用户名: 密码: 验证码:
大型客机起落架缓冲系统优化设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以支柱式起落架为背景,在传统二质量模型的基础上,考虑油液不可压和可压两种情况,分别推导了空气弹簧力的计算公式。并给出了一种由飞机运动学参数、轮胎几何参数和跑道物理参数等共同确定摩擦系数的经验公式,用于计算地面水平反力。
     以运八飞机主起落架为例,实现了其基于ADAMS/Aircraft的落震虚拟样机,并进行了落震仿真。通过与试验数据的对比发现,该起落架虚拟样机的落震仿真能够很好的模拟起落架的着陆缓冲性能。
     提出了变油孔缓冲器油针几何形状的优化模型。以运八飞机主起落架的落震虚拟样机为例,以油针几何形状为设计变量,基于iSIGHT集成ADAMS/Aircraft建立了飞机起落架缓冲系统多目标优化流程。使用功落震工况下,优化后的缓冲器轴向力减小了7%左右,而缓冲器效率可同时提高6%以上。
     以起落架缓冲系统传统的设计方法为基础,结合上述的优化流程建立了飞机起落架缓冲系统设计、仿真和优化一体化流程,并对某大型客机的前起落架和主起落架进行了设计优化。与传统方法设计相比较,经过变油孔优化设计后,前起落架使用功落震的缓冲器效率提高了19.6%,支柱轴向力降低了15.9%,主起落架使用功落震的缓冲器效率提高了8.7%,支柱轴向力降低了7.2%。前起落架和主起落架的缓冲性能均得到了明显的提高。
Under the background of aircraft post landing gears, air-spring force formula has been derived based on traditional two-mass model, by considering oil incompressible and compressible. Furthermore, an empirical formula about friction coefficient which is determined by the parameters of aircraft motion, tire geometry and runway has been established to obtain ground horizontal reaction force.
     Taking Y8 main landing gear as an example, drop virtual prototyping based on ADAMS/Aircraft has been achieved, and drop simulation has been conducted. There is a good corespondence between the simulation result and the experimental data.
     The optimization model of variable-orifice is expressed. That is, the metering pin area of section is the design variable. Combined with Adams/Aircraft, the multi-objective optimization of landing gear shock-absorbing system is established in iSIGHT. Under use work drop case, shock strut axial force decreases about 7%, and shock strut effectiveness can increase 6% more at the same time after optimization.
     Based on conventional design methods, the design optimization of nose and main landing gears of large civil aircraft capability is preceded integrated by the procedure above. As a result, the shock strut efficiency of nose landing gear is improved 19.6%. However, the strut axis force is reduced 15.9%. In corresponds, the shock strut efficiency of main landing gear is enhanced 8.7%.However, the strut axis force is lessened 7.2%. The shock-absorbing characteristics of nose and main landing gears are significantly evaluated.
引文
[1] Sonny T C, William H M. Landing gear integration in aircraft conceptual design[R].MAD 96-09-01,1996
    [2]姜澄宇.从国外民机重大研究计划看大型民机发展的重大关键技术[C]//中国航空学会2007年学术年会论文集,总体设计综合技术01,深圳,2007
    [3]李航航.我国大飞机发展途径构想及关键技术研究[C]//中国航空学会2007年学术年会论文集,总体设计综合技术02,深圳,2007
    [4]《飞机设计手册》总编委会.飞机设计手册第14分册:起飞着陆系统设计[M].北京:航空工业出版社,2002
    [5]聂宏.起落架的缓冲性能分析与设计及其寿命计算方法[D].南京航空航天大学博士学位论文,1990
    [6]郑建荣.ADAMS虚拟样机技术入门与提高[M].北京:机械工业出版社,2002
    [7]魏小辉.飞机起落架着陆动力学分析及减震技术研究[D].南京航空航天大学博士学位论文,2005
    [8]耿建光.工程系统过程集成和设计优化――iSIGHT中的过程集成与设计自动化[J].军民两用技术与产品,2002(11):45-48
    [9]余雄庆.飞机总体多学科设计优化的现状与发展方向[J].南京航空航天大学学报,2008,40(4):417-426
    [10] Venkatesan, C., Nagaraj, V.T. Optimization of Aircraft Undercarriages[R]. American Society of mechanical Engineers(Paper), No.79-DET-89, 1979
    [11] Veaux, Jacques. New Design Procedures Applied to Landing Gear Development[C]. Congress of the International Council of the Aeronautical Science, 1986(2):1361-1371
    [12] Veaux,Jacques.New Design Procedures Applied to Landing Gear Development[J]. Journal of Aircraft,1988(25):10:904-910
    [13] Kortum, W., Schwartz, W. Wentscher, H. Optimization of active vehicle suspensions with mechatronic software tools[J]. Automatisierungstechnik, 1996, 44(11):513-521
    [14] Andersson, Johan, Pohl, Jochen. Design of objective functions for optimizationof multi-domain systems[J]. American Society of Mechanical Engineers, 1998(5):41-47
    [15] Maenori, Kenichi, Tanigawa. Optimization of a semi-active shock absorber for aircraft landing gear[C]. Proceedings of the ASME Design Engineering TechnicalConference, 2003, 2A(2):597-603
    [16] Shi, Fenghui, Tomomori. Optimization for a semi-active shock absorber using magneto-rheological fluid[J]. Transactions of the Japan Society of Mechanical Engineers, 2005, 71(8):2492-2500
    [17] Batterbee, D.C.,Sims, N.D. Design and performance optimization of magneto-rhelolgical oleo-pneumatic landing gear[C]. Proceeding of the SPIE, 2005, 5760(1):77-88
    [18] Viana, Felipe A.C. Identification of a non-linear landing gear model using nature-inspired optimization[J]. Shock and Viration, 2008, 15(3-4):257-272
    [19]聂宏,乔新,吕樟权.起落架双腔缓冲器初始压力的优化设计[J].航空学报,1992,13(6):314-317
    [20]刘莉.起落架缓冲系统参数优化设计[J].航空学报,1992,13(10):206-511
    [21]晋萍,聂宏.起落架着陆动态仿真分析模型及参数优化设计[J].南京航空航天大学学报,2003,35(5):498-502
    [22]李霞.现代飞机起落架缓冲性能分析、优化设计一体化技术[D].西北工业大学硕士学位论文,2004
    [23]陶小将.起落架缓冲性能仿真与参数优化设计[J].飞机工程,2006(4):15-17
    [24]蔺越国,程家林等.飞机支柱式起落架落震仿真及缓冲器优化分析[J].飞机设计,2007,27(4):26-30
    [25] Mahinder K.Wahi. Oleo-pneumatic Shock Strut Dynamic Analysis and Its Real-TimeSimulation[J].Journal of Aircraft,1976,13(4):303-308
    [26] Mahinder K.Wahi. Oil Compressibility and Polytropic Air Compression Analysis for Oleo-pneumatic Shokc Struts[J].Jorunal of Aircraft,1976,13(7):527-530
    [27] Mahinder K.Wahi.A Tire Runway Interface Friction Prediction Model Concept[J]. Journal of Aircraft,1976,16(6):407-415
    [28]刘瑞琛等.飞机起落架强度设计指南[M].四川:四川科学技术出版社,1989
    [29] Maemori,Kenichi,Tanigawa,et al.Optimization of a semi-active shock absorber for aircraft landing gear[C]// American Society of Mechanical Engineers.ASME Design Engineering Technical.Design Automation.Chi- cago:ASME,2003, 2A(2):597-603
    [30]李庆国等.一种多体动力学优化方法的研究与实现[J].机械制造,2007,45(7):4-6
    [31]邓先礼.最优化技术[M].重庆:重庆大学出版社,2002
    [32]任利,邵园园等.基于iSIGHT的多学科设计优化技术研究与应用[J].起重运输机械,2008(5):45-48
    [33]孙成通等.基于iSIGHT的多学科设计优化技术研究[J].临沂师范学院学报,2008(3):50-53
    [34]隋福成,陆华.飞机起落架缓冲器数学模型研究[J].飞机设计,2001,(2):44-51.
    [35] Goodyear Inc. Aviation Tires Department. The aircraft tire data book. Available from: http://www.goodyearaviation.com/tiredatabook.html,2002
    [36]王钱生,邵永起.飞机使用下沉速度的研究.飞机设计[J],1998,2:1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700