to opportunistic pathogens Burkholderia cepacia complex and most of them were pathogenic to onion bulb. Pathogens may obtain ACC deaminase via horizontal transfer of acdS. Therefore, application of potential plant growth-promoting bacteria containing ACC deaminase requires strict pathogenic test.
引文
1. Adams DO, Yang SF. (1979) Ethylene biosynthesis:Identification of 1-aminocyclopropane-l-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences of the United States of America 76:170-174.
    2. Alexander FW, Sandmeier E, Mehta PK, Christen P. (1994) Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes Regio-specific α,β and γ families. European Journal of Biochemistry 219:953-960.
    3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990) Basic local alignment search tool. Journal of Molecular Biology 215:403-410.
    4. Babalola OO, Osir EO, Sanni AI, Odhiambo GD, Bulimo WD. (2003) Amplification of 1-amino-cyclopropane-l-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. African Journal of Biotechnology 2:157-160.
    5. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV. (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-l-carboxylate deaminase. Canadian Journal of Microbiology 47:642-652.
    6. Belimov AA,a, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR. (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry 37:241-250.
    7. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ. (2009) Rhizosphere bacteria containing 1-aminocyclopropane-l-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytologist 181:413-423.
    8. Blaha D, Prigent-Combaret C, Mirza MS, Moenne-Loccoz Y. (2006) Phylogeny of the 1-aminocyclopropane-l-carboxylic acid deaminase-encoding gene acdS in phytobeneccial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiology Ecology 56:455-470.
    9. Burd GI, Dixon DG, Glick BR. (1998) A Plant Growth-Promoting Bacterium That Decreases Nickel Toxicity in Seedlings. Applied and Environmental Microbiology 64:3663-3668.
    10. Burd GI, Dixon DG, Glick BR. (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology 46:237-245.
    11. Burg SP, Burg EA. (1966) The interaction between auxin and ethylene and its role in plant growth. Proceedings of the National Academy of Sciences of the United States of America 55: 262-269.
    12. Burroughs LF. (1957) 1-Aminocyclopropane-1-Carboxylic Acid:A New Amino-Acid in Perry Pears and Cider Apples. Nature 179:360-361.
    13. Caballero-Mellado J, Onofre-Lemus J, Santos PE, Martinez-Aguilar L. (2007) The Tomato Rhizosphere, an Environment Rich in Nitrogen-Fixing Burkholderia Species with Capabilities of Interest for Agriculture and Bioremediation. Applied and Environmental Microbiology 73:5308-5319.
    14. Campbell BG, Thomson JA. (1996) 1-Aminocyclopropane-1-carboxylate deaminase genes from Pseudomonas strains. FEMS Microbiology Letters 138:207-210.
    15. Cheng Z, Park E, Glick BR. (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Canadian Journal of Microbiology 53:912-918.
    16. Ciardi JA, Tieman DM, Lund ST, Jones JB, Stall RE, Klee HJ. (2000) Response to Xanthomonas campestris pv. vesicatoria in Tomato Involves Regulation of Ethylene Receptor Gene Expression. Plant Physiology 123:81-92.
    17. Clamp M, Cuff J, Searle SM, Barton GJ. (2004) The Jalview Java alignment editor. Bioinformatics 20:426-427.
    18. Conforte VP, Echeverria M, Sanchez C, Ugalde RA, Menendez AB, Lepek VC. (2010) Engineered ACC deaminase-expressing free-living cells of Mesorhizobium loti show increased nodulation efficiency and competitiveness on Lotus spp. Journal of General and Applied Microbiology 56:331-338.
    19. Contesto C, Desbrosses G, Lefoulon C, Bena G, Borel F, Galland M, Garnet L, Varoquaux F, Touraine B. (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Science 175:178-189.
    20. Devereux J, Haeberli P, Smithies O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387-395.
    21. Edgar RC. (2004) MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32:1792-1797.
    22. Else MA, Jackson MB. (1998) Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopers icon esculentum) in relation to foliar ethylene production and petiole epinasty. Functional Plant Biology 25:453-458.
    23. Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR. (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant and Soil 288:309-318.
    24. Felsenstein J. (1985) Confidence limits on phylogenies:an approach using the bootstrap. Evolution 39:783-791.
    25. Friedman M. (2004) Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences. Journal of Agricultural and Food Chemistry 52:385-406.
    26. Fujino A, Ose T, Yao M, Tokiwano T, Honma M, Watanabe N, Tanaka I. (2004) Structural and Enzymatic Properties of 1-Aminocyclopropane-1-carboxylate Deaminase Homologue from Pyrococcus horikoshii. Journal of Molecular Biology 341:999-1013.
    27. Gandhi PM, Narayanan KB, Naik PR, Sakthivel N. (2009) Characterization of Chryseobacterium aquaticum Strain PUPC1 Producing a Novel Antifungal Protease from Rice Rhizosphere Soil. Journal of Microbiology and Biotechnology 19:99-107.
    28. Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR. (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiology and Biochemistry 41:277-281.
    29. Glick BR. (1995) The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiol 41:109-117.
    30. Glick BR, Karaturovic DM, Newell PC. (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Canadian Journal of Microbiology 41:533-536.
    31. Glick BR, Bashan Y. (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances 15:353-378.
    32. Glick BR, Liu C, Ghosh S, Dumbroff EB. (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biology and Biochemistry 29:1233-1239.
    33. Glick BR, Penrose DM, Li J. (1998) A Model For the Lowering of Plant Ethylene Concentrations by Plant Growth-promoting Bacteria. Journal of Theoretical Biology 190: 63-68.
    34. Glick BR, Cheng Z, Czarny J, Duan J. (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology 119:329-339.
    35. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. (2007b) Promotion of Plant Growth by Bacterial ACC Deaminase. Critical Reviews in Plant Sciences 26:227-242.
    36. Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K. (2008) Isolation and Characterization of ACC Deaminase Gene from Two Plant Growth-Promoting Rhizobacteria. Current Microbiology 57:312-317.
    37. Grichko VP, Filby B, Glick BR. (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. Journal of Biotechnology 81:45-53.
    38. Grichko VP, Glick BR. (2001a) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry 39:11-17.
    39. Grichko VP, Glick BR. (2001b) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiology and Biochemistry 39:19-25.
    40. Grichko VP, Glick BR, Grishko VI, Pauls KP. (2005) Evaluation of Tomato Plants with Constitutive, Root-Specific, and Stress-Induced ACC Deaminase Gene Expression. Russian Journal of Plant Physiology 52:359-364.
    41. Guindon S, Gascuel O. (2003) A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic biology 52:696-704.
    42. Hao Y, Charles TC, Glick BR. (2010) ACC deaminase increases the Agrobacterium tumefaciens-mediated transformation frequency of commercial canola cultivars. FEMS Microbiology Letters 307:185-190.
    43. Honma M, Shimomura T. (1978) Metabolism of 1-aminocyclopropane-l-carboxylic acid. Agricultural and Biological Chemistry 43:1825-1831.
    44. Honma M. (1985) Chemically reactive sulfhydryl groups of 1-aminocyclopropane-l-carboxylate deaminase. Agricultural and Biological Chemistry 49: 567-571.
    45. Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM. (2004) Expression and characterization of 1-aminocyclopropane-l-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4:a key enzyme in bacterial plant growth promotion. Biochimica et Biophysica Acta-Proteins & Proteomics 1703:11-19.
    46. Hontzeas N, Richardson AO, Belimov A, Safronova V, Abu-Omar MM, Glick BR. (2005) Evidence for Horizontal Transfer of 1-Aminocyclopropane-1-Carboxylate Deaminase Genes. Applied and Environmental Microbiology 71:7556-7558.
    47. Imase M, Watanabe K, Aoyagi H, Tanaka H. (2008) Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model. FEMS Microbiology Ecology 63:273-282.
    48. Indiragandhi P, Anandham R, Kim K, Yim W, Madhaiyan M, Sa T. (2008) Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase. World Journal of Microbiology and Biotechnology 24:1037-1045.
    49. Iyamu EW, Asakura T, Woods GM. (2008) A colorimetric microplate assay method for high-throughput analysis of arginase activity in vitro. Analytical Biochemistry 383:332-334.
    50. Jia YJ, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M. (1999) Synthesis and Degradation of 1-Aminocyclopropane-1-carboxylic Acid by Penicillium citrinum. Bioscience, Biotechnology, and Biochemistry 63:542-549.
    51. Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M. (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. Journal of Plant Physiology 166:667-674.
    52. John RA. (1995) Pyridoxal phosphate-dependent enzymes. Biochimica et Biophysica Acta 1248:81-96.
    53. Jonathan M, McDonnell L, Regan S. (2009) Plant encoded 1-aminocyclopropane-l-carboxylic acid deaminase activity implicated in different aspects of plant development. Plant Signaling & Behavior 4:1186-1189.
    54. Karthikeyan S, Zhou Q, Zhao Z, Kao CL, Tao Z, Robinson H, Liu H, Zhang H. (2004a) Structural Analysis of Pseudomonas 1-Aminocyclopropane-1-carboxylate Deaminase Complexes:Insight into the Mechanism of a Unique Pyridoxal-5'-phosphate Dependent Cyclopropane Ring-Opening Reaction. Biochemistry 43:13328-13339.
    55. Karthikeyan S, Zhao Z, Kao C, Zhou Q, Tao Z, Zhang H, Liu H. (2004b) Structural Analysis of 1-Aminocyclopropane-1-Carboxylate Deaminase:Observation of an Aminyl Intermediate and Identification of Tyr294 as the Active-Site Nucleophile. Angewandte Chemie 116: 3507-3511.
    56. Kausar R, Shahzad SM. (2006) Effect of ACC-deaminase Containing Rhizobacteria on Growth Promotion of Maize under Salinity Stress. Journal of Agriculture and Social Sciences 2:1813-2235.
    57. Kende H. (1993) Ethylene Biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 44:283-307.
    58. Kende H, Zeevaart JAD. (1997) The Five "Classical" Plant Hormones. Plant Cell 9: 1197-1210.
    59. Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM. (1991) Control of Ethylene Synthesis by Expression of a Bacterial Enzyme in Transgenic Tomato Plants. Plant Cell 3: 1187-1193.
    60. Lamothe PJ, McCormick PG. (1972) Influence of Acidity on the Reaction of Ninhydrin with Amino Acids. Analytical Chemistry 44:821-825.
    61. Li J, Ovakim DH, Charles TC, Glick BR. (2000) An ACC Deaminase Minus Mutant of Enterobacter cloacae UW4 No Longer Promotes Root Elongation. Current Microbiology 41: 101-105.
    62. Lund ST, Stall RE, Klee HJ. (1998) Ethylene Regulates the Susceptible Response to Pathogen Infection in Tomato. Plant Cell 10:371-382.
    63. Ma JH, Yao JL, Cohen D, Morris B. (1998) Ethylene inhibitors enhance in vitro root formation from apple shoot cultures. Plant Cell Reports 17:211-214.
    64. Ma W, Guinel FC, Glick BR. (2003) Rhizobium leguminosarum Biovar viciae 1-Aminocyclopropane-1-Carboxylate Deaminase Promotes Nodulation of Pea Plants. Applied and Environmental Microbiology 69:4396-4402.
    65. Ma W, Charles TC, Glick BR. (2004) Expression of an Exogenous 1-Aminocyclopropane-1-Carboxylate Deaminase Gene in Sinorhizobium meliloti Increases Its Ability To Nodulate Alfalfa. Applied and Environmental Microbiology 70:5891-5897.
    66. Madhaiyan M, Poonguzhali S, Ryu J, Sa T. (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268-278.
    67. Mahenthiralingam E, Simpson DA, Speert DP. (1997) Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. Journal of Clinical Microbiology 35:808-816.
    68. Mayak S, Tirosh T, Glick BR. (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry 42:565-572.
    69. McDonnell L, Plett JM, Andersson-Gunneras S, Kozela C, Dugardeyn J, Straeten DVD, Glick BR, Sundberg B, Regan S. (2009) Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. Physiologia Plantarum 136:94-109.
    70. Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M. (1998) Properties, Sequence, and Synthesis in Escherichia coli of 1-Aminocyclopropane-1-Carboxylate Deaminase from Hansenula saturnus. Journal of Biochemistry 123:1112-1118.
    71. Morgan PW, Gausman HW. (1966) Effects of Ethylene on Auxin Transport. Plant physiology 41:45-52.
    72. Nadeem SM, Zahir ZA, Muhammad N, Asghar HN, Muhammad A. (2010) Rhizobacteria Capable of Producing ACC-deaminase May Mitigate Salt Stress in Wheat. Soil Science Society of America journal 74:533-542.
    73. Nagasawa T, Ishii T, Kumagai H, Yamada H. (1985) D-Cysteine desulfhydrase of Escherichia coli purification and characterization. European Journal of Biochemistry 153: 541-551.
    74. Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR. (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiology and Biochemistry 40:355-361.
    75. Nonaka S, Sugaware M, Minamisawa K, Yuhashi KI, Ezura H. (2008a) 1-Aminocyclopropane-l-Carboxylate Deaminase Enhances Agrobacterium tumefaciens-Mediated Gene Transfer into Plant Cells. Applied and Environmental Microbiology 74:2526-2528.
    76. Nonaka S, Yuhashi KI, Takada K, Sugaware M, Minamisawa K, Ezura H. (2008b) Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens. New Phytologist 178:647-656.
    77. Nukui N, Minamisawa K, Ayabe SI, Aoki T. (2006) Expression of the 1-Aminocyclopropane-1-Carboxylic Acid Deaminase Gene Requires Symbiotic Nitrogen-Fixing Regulator Gene nifA2 in Mesorhizobium loti MAFF303099. Applied and Environmental Microbiology 72:4964-4969.
    78. Olivares FL, James EK, Baldani JI, Dobereiner J. (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytologist 135:723-737.
    79. Onofre-Lemus L, Hernandez-Lucas I, Girard L, Caballero-Mellado J. (2009) ACC (1-Aminocyclopropane-l-Carboxylate) Deaminase Activity, a Widespread Trait in Burkholderia Species, and Its Growth-Promoting Effect on Tomato Plants. Applied and Environmental Microbiology 75:6581-6590.
    80. Ose T, Fujino A, Yao M, Watanabe N, Honma M, Tanaka I. (2003) Reaction Intermediate Structures of 1-Aminocyclopropane-1-carboxylate Deaminase. Journal of Biological Chemistry 278:41069-41076.
    81. Page RDM. (1996). TreeView:An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12:357-358.
    82. Parke JL, Gurian-Sherman D. (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annual Review of Phytopathology 39:225-258.
    83. Penrose DM, Moffatt BA, Glick BR. (2001) Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Canadian Journal of Microbiology 47:77-80.
    84. Penrose DM, Glick BR. (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Canadian Journal of Microbiology 47:368-372.
    85. Penrose DM, Glick BR. (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum 118: 10-15.
    86. Posada D, Crandall KA. (1998). Modeltest:testing the model of DNA substitution. Bioinformat 14:817-818.
    87. Posada D. (2008) jModelTest:Phylogenetic Model Averaging. Molecular Biology and Evolution 25:1253-1256.
    88. Pikovskaya RI. (1948) Mobilization of phosphorous in soil in connection with vital activity of some microbial species. Microbiologia 17:362-370.
    89. Prayitno J, Rolfe BG, Mathesius U. (2006) The Ethylene-Insensitive sickle Mutant of Medicago truncatula Shows Altered Auxin Transport Regulation during Nodulation. Plant Physiology 142:168-180.
    90. Reed AJ, Magin KM, Anderson JS, Austin GD, Rangwala T, Linde DC, Love JN, Rogers SG, Fuchs RL. (1995) Delayed Ripening Tomato Plants Expressing the Enzyme 1-Aminocyclopropane- 1-carboxylic Acid Deaminase. 1. Molecular Characterization, Enzyme Expression, and Fruit Ripening Traits. Journal of Agricultural and Food Chemistry 43:1954-1962.
    91. Reed MLE, Glick BR. (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Canadian Journal of Microbiology 51:1061-1069.
    92. Robison MM, Shah S, Tamot B, Pauls KP, Moffatt BA, Glick BR. (2001) Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Molecular Plant Pathology 2:135-145.
    93. Rodriguez H, Vessely S, Shah S, Glick BR. (2008) Effect of a Nickel-Tolerant ACC Deaminase-Producing Pseudomonas Strain on Growth of Nontransformed and Transgenic Canola Plants. Current Microbiology 57:170-174.
    94. Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucleic Acids Research 26:1628-1635.
    95. Rose TM, Henikoff JG, Henikoff S. (2003) CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Research 31:3763-3766.
    96. Rothballer M, Eckert B, Schmid M, Fekete A, Schloter M, Lehner A, Pollmann S, Hartmann A. (2008) Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiology Ecology 66:85-95.
    97. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billaultk A, Brottier P, Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Theebault P, Whalen M, Wincker P, Levy M, Weissenbach J, Boucher CA. (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497-502.
    98. Sambrook J, Russell DW. (2001) Appendix 2, Media. In Molecular Cloning:A Laboratory Manual,3rd edn. pp. A2.3. New York:Cold Spring Harbor Laboratory Press.
    99. Sarwar M, Kremer RJ. (1995) Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology 20:282-285.
    100. Schwyn B, Neilands JB. (1987) Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160:47-56.
    101.Sergeeva E, Shah S, Glick BR. (2006) Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-l-carboxylate (ACC) deaminase gene on high concentrations of salt. World Journal of Microbiology and Biotechnology 22: 277-282.
    102. Shah S, Li J, Moffatt BA, Glick BR. (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Canadian Journal of Microbiology 44:833-843.
    103. Shaharoona B, Arshad M, Zahir ZA, Khalid A. (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biology and Biochemistry 38:2971-2975.
    104. Sheehy RE, Honma M, Yamada M, Sasaki T, Martineau B, Hiatt WR. (1991) Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-l-carboxylate deaminase. Journal of Bacteriology 173: 5260-5265.
    105. Shimodaira H, Hasegawa M. (1999) Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Molecular Biology and Evolution 16:1114-1116.
    106. Starcher B. (2001) A Ninhydrin-Based Assay to Quantitate the Total Protein Content of Tissue Samples. Analytical Biochemistry 292:125-129.
    107. Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnology Advances 21:193-210.
    108. Stearns JC, Shah S, Greenberg BM, Dixon DG, Glick BR. (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiology and Biochemistry 43:701-708.
    109. Stiens M, Schneiker S, Keller M, Kuhn S, Piihler A, Schluter A. (2006) Sequence Analysis of the 144-Kilobase Accessory Plasmid pSmeSMlla, Isolated from a Dominant Sinorhizobium meliloti Strain Identified during a Long-Term Field Release Experiment. Applied and Environmental Microbiology 72:3662-3672.
    110. Suttle JC. (1988) Effect of Ethylene Treatment on Polar IAA Transport, Net IAA Uptake and Specific Binding of N-1-Naphthylphthalamic Acid in Tissues and Microsomes Isolated from Etiolated Pea Epicotyls. Plant Physiology 88:795-799.
    111. Swofford DL. (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
    112. Tittabutr P, Awaya JD, Li QX, Borthakur D. (2008) The cloned 1-aminocyclopropane-l-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Systematic and Applied Microbiology 31:141-150.
    113. Todorovic B, Glick BR. (2008) The interconversion of ACC deaminase and D-cysteine desulfhydrase by directed mutagenesis. Planta 229:193-205.
    114. Trott S, Bauer R, Knackmuss HJ, Stolz A. (2001) Genetic and biochemical characterization of an enantioselective amidase from Agrobacterium tumefaciens strain d3. Microbiology 147: 1815-1824.
    115. Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI. (2007a) Bacteria associated with orchid roots and microbial production of auxin. Microbiological Research 162:69-76.
    116. Tsavkelova EA, Cherdyntseva TA, Klimova SY, Shestakov AI, Botina SG, Netrusov AI. (2007b) Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Archives of Microbiology 188:655-664.
    117. Vial L, Chapalain A, Groleau MC, Deziel E. (2011) The various lifestyles of the Burkholderia cepacia complex species:a tribute to adaptation. Environmental Microbiology 13:1-12.
    118. Viterbo A, Landau U, Kim S, Chernin L, Chet I. (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agentTrichoderma asperellum T203. FEMS Microbiology Letters 305:42-48.
    119. Walsh C, Pascal Jr RA., Johnston M, Raines R, Dikshit D, Krantz A, Honma M. (1981) Mechanistic Studies on the Pyridoxal Phosphate Enzyme 1-Aminocyclopropane-1-carboxylate Deaminase from Pseudomonas sp. Biochemistry 20: 7509-7519.
    120. Yamaoka K, Nakagawa T, Uno T. (1978). Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. Journal of Pharmacokinetics and Pharmacodynamics 6:165-175.
    121. Yang SF, Hoffman NE. (1984) Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology 35:155-189.
    122. Yao M, Ose T, Sugimoto H, Horiuchi A, Nakagawa A, Wakatsuki S, Yokoii D, Murakamii T, Honmai M, Tanaka I. (2000) Crystal Structure of 1-Aminocyclopropane-l-carboxylate Deaminase from Hansenula saturnus. Journal of Biological Chemistry 275:34557-34565.
    123. Yokoyama S, Hiramatsu JI. (2003) A Modified Ninhydrin Reagent Using Ascorbic Acid Instead of Potassium Cyanide. Journal of Bioscience and Bioengineering 95: 204-205.
    124. Yue H, Mo W, Li C, Zheng Y, Li H. (2007) The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant and Soil 297:139-145.
    125. Zehr JP, McReynolds LA. (1989) Use of Degenerate Oligonucleotides for Amplification of the nifH Gene from the Marine Cyanobacterium Trichodesmium thiebautii. Applied and Environmental Microbiology 55:2522-2526.
    126.付博,王卫卫,唐明,陈兴都.(2009)一株产1-氨基环丙烷-1羧酸脱氨酶的氢氧化细菌的分离鉴定及酶活力测定.微生物学报49:395-399.
    127.吉云秀.(2007)含ACC脱氨酶PGPR分离及提高植物抗逆性.博士学位论文,大连海事大学,大连.
    128.刘琛,赵宇华,傅庆林,杨丽,贾小明.(2008)ACC脱氨酶活性菌株的筛选、鉴定及其对茄子耐盐性的影响.浙江大学学报(农业与生命科学版)34:143-148.
    129.罗远婵,谢关林.(2005)洋葱伯克氏细菌是我们的敌人还是朋友.微生物学报45:647-652.
    130.唐薇.(1988)用茚三酮测定真丝受损程度方法的改进.纺织学报3:130-132.
    131.王昂,王丽丽,仪宏,赵紫华.(2005)茚三酮比色法测定谷氨酸含量的研究.中国调味品8:50-53.
    132.王海滨,王平,陈永华.(2009)ACC脱氨酶的作用机理和转基因的应用.生物技术通报 4:40-43.
    133.许煜泉,石荣,林志新.(1999)具有ACC脱氨酶活性及抗枯萎病菌的假单胞菌株B8.上海交通大学学报33:206-209.
    134.张立新,谢关林,楼妙苗.(2006a)洋葱伯克氏菌作为植物病害生防菌的研究进展及其风险评价.中国生物防治22:260-264.
    135.张立新,谢关林,罗远婵.(2006b)洋葱伯克氏菌在农业上应用的利弊探讨.中国农业科学39:1166-1172.
    136.张立新,苏婷,谢关林.(2009)洋葱伯克氏菌群不同基因型菌株对几种重要植物病原真菌的抑制作用及其潜在致病性.中国生物防治25:25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700