用户名: 密码: 验证码:
太阳能潜—显热储热复相陶瓷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能具有资源丰富、取之不尽、用之不竭、不会污染环境和破坏生态平衡等优点。太阳能热发电是最可能引起能源革命、实现大功率发电、替代常规能源的最经济手段之一。但是太阳能具有间歇性和不稳定性的特点,必须使用蓄热材料来提高太阳能的利用率及降低使用成本。而显热储热材料存在储热密度和储热效率低等不足之处,单一的相变材料在使用时会发生固态-液态间的相互转化,必须使用专门的容器加以封装,这不但会增加传热介质与相变材料之间的热阻,提高热损耗降低传热效率,而且易发生过冷、相分离、老化和容器腐蚀等问题,特别是高温相变材料,热损耗和容器腐蚀问题极其严重,大大增加了固-液相变材料的使用成本。
     基于单一的显热或潜热储热材料的不足,本文研究制备了太阳能潜热-显热复合储热陶瓷材料,研究了不同的配方组成和烧成温度对Al2O3-ZrO2(AZ系)和Al2O3-SiC-ZrO2(ASZ系)两个系列复合陶瓷材料的结构、性能的影响,研究了相变材料的性能,研究了封装剂的配方组成、成型方式、烧成制度及其与基体材料的结合机理,设计了相变材料在蜂窝陶瓷基体中不同的填充方式和填充量,计算了材料相应的潜-显热储热密度。
     以α-Al203、部分稳定氧化锆(PSZ)(Y2O35.2%)、红柱石、高岭土、堇青石、桂广滑石为主要原料,设计了AZ系列配方组成,干法球磨、半干压成型,采用无压烧结法制备AZ系复合陶瓷材料。利用XRD、SEM等测试手段对AZ系配方样品进行了性能和微观结构测试。结果表明,微米级部分稳定氧化锆的加入会显著提高样品的机械强度,堇青石的加入会显著提高样品的抗热震性能,加入20wt%的微米级氧化锆比加入10wt%的微米级氧化锆更有利于提高样品的机械强度,加入20wt%的堇青石比加入10wt%的堇青石更有利于提高样品的抗热震性能。当微米氧化锆和堇青石添加量各为10wt%时,在1340℃烧成温度下保温2h可制备出性能优良的AZ系蓄热陶瓷基体材料(B4配方),这种材料的气孔率为31.48%、吸水率为12.59%、体积密度为2.50g·cm-3、抗折强度为60.83MPa、热震(室温~800℃,气冷)30次不开裂,且热震后抗折强度为68.83MPa(强度增长率为13.15%),样品的热膨胀系数为5.26×10-6℃-1,且在600℃时,比热容为0.28kJ·(kg·K)-1、导温系数为0.01cm2·s-1、导热系数为0.45W·(m·K)-1蓄热密度为240.42kJ·kg-1。相组成分析表明样品主晶相为刚玉、四方氧化锆、红柱石、莫来石、堇青石。SEM研究结果表明,B4配方样品热震前后均较致密,少量连通气孔,气孔尺寸为零点几μm~50μm,晶粒之间生长发育良好,晶粒尺寸为10μm~80μm,被少量玻璃相包裹紧密连接,球状的氧化锆晶体与氧化铝晶体呈晶间型紧密连接,赋予了样品较高的强度和抗热震性。可作为太阳能热发电用蓄热材料的基体材料。
     以α-Al2O3、PSZ(Y2O35.2%)、碳化硅、红柱石、堇青石、桂广滑石为主要原料,设计了ASZ系列配方组成,干法球磨、半干压成型,采用无压烧结法制备ASZ系复合陶瓷材料。利用XRD、SEM等测试手段对ASZ系配方样品进行了性能和微观结构测试。结果表明,随着碳化硅含量的增加,样品的机械强度逐渐增加,抗热震性能也有所改善;当碳化硅添加量为50wt%时,在1280℃烧成温度下保温2h可制备出性能优良的ASZ系蓄热陶瓷基体材料(C5配方),这种材料的气孔率为24.88%、吸水率为10.44%、体积密度为2.38g·cm-3、抗折强度为66.20MPa、热震(室温~800℃,气冷)30次不开裂,且热震后抗折强度为76.99MPa(强度增长率为27.89%),样品的热膨胀系数为5.85×10-6℃-1,且在600℃时,比热容为1.05kJ·(kg·K)-1、导温系数为0.01cm2·s-1、导热系数为2.26W·(m·K)-1、蓄热密度为916.91kJ·kg-1。相组成分析表明样品主晶相为刚玉、碳化硅、硅酸锆、莫来石、堇青石。SEM研究结果表明,C5配方样品热震前后均较致密,少量连通气孔,气孔尺寸为零点几μm~50μm,晶粒之间生长发育良好,晶粒尺寸为10μm~80μm,被少量玻璃相包裹紧密连接,球状的氧化锆晶体与氧化铝晶体呈晶间型紧密连接,赋予了样品较高的强度和抗热震性。满足太阳能热发电用蓄热材料的基体材料要求。
     以C5配方为主要原料,加入不同量的高温粘结剂A,设计了封装剂配方组成,采用塑压成型和两段式烧成技术制备样品。利用测试样品抗热震性和SEM显微结构研究分析了封装剂与基体材料的结合性。结果表明:加入30wt%高温粘结剂A的封装剂与基体材料结合性良好,其它5组配方样品均出现不同程度的开裂或分层现象。计算了相变材料在蜂窝陶瓷中填充在不同位置和不同含量后的材料的储热密度,结果表明,随着相变材料封装量的增加,潜热-显热复合陶瓷的储热密度增加;随着温度的升高,储热密度也随着提高。当相变材料填充了蜂窝陶瓷的2/3孔洞及每个孔洞填充2/3容积时,温度为600℃时,最佳配方C5样品的储热密度为1132.16kJ·kg-1,温度升至1000℃时,最佳配方C5样品的储热密度为1590.80 kJ·kg-1。研究结果表明,ASZ陶瓷封装PCM的潜热-显热复相陶瓷储热密度显著高于单一的显热或潜热储热密度,是一种优良的太阳能高温储热材料。
Solar energy has a rich, inexhaustible, and will not pollute the environment and damage the ecological balance and so on. Solar thermal power generation is one of the most economic ways which is the most likely to cause an energy revolution, to achieve high power generation, alternative to conventional energy sources. However, solar energy has intermittent and instability characteristics, so the heat storage material must be used to improve the utilization of solar energy to reduce the cost. The heat storage material has low heat storage density and thermal storage efficiency and so on, a single phase change materials will occur in the use of solid-liquid inter-conversion, must be packaged by a special container, which will not only increase the transfer thermal medium and the thermal resistance between the phase change material, improve heat transfer efficiency and reduce heat loss, but also can prone to cold, phase separation, aging, and container corrosion problems, particularly the high temperature phase change materials, heat loss and the container corrosion problems is extremely seriously, and increasing the use cost of the solid-liquid phase change materials.
     Based on the defeat of single sensible heat or latent heat storage materials, solar latent-heat storage composite ceramics were prepared in this paper, the effect of structure, properties by the different formulations and firing temperature of Al2O3-ZrO2 (AZ series) and Al2O3-SiC-ZrO2 (ASZ series) two series of composite ceramic material, the performance of phase change material, the formulations, molding methods, firing system and the combination of mechanism of packing agent were studied, the phase change material in the honeycomb ceramic in different fill ways and quantities were designed and the latent-heat storage density of materials were calculated.
     Using theα-Al2O3, partially stabilized zirconia(PSZ)(Y2O3 5.2%), andalusite, kaolin, cordierite, talc as the main raw material, AZ series formula composition were designed, dry milling, semi-dry press molding, and the composite ceramic materials of AZ series were prepared by pressureless sintering method. The performance and microstructure of the samples were tested by XRD, SEM and other means. The results show that the mechanical strength of the samples were significantly improved by the addition of micro-level partially stabilized zirconia, the thermal shock resistance of the samples were significantly improved by the addition of cordierite, the mechanical strength of the samples were improved by adding 20wt% than 10wt% of the micro-level zirconia, the thermal shock resistance of the samples were improved by adding 20wt% than 10wt% of cordierite. When the addition of micron zirconia and cordierite is 10wt%, the thermal storage ceramic matrix material of AZ series (B4 formula) were prepared by fired at 1340℃for 2h, the porosity was 31.48%, the water absorption was 12.59%, the bulk density was 2.50g·cm-3, the bending strength was 60.83MPa, the sample wasn't cracked by thermal shock resistance (room temperature-800℃, air-cooled) after 30 times, and flexural strength after thermal shock was 68.83 MPa (the growth rate of strength was 13.15%), the thermal expansion coefficient of the sample was 5.26×10-6℃-1, and the heat capacity was 0.28kJ·(kg·K)-1, the thermal conductivity coefficient was 0.01cm2·s-1, the thermal conductivity was 0.45 W·m·K)-1, the heat storage density was 240.42kJ·kg-1 at 600℃. XRD analysis showed that the main phase of the corundum samples were tetragonal zirconia, andalusite, mullite, cordierite. SEM results showed that the sample was dense of B4 formula before and after thermal shock, a small vent hole and the size were a few tenths ofμm-50μm, the grains were growth and development good, the grain size was 10μm-80μm, and were packaged by a small amount of glass phase and connected closely, spherical alumina zirconia crystal and the crystal was closely connected by the way of intergranular type, which can get the high intensity and thermal shock resistance of the samples. Which can be used as the heat storage matrix material of solar thermal power generation.
     Using theα-Al2O3, PSZ(Y2O35.2%), silicon carbide, andalusite, cordierite, talc as the main raw material, ASZ series formula composition were designed, dry milling, semi-dry press molding, and the composite ceramic materials of ASZ series were prepared by pressureless sintering method. The performance and microstructure of the samples were tested by XRD, SEM and other means. The results showed that with the increase of SiC content, the mechanical strength was increased gradually, the thermal shock resistance of the samples was improved; when the addition of SiC was 50wt%, the thermal storage ceramic matrix material of ASZ series (C5 formula) were prepared by fired at 1280℃for 2h, the porosity was 24.88%, water absorption was 10.44%, bulk density was 2.38g·cm-3, the bending strength was 66.20MPa, the sample wasn't cracked by thermal shock resistance (room temperature-800℃, air-cooled) after 30 times, and flexural strength after thermal shock was 76.99MPa (the growth rate of strength was 27.89%), the thermal expansion coefficient of the sample was 5.85×10-6℃-1, and the heat capacity was 1.05kJ·(kg·K)-1, the thermal conductivity coefficient was 0.01cm2·s-1, the thermal conductivity was 2.26W·(m·K)-1, the heat storage density was 916.91 kJ·kg-1 at 600℃. XRD analysis showed that the main phase of the corundum samples were tetragonal zirconia, andalusite, mullite, cordierite. SEM results showed that the sample was dense of B4 formula before and after thermal shock, a small vent hole and the size were a few tenths ofμm~50μm, the grains were growth and development good, the grain size was 10μm~80μm, and were packaged by a small amount of glass phase and connected closely, spherical alumina zirconia crystal and the crystal was closely connected by the way of intergranular type, which can get the high intensity and thermal shock resistance of the samples. Which was met the requirements of heat storage matrix material of solar thermal power generation.
     Using C5 formula as the main raw material, adding different amounts of high-temperature adhesives, designed formula composition of package agent, the samples were prepared by use of plastic molding and two-stage firing technology. The combination of the matrix material and the package agent were studied by using thermal shock test and SEM microstructure of the samples. The results showed that: the binding property of the package agent and matrix material is good when the high temperature binder was 30wt% of the package agent, the other 5 groups of formula samples were cracked or Stratified with varying degrees. The thermal storage density was calculated when filled in the honeycomb ceramics in different locations and filled different content of the phase change material, the results showed that with the increase of the amount of phase change materials packaged, the heat storage density of latent heat-heat ceramic composites were increased; with the increase of the temperature, the heat storage density were also increased. When the phase change material were filled with 2/3 of ceramic honeycomb holes and filled with 2/3 volume of each hole, the temperature was 600℃, the heat storage density was 1132.16kJ·kg-1 of the best formula C5, when the temperature was 1000℃, the heat storage density was 1590.80 kJ·kg-1 of the best formula C5. The results showed that the heat storage density of latent-sensible heat thermal energy storage composite ceramics which the PCM was packaged in the ASZ ceramic was significantly higher than that of a single sensible heat or latent heat storage, which is an excellent of solar high-temperature thermal storage material.
引文
[1]缪仁杰,李淑兰.太阳能利用现状与发展前景.应用能源技术,2007,5:28-33
    [2]罗运俊,何锌年,王长贵.太阳能利用技术.北京:化学工业出版社,2005
    [3]陈德明,徐刚.太阳能热利用技术概况,物理,2007,36(11):840-847
    [4]Mustapha Najjari, Sassi Ben Nasrassah. Effects of latent heat storage on heat transfer in a forced flow in a porus layer. International Journal of Thermal Sciences,2008,47:825-833
    [5]Qi Qi, Shiming Deng, Yiqiang Jiang. A simulation study on a solar heat pump heating system with seasonal latent heat storage. Solar Energy,2008,82:669-675
    [6]袁建丽,林如某,金红光,等.太阳能热发电系统与分类.太阳能,2007,(4):30-33
    [7]胡其颖.太阳能热发电技术的进展及现状.能源技术,2005,26(5):200-207
    [8]张晓霞,侯竟伟,殷攀攀,等.太阳能发电系统现状及发展趋势.机电产品开发与创新,2007,20(5):14-16
    [9]宿建峰.塔式太阳能热发电系统集成及性能优化.中国工程院热物理研究所.2008.5
    [10]方贵银,李辉.复合相变蓄热材料研制及性能分析.现代化工,2003,23(12):30-33
    [11]胥义,刘道平.固液相变蓄热技术的研究进展.节能,2002,12:3-7
    [12]林怡辉,张正国,王世平.一种新型相变蓄热材料的实验研究.江汉石油学院学报,2001,23(4):81-83
    [13]Michael E, Van Valkenburg, Robert L. Vaughn, Margaret Williams, et al. Thermochemistry of ionic liquid heat-transfer fluids. Thermochimica Acta.2005,425:181 - 188
    [14]Hae Sook Kim, Mi Kyung Kim, Sun Bae Kang, et al.Bending strength and crack-healing behavior of Al2O3/SiC composites ceramics. Mater.Sci.Eng.A(2007),doi:10.1016/ j.msea.2006.09.169
    [15]Jin Huang, KE Xiufang. Molten Salts/Porous-Ceramic Matrix Composites by Spontaneous Melt Infiltration Method as Phase-Change Energy Storage Materials. Journal of Materials Science & Engineering,2007,25(3):336-340
    [16]韩亚苓,张巍,潘斌斌,等.Al2O3/堇青石陶瓷的制备和抗热震性能研究.沈阳工业大学学报,2007,29(4):380-391
    [17]Niihara K, Nakahira A. Strengthening and toughening mechanisms in nanocomposite ceramics.Ann. Chim. Fr.1991,16:479-486
    [18]陈玉祥,潘成松,泛舟,等.Al2O3/SiC纳米复合陶瓷的制备及性能[J].陶瓷学报,2007,28(3):227-230
    [19]晏建武,周继承,张志华,等.烧结温度对Al2O3/SiC纳米复合陶瓷性能的影响[J].工具技术,2004,38(6):12-15
    [20]王昕,谭训彦,尹衍升,等.纳米复合陶瓷增韧机理分析.陶瓷学报[J],2000,21(2): 107-111
    [21]李景国,高濂,郭景坤.TIN-Al2O3纳米复合材料的力学性能和导电性能.无机材料学报,2002,17(6):1215-1219
    [22]路学成,阎殿然.氧化铝陶瓷增韧技术及机理.陶瓷,2006,12:11-15
    [23]仝建峰,陈大明,陈宇航,等.纳米陶瓷复合材料制备工艺中nano-SiC与基体Al203粉末的均匀分散.硅酸盐通报[J],2000,3:24-27
    [24]吴义权,张玉峰,黄校先,等.原位生长棒晶氧化铝陶瓷的制备.硅酸盐学报[J],2000,28(6):585-588
    [25]李国星,卢红霞,孙洪巍,等.MgB2等镁化物添加剂对氧化铝陶瓷晶粒生长形貌的影响.中国陶瓷工业[J],2005,12(1):11-14
    [26]匡诚忠,邓庚凤,匡敬忠.含Na2O-MgO添加剂自增韧Al2O3的研究.南方冶金学院学报[J],2004,25(4):16-20
    [27]刘彤,谢志鹏,陆继伟,等.长柱状晶高韧性氧化铝陶瓷的制备与性能研究.材料工程[J],2001,8:14-17
    [28]C.Oelgardt, J.Anderson, G.L.Messing. Sintering, microstructure and mechanical properties of Al2O3-Y2O3-ZrO2(AYZ) eutectic composition ceramic microcomposites. Journal of the European Ceramic Society,2010,30(3):649-656
    [29]M Yasuoka, K Hirao, M E Brito, etc. High-strength and high-fracture-toughness ceramics in the Al2O3/LaAl11O18 systems. Journal of the American Ceramic Society, 1995,78(7):1853-1856
    [30]H Yamamoto. Sintered alumina-based ceramics and process for producing same. US Patent,2002,
    [31]Doh-Hyung Riu, Young-Min Kong, Hyoun-Ee Kim. Effect of Cr2O3 addition on microstructural evolution and mechanical properties of AI2O3. Journal of the European Ceramic Society,2000,20(10):1475-1481
    [32]Yoshizawa, Yu-ichi, Toriyama, etc. Stemgth of sintered alumina at low temperature due to ball mill abrasion powder seeding. Journal of the Ceramic society of Japan,1998, 106(1232):444-446
    [33]吴锋,霍琳,李志坚,等.纳米氧化锆增韧刚玉质陶瓷蓄热体的性能研究.耐火材料[J],2010,44(1):52-54
    [34]宋希文,郭贵宝,赵文广,等.ZTA陶瓷材料的力学性能.包头钢铁学院学报[J],2000,19(1):39-41
    [35]周洋,詹国栋,徐明英,等.氧化铝基陶瓷复合材料的微观结构与增韧机理.无机材料学报,1997,12(2):161-168
    [36]NIIHARAK(新原皓一),NAKAYAMAT, SUEMATSU H, etc. Nano to molecular Level Composites and Their Industrial Applications《硅酸盐学报》创刊50周年暨中国硅酸盐学会2007年学术年会论文摘要集,2007年
    [37]王昕,孙康宁,尹衍升,等.纳米复合陶瓷材料研究进展.复合材料学报[J],1999,16(1):1-7
    [38]林广涌,吴柏源,雷廷权,等.ZrO2增韧AI2O3/SiCW陶瓷复合材料研究[J].华南理工大学学报,1996,24(7):83-87
    [39]缪世群,葛存旺.SiC晶须的含量对ZTA陶瓷基复合材料抗热震性能的影响[J].扬州大学学报,2002,5(1):40-43
    [40]王宏志,高濂,郭景坤.SiC颗粒尺寸对Al2O3-SiC纳米复合陶瓷的影响[J].无机材料学报,1999,14(4):1-6
    [41]李云凯,纪康俊,钟家湘,等.纳米Al2O3-ZrO2(3Y)复相陶瓷的微波烧结[[J].硅酸盐学报,199826(6):740-744
    [42]高镰,王宏志,洪金生.SiC-ZrO2(3 Y)-Al2O3纳米复相陶瓷的力学性能和显微结构[J].无机材料学报,1999,14(5):795-800
    [43]马伟民,修稚萌,闻雷,等.不同含量Y2O3的ZrO2对Al2O3复合陶瓷热稳定性的影响.中国稀土学报,2004,22(2):229-233
    [44]高翔,丘泰,焦宝祥,等.纳米ZrO2对Al2O3陶瓷性能的影响.硅酸盐通报.2005,1:12-16
    [45]马南钢,郎静,施占华.结构陶瓷的抗热震性能研究.武汉交通科技大学学报,1996,20:527-531
    [46]D. Sarkar, S.Adak, M.C.Chu, etc. Influence of ZrO2 on the thermo-mechanical response of nano-ZTA. Ceramics International,2007,33(2):255-261
    [47]韩亚苓,张巍,潘斌斌,等.Al2O3/堇青石陶瓷的制备和抗热震性能研究.沈阳工业大学学报,2007,29(4):380-391
    [48]M. Aldridge, J.A.Yeomans. The thermal shock behaviour of ductilw particle toughened alumina composites.Journal of the European Ceramic Society,1999,19(9):1769-1775
    [49]G. Y. Lin, T.C.Lei. Microstructure, mechanical properties and thermal shock behavior of Al2O3+ZrO2+SiCw composites. Ceramics International,1998,24(4):313-326
    [50]S. Maensiri, S.G.Roberts. Thermal shock of ground and polished alumina and Al2O3/SiC nanocomposites. Journal of the European Ceramic Society,2002,22(16):2945-2956
    [51]SI Tingzhi, Ning Liu, Qing an ZHANG, et al. Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics. Rare Metals,2008,27(3):308-314
    [52]Shaul Avraham, Peter Beyer, Rolf Janssen, et al. Characterization of a-Al2O3-(Al-Si)3 Ti composites. Journal of the European Ceramic Society,2006,26(13):2719-2726
    [53]N Claussen, M Ruhle, A.H Heuer. Science and technology of zirconia Ⅱ. International conference on the science and technology of zirconia,1983,12:842
    [54]徐晓虹,赵芳,吴建锋,等.太阳能热发电用Al2O3/SiC复相陶瓷的研究.武汉理工大学学报,2009,13:8-11,48
    [55]胡定军,石红梅.新型蜂窝陶瓷的研制.山东陶瓷[J],2004,27(3):5-8
    [56]付会娟,金月昶,康久常.蜂窝陶瓷载体上氧化铝涂层的制备[J].当代化工,2006,35(5):289-292,296
    [57]王娇.Al203多孔陶瓷的制备和性能研究[J].辽宁化工,2009,38(4):239-240,243
    [58]贾翠,谢志鹏,孙加林,等.蜂窝陶瓷蓄热体的研究现状.耐火材料[J],2009,43(1):64-68
    [59]周娴,姜凡,吕元,等.蜂窝陶瓷蓄热体的研究现状.陶瓷[J],2009,4:53-56
    [60]黄学辉,薛红亮,尚福亮,等.氧化铝陶瓷蓄热体的烧结性及抗热震性能研究.武汉理工大学学报,2004,26(5):25-28
    [61]Brian John Skinner, Sydney Procter Clark, et al. Molar volumes and thermal expansions of andalusite, kyanite and sillimanite. American Journal of Science,1961,259:651-668
    [62]M. Ghassemi Kakroudi, M. Huger, C. Gault, et al. Anisotropic behaviour of andalusite particles used as aggregates on refractory castables. Journal of the European Ceramic Society,2009,29(4):571-579
    [63]贾江议,李谦,曹贞源.红柱石的莫来石化作用及机理[J].河南科技大学学报(自然科学版),2004,25(3):100-104
    [64]廖桂华,李柳生,蒋明学.红柱石基材料中添加SiC细粉的作用.耐火材料,2005,39(5):361-363
    [65]刘伟,蔡国庆,王希波,等.红柱石耐火材料的研究开发与应用[J].山东冶金,2007,29:10-13
    [66]李柳生,徐国辉,任刚伟.南非红柱石细粉的烧结行为和莫来石化研究[J].耐火材料,2006,40(6):423-425
    [67]王雪松,李朝祥,王耀卿.高铝质陶瓷蓄热材料的研究开发.冶金能源,2004,23(3):39-41
    [68]曾令可,贺海洋,王慧,等.掺杂红柱石对堇青石质窑具抗热震性能的影响.华南理工大学学报,2001
    [69]李博文,翁润生,李嘉.用红柱石制备莫来石纤维增强材料的实验研究.耐火材料,1996,30(6):305-307,313
    [70]吴会军,朱冬生,李军,等.蓄热材料的研究进展.材料导报,2005,19(8):96-98
    [71]王胜林,王华,祁先进,等.陶土基高温相变蓄热复合材料的制备[J].工业加热,2004, 33(4):5-8
    [72]肖力光,孙吴.相变储能材料的研究进展[J].吉林建筑工程学院学报,2010,27(1):1-6
    [73]张兴雪,王华,王胜林.一种新型高温复合相变蓄热材料的制备.昆明理工大学学报,2006,31(5):17-19
    [74]许二超,王周福,王玺堂,等.原位反应烧结制备熔盐/尖晶石复合高温相变储能材料的研究[J].武汉科技大学学报,2010,33(3):273-276
    [75]王永川,陈光明,洪峰,等.组合相变蓄热材料应用于太阳能供暖系统.热力发电,2004,(2):7-9
    [76]Soteris A.Kalogirou Parabolic trough collectors for industrial process heat in Cyprus. Energy,2002,27:813-830
    [77]吴建锋,李剑,徐晓虹,等.用于太阳能蓄热的SiC泡沫陶瓷研究.武汉理工大学学报,2009,9:1-3,12
    [78]朱教群,张柄,周卫兵.蓄热材料的研究进展及其应用.新能源及工艺,2007,3:48-52
    [79]Hank Price, Eckhard Lupfert, David Kearney,et al. Advances in parabolic trough solar power technology[J].Journal of Solar Energy Engineering,2002,124(5):109-125
    [80]Christian Carboni, Roberto Montanari. Solar thermal systems:Advantages in domestic integration. Renewable Energy,2008,33:1364-1373
    [81]Xin Wang, Jing Liu, Yinping,et al. Experiment research on a kind of novel high temperature phase change storage heater [J]. Energy Conversion and management,2006,47:2211 -2222
    [82]Murat Kenisarin, Khamid Mahkamov. Solar energy storage using phase change materials [J]. Renewable and Sustainable Energy Reviews,2007,11:1913-1965
    [83]Belen Zalba, Jose M Marin, Luisa F, et al. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications [J]. Applied Thermal Engineering, 2003,23:251-283
    [84]W. Notter, Th. Lechner, U. Groβ, et al. Thermophysical properties of the composite ceramic-salt system (SiO2/Na2SO4). Thermochimica Acta,1993,218(3):455-463
    [85]Rainer Tamme, Ulrich Taut, Christian Streuber, et al. Energy storage development for solar thermal processes. Solar Energy Materals,1991,24(2):386-396
    [86]施惠生.无机非金属材料实验[M].上海:同济大学出版社,1999
    [87]洪水棕.现代测试技术[M].上海:上海交通大学出版社,2002
    [88]李密芳,闫小鸣.国外烧结砖瓦产品新发展[J].砖瓦,2005,(9):56-59
    [89]张彪,郭景坤,诸培南,等.抗热震陶瓷材料的设计[J].硅酸盐通报,1995,3:35-40
    [90]Zehua Zhou, Peidao Ding, Shouhong Tan et al. A new thermal-shock-resistance model for ceramics:Establishment and validation. Materials Science and Engineering A,2005,405: 272-276
    [91]宋希文.耐火材料工艺学[M].北京:化学工业出版社,2008.1
    [92]杨南如.无机非金属材料测试方法[M].武汉:武汉理工大学出版社,2004.4
    [93]伍洪标.无机非金属材料实验[M].北京:化学工业出版社,2005.5
    [94]张仁元,柯秀芳,李爱菊.无机盐/陶瓷基复合储能材料的制备和性能[J].材料研究学报,2000,14(6):652-656
    [95]李爱菊,王毅Na2SO4/SiO2复合储能材料制备工艺和性能的研究[J].华南师范大学学报(自然科学版),2008,(1):82-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700