1. [地质云]滑坡
利用毛细管微探针的微结构制备新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米技术是近年来发展起来的一门新型的交叉学科,微纳米加工技术作为其中的一个重要基础,已经被广泛地应用于各个科研领域。传统的微纳米加工技术主要包括硅的体微加工技术、表面微加工技术、LIGA(X射线深处光刻、电铸成型和塑铸型)技术、激光微加工技术、微纳米压印技术等。这些微纳米加工技术的出现和不断发展极大地推动了微电子技术和光电子技术的发展,但也存在一些不足之处,例如它们往往需要昂贵的设备和复杂的步骤,需要较长的制备周期,以及对加工材料的限制等,这些不足限制了微纳米技术的进一步发展。因此,本课题提出了一种利用毛细管微探针的微结构制备新方法,该方法采用独特设计的毛细管微探针结合局部电化学微加工技术,能够简单、快速、批量进行各种微结构制备,在此基础上,设计研制了一套利用毛细管微探针的微结构制备系统。
     本课题分别从理论方法、系统设计和实验分析三个方面对这种微结构制备技术进行了研究,主要研究工作和创新点总结如下:
     1、提出了一种利用毛细管微探针的微结构制备新方法。设计了一种新型的微探针,该微探针是将插有Pt-Ir丝的玻璃毛细管单个或者多个并列在一起制成的,将Pt-Ir丝的末端削尖之后,使其与毛细管端口基本持平。利用该新型微探针结合局部电化学微加工技术可以加工出均匀度非常好的微结构。
     2、研制开发了一套利用毛细管微探针的微结构制备系统。系统包括电化学微加工核心单元、步进扫描与移动控制系统、CCD显微监控模块以及计算机软硬件等部分。通过系统中的CCD显微监控模块,在微结构制备的时候可以对整个加工过程进行实时显微监控,能够方便清晰的观察电化学反应引起的各种现象及微结构生长情况。该系统具有成本低、操作简单、系统元件可置换性强等优点,可实现各种微结构快速高效地制备。
     3、设计了功能完善、界面友好、控制参数丰富的步进移动控制软件系统。该软件系统包括控制步进方向、调节步进移动速度、设置步进步数等功能。通过设置不同的参数,再结合二维扫描系统的平移,可以方便地加工各种线宽和纵横比可控的微结构。
     4、利用自行设计的基于毛细管微探针的微结构制备系统进行了微结构制备实验。在实验室环境下,通过调节电解液的成分和浓度、电流密度和步进移动速度,寻找最佳的加工条件,加工出点、线以及直径和高度可控的高纵横比铜柱等微结构。并通过将多个微探针并联的方式,来实现多个铜微柱的批量加工。采用金属和半导体材料作为加工基底,实现在不同材料上的微加工。这些实验结果验证了利用毛细管微探针的微结构制备新方法及其系统的可行性和稳定性。
Micro/nano-technology is a newly developed interdisciplinary subject in recent years, as one of its important branches, micro-nanofabrication technology is applied widely in a lot of areas. Traditional micro-nanofabrication technologies include bulk micromachining technology, surface micromachining technology, LIGA (X-ray deep lithography, electroform molding, plastic molding) technology, bonding technology and sacrificial layer technology, etc. The emergence and evolution of these micro-nanofabrication technologies promoted microelectronics and photonics technology's development greatly. However, these technologies had many disadvantage, for example, needed expensive equipment, complex steps, and long machining cycle, which limited the further development of micro/nano-technology. Therefore, we proposed a new technique of rapid microstructure preparation based on localized electrochemical deposition (LECD) with a special designed capillary microprobe and established a novel microstructure fabrication and monitoring system which could fabricate micro structures efficiently, rapidly and low cost.
     In this project, we theoretically analyzed the new method, developed the system and carried out some experimental studies. The innovations and research work as follows:
     We brought forward a new method of microstructure fabrication based on capillary microprobe. We designed a new microprobe, which is made by Pt-Ir wire directly inserted into a glass micropipette. The new microprobe could be single one or several micropipettes arrayed together. We sharpened the end of Pt-Ir wire, and placed it at the same plane with the bottom of micropipette. Using this new microprobe, microstructure with great uniformity could be fabricated based on LECD technology.
     We developed a microstructure fabrication and monitoring system utilizing capillary microprobe. The system includes the core unit of microstructure fabrication, step scan and mobile control system, CCD monitoring module and computer control system. During the deposition processing, the microscope process can be monitored in real-time using CCD monitoring module. So it can be easily for us to observe the phenomenon of microstructure deposition caused by electrochemical reaction. The system has low cost, simple operation, the module can be strong substitution, etc., it can realize microstructure quickly and easily fabrication.
     We designed a step mobile control software system with consummate function, friendly interface, and abundant control parameter. The control software had the function of controlling step direction, adjusting step speed and setting step count. Via setting different parameter and controlling the movement of two-dimensional step scanning system, microstructure with different width and aspect ratio could be fabricated conveniently.
     In the end, using this microstructure fabrication and monitoring system, we have done a lot of experiments. By adjusting the composition and concentration of electrolyte, current density, and step-moving speed, we gained a great deal of microstructures such as point, line and micro columns with great aspect ratio (height/diameter). Several copper micro columns are obtained which are growing at the same time. Moreover, lines with micro width are also fabricated on ITO film. The experimental results well verify that this new method and its system is feasible and accuracy.
引文
[1]刘俊.微纳米技术的潜在应用前景,北京:机械工业出版社.2004.
    [2]黄德欢.纳米技术与应用,上海:中国纺织大学出版社.2001.
    [3]范伟政.微/纳米系统技术的研究与发展,航空制造技术.2005,3:7-9.
    [4]顾宁,付德刚,张海黔.纳米技术与应用,北京:人民邮电出版社.2002
    [5]丁衡高.微纳技术进展、趋势与建议,纳米技术与精密工程.2006,4(4):249-255
    [6]郭隐彪,洪策符.微纳米加工与检测技术进展,三明学院学报.2006,23(2):121-123
    [7]Marc Delvaux, Jannick Duchet, Perre-Yves Stavaux, et al. Chemical and electrochemical syntheisi of polyaniline micro-and nano-tubules, Synthetic Metals,2000,3:275-280.
    [8]Shulin Wen, Dongsheng Van. Grain boundary in some nano-materials, Ceramics International. 1995,2:109-112.
    [9]H.Rafii-Taber. Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations, Physics Reports,2000,6:239-310.
    [10]S Wang, Magneto-nano biosensors for medicine, Nanomedicine:Nanotechnology, Biology and Medicine,2006,4:279-280.
    [11]Zu J.W, Ben Mrad R. Development of a motel for predicting dry stiction in microelectromechanical systems(MEMS), The International Society for Optical Engineering. 2007,6463.
    [12]崔铮.微纳米加工技术及其应用,北京:高等教育出版社.2005.
    [13]李德胜,关佳亮,石照耀.微纳米技术及其应用,北京:科学出版社.2005.
    [14]周易,纪引虎.微光机电系统制造工艺综述,航空精密制造技术.2008,44(2):1-3.
    [15]刘明,谢常青等.纳米加工和纳米电子器件,微纳电子技术.2005,1(09):393-397.
    [16]韩伟华,樊中朝,杨富华.微纳加工技术在光电子领域的应用.物理,2006,35(01):51-55.
    [17]刘镔,马萍,金平.半导体平面工艺在金属微细加工中的应用,材料科学与工艺.1994,2(2):113-115.
    [18]宋志,魏淑华,段辉高等.三维微结构制作现状与进展,半导体技术.2008,33(7):558-562.
    [19]李勇.微细电加工应用技术研究,电加工与模具.2009增刊:32-37.
    [20]Yasuhiro Takaya, Satoru Takahashi. Measuremert and maching in microfabrication based on radiation pressure control, Optics And Precision Engineering.2003, 11(1):22-29.
    [21]Russell Kirk Pirlo, Xiang Peng, Xiaocong Yuan. Microfabri cation, surface modification, and laser guidance techniques to create a neuron biochip, Opto-Electronics Letters.2008, 4(5):387-390.
    [22]Y. Kanamori, H. Yahagi, K. Hane, A microtranslation table with scratch-drive actuators fabricated from silicon-on-insulator wafer, Sensors and Actuators.2006, A 125:451-457.
    [23]M. Kohl, K. D. Skrobanek, Linear microactuators based on the shape memory effect, Sensors and Actuators.1998, A7:273-285.
    [24]G. Liu, Y. Tian, Y. Kan, Fabrication of High-aspect-ratio Microstructure using SU8 Photoresist, Microsystem Technologies.2005, 11(4-5):343.
    [25]王乐妍,张冬仙,温正湖,章海军.利用1064nm激光的热塑膨胀式三维微结构制备,中国激光.2008,35(s2):351-354.
    [26]温正湖,王乐妍,张冬仙,章海军.基于激光光致热塑膨胀的三维微结构制备新方法,仪器仪表学报.2007,28(5):475-478.
    [27]黄新波,贾建援,王卫东.MEMS技术及应用的新进展,机械科学与技术.2003,7:21-24.
    [28]杨友文,王建华.MEMS技术现状及应用,微纳电子技术.2003,3:29-32.
    [29]I. W. Hunter, J. D. Madden. Three dimensional microfabrication by localized electrochemical deposion, Journal of Microelectromechanical system.1996,5:24-32.
    [30]T. K. Chang, J. C. Lin, J. H. Yang et al. Suface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition, Journal of Micromaching and Microengineering.2007,17:2336-2343.
    [31]Schuster Rolf, Kirchner Viola, Allongue Philippe et al. Electrochemical micromaching, Science.2000,289:98-101.
    [32]马利红,章海军,刘超,张冬仙.基于新型局域电化学沉积技术的MOEMS微结构制备方法,中国激光.2008,35(s2):351-354.
    [33]Yage Zhou, Dongxian Zhang, Haijun Zhang. Microdeposition of 3D structure on film surface using micropipette, Chinese Optics Letters.2010,8(s1):213-215.
    [34]Y. Tian, G.Liu, P. Zhang et al. Ni-PTFE molding inserts for reducing friction and adhesion in the process of LIGA, Sensors and Actuators.2005, A118:338.
    [35]Kong Xiandong, Zhang Yulin, Song Huiying. Development and application of LIGA technology, MEMS Device&Technology.2005,5:13-18.
    [36]黄新龙,熊瑛,陈光焱等.UV-LIGA技术制造微型螺旋形加速度开关,光学精密工程.2010,18(5):1152-1158.
    [37]朱军,汪红,陈翔等.UV-LIGA技术在多层微结构制备中的工艺研究,压电与声光.2009,31(5):706-708.
    [38]水金城,陈武军.微米级微孔激光打孔的研究,应用激光.1994,14(3):124-126.
    [39]张磊,张庆茂.激光打孔过程的数值模拟,机电工程技术.2009,38(8):16-19.
    [40]宋林森,史国权,李占国.激光打孔温度场的数值分析与仿真,工具技术.2006,40(8):12-14.
    [41]刘莹,王强,李小兵.准分子激光加工工艺参数优化,南昌大学学报.2005,27(1):]-4.
    [42]蔡伟群,陈志新.准分子激光加工表面轮廓的分形分析,航天制造技术.2003,6(3):8-12.
    [43]S. Gant, B. Bhushan. Generalized fractal analysis and its applications to engineering surfaces, Wear.1995,180:17-34.
    [44]田兴志.激光加工现状及21世纪的展望,光机电信息.2003,(2):24-27.
    [45]席炜.更快、更高、更强—飞秒激光,现代物理知识.2002,22(2):48-49.
    [46]沈蓓军,王润文.激光LIGA工艺实验设计,功能材料与器件学报.1996,2(3):172-176.
    [47]孙洪文,陈迪等.纳米压印技术,电子工艺技术.2004,(3):93-98.
    [48]M. A. Wood, P. Bagnaninchi, M. J. Dalby. The Integrins and Cytoskeletal Nanoimprinting, Experimental Cell Research.2008,314(4):927-935.
    [49]S. Mohan, H. S.Shan, A Review of Electrochemical Macro-to Micro-hole Drilling Process, International Journal of Machine Tools&Manufacture.2005,45(2):137-152.
    [50]S. H. Yeo, J. H. Choo, Effects of Rotor Electrode in the Fabrication of High Aspect Ratio Microstructures by Localized Electrochemical Deposition, Journal of Micromechanics and Microengineering.2001,11:435-442.
    [51]Jung Woo Park, Shi Hyoung Ryu, Chong Nam Chu, Pulsed electrochemical deposition for 3D micro structuring, International Journal of Precision Engineering and Manufacturing.2005, 6(4):49-54.
    [52]R. A. Said. Microfabrication by Localized Electrochemical Deposition:Experimental Investigation and Theoretical Modeling, Nanotechnology.2003,14:523-531.
    [53]朱荻,王明环,明平美,张朝阳.微细电化学加工技术,纳米技术与精密工程.2005,3(2):151-155.
    [54]王庆有,孙学珠.CCD应用技术,天津:天津大学出版社.1993:1-37.
    [55]李富荣.铂铱合金的分离与提纯,中国资源综合利用.2001,(8):12-14.
    [56]张璧,罗红平,周志雄,任莹晖.电化学微加工技术的新进展及关键技术,中国机械工程.2007,18(12):1505-1511.
    [57]高颖,邬冰.电化学基础,北京:化学工业出版社.2004.
    [58]庄渊昭.步进电机控制系统设计,电子世界.2010,(9):43-46.
    [59]宋坤,刘锐宁等.Visual C++开发技术大全,北京:人民邮电出版社.2008.
    [60]张芳,林良明.微机械的基本特征、关键技术及应用前景,传动技术.2001,1:25-33.
    [61]M. Anders, M. Muck, C. Heiden, SEM/STM combination for STM tip guidance, Ultramicroscopy.1998,2:123-128.
    [62]M. Suda, K. Nakajima, K. Furuta, et al. Electrochemical and Optical Processing of Microstructures by Scanning Probe Microscopy(SPM), Proceedings of IEEE MEMS, 1996:296-300.
    [63]朱树敏.电化学加工技术,北京:化学工业出版社.2006.
    [64]孙小美高晓荣,王黎,王泽勇.基于DSP的步进电机细分驱动技术,机车电传动.2010,(4):21-24.