用户名: 密码: 验证码:
热处理对模具钢组织性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国模具工业发展迅速,但与工业发达国家相比仍存在较大差距,模具寿命普遍较低。热处理对模具钢的性能有着重要的影响,通过热处理可以使模具钢具有必要的强韧性,大幅度提高模具的寿命。因此为了提高我国模具工业的技术水平,充分发挥现有材料的潜力,本研究对模具钢的热处理工艺及技术进行全面深入的研究。本论文利用扫描电镜、金相显微镜、硬度计、拉伸试验机等分析测试手段分析了淬火以及回火温度对P20和H13模具钢的淬火组织和回火组织及性能的影响,以及两相区淬火工艺对P20模具钢组织及力学性能的影响,研究结果如下:
     P20钢高于830℃淬火得到板条马氏体组织,随淬火温度升高模具钢的硬度升高,组织有粗化趋势,但直到890℃后,组织才‘会有明显粗化,分析认为淬火温度选取为860℃是适宜的;随回火温度升高,碳化物析出增多并聚集长大,材料的硬度降低,830~890℃淬火620℃回火时,回火硬度几乎不受淬火温度的影响,并且回火硬度满足预硬化要求,据此对P20钢的预硬化工艺进行优化,得出最佳工艺是:860℃×30min淬火+620℃×60min回火。
     对H13钢进行了正交试验,结果表明除第一次回火温度对屈服强度的影响不显著外,淬火、回火温度对材料的强度指标的影响均显著,除第二次回火温度对断面收缩率的影响显著外,淬火、回火温度对其他塑性指标影响不显著;通过对其淬火组织及性能的分析,确定其最佳淬火温度为1040℃,通过对回火性能的分析,发现最高回火温度为600℃时材料性能最好,因此,最终确定其最佳热处理工艺是:1040℃×15min淬火+600℃×2h回火+580℃×2h回火。
     对P20钢在两相区淬火后的组织及性能进行研究,发现原始组织不同,淬火后铁素体形态及未溶碳化物数量不同,保温时间延长,铁素体形态不变,未溶碳化物减少,淬火后的力学性能趋同;原始组织不同的钢在785~800℃的两相区淬火,原始组织为板条马氏体的比原始组织为珠光体加铁素体的钢淬火后的性能好,当淬火温度提高到815~830℃,淬火组织主要为马氏体,此时淬火的力学性能以原始组织为珠光体加铁素体的较好。
Development of China's mold industry is rapid, but compared with the industrialized countries there is still a wide gap, and the die life is generally low. Heat treatment has a significant impact on the performance of the die steel. By heat treatment, die steel can be given the necessary strength and toughness, and the life can be substantially increased. So in order to improve the technological level of China's mold industry and give full play to the potentiality of existing materials, conducting a comprehensive in-depth study is very necessary on the heat treatment process and technology of die steel. Using scanning electron microscopy, optical microscopy, hardness tester and tensile testing machine analyses the influence of quenching and tempering temperature on microstructure and mechanical properties of the P20 and H13 die steel, and microstructure and mechanical properties of P20 steel with ferrite and martensite obtained by intercritical quenching were studied.
     It is found that for the P20 steel, when the quenching temperature is above 830℃, almost all quenching microstructure is lath martensite, and their microstructures generally coarsen and the hardness increases with the quenching temperature increasing, but the microstructure will not be significantly coarsening until it reaches 890℃.860℃is considered as more appropriate quenching temperature. Precipitating carbides increase and grow up together, and the strength of the materials reduces with the tempering temperature increasing. When 620℃for 30min is selected as tempering temperature, the tempering hardness is from 32.8HRC to 35.8HRC, it can satisfy pre-hardening hardness requirement. In addtion, tempering hardness remains almost constant when the steel is quenched at 830-890℃and tempered at 620℃, which will be benefit for actual production in factory. Based on those, the best pre-hardened process is 860℃×30min quenching+620℃×60min tempering.
     For H13 steel, the result of orthogonal experiment show that the yield strength is not significantly affected by the first tempering temperature, but other strength indexes of the materials are all significantly affected by quenching and tempering temperature; the plasticity indexes are not significantly affected by quenching and tempering temperature except that reduction of area is significantly affected by second tempering temperature, so quenching temperature is designated as 1040℃by the analysis of microstructure and hardness. Through the analysis of tempering tensile properties, it has been found that when the higher tempering temperature is 600℃in two annealing, better mechanical properties can be got. So the optimum heat treatment process is 1040℃×15min quenching+600℃×2h tempering+580℃×2h tempering.
     After the intercritical quenching, the stucture and performance of P20 plastic die steel have been researched, and found that when the original organization is different, the ferrite morphology and the number of the undissolved carbide are also different. With the extension of holding time, the ferrite morphology remains unchanged, undissolved carbide reduces, the difference of mechanical properties is decreased. When the steel is quenched at 785~800℃, in general, the mechanical properties of the steel whose original organization is lath martensite is better than the steel whose original organization is pearlite. When the quenching temperature come to 815~830℃, quenching microstructure is mainly martensite, mechanical properties of the steel whose original organization is lath martensite is better.
引文
[1]陈再枝,马党参.我国模具钢的发展战略分析[J].钢铁,2006,41(4):5~9
    [2]崔昆.国内外模具用钢发展概况[J].金属热处理,2007,32(1):1~11
    [3]于波,谢建庆,王霆.新型热作模具用钢的发展现状及应用[J].热处理技术与装备,2008,26(9):6~8
    [4]赵吕盛.模具材料及热处理手册[M].北京:机械工业出版社,2008
    [5]朱宗元.我国热作模具钢性能数据集(续Ⅶ)[J].机械工程材料,2001,25(8):38~42
    [6]朱宗元.我国热作模具钢性能数据集(续Ⅲ)[J].机械工程材料,2001,25(4):39~43
    [7]丁洁,姜超,陈林.国内外模具钢生产现状及发展[J].山西冶金,2006,29(2):7~10
    [8]史正良,刘金龙.热作模具钢的选择与应用[J].煤矿机械,2007,28(12):126~129
    [9]方健儒,姜启川,赵宇光,等.铸造热锻模具钢的研究与应用[J].铸造,2002,51(1):7~10
    [10]Cui Xianghong, Shan Jun, Yang Ziyun, et al. Alloying Design for High Wear-Resistant Cast Hot-Forging Die Steels[J]. Journal of Iron and Steel Research,2008,15(4):67~72
    [11]王树奇,崔向红,陈康敏.精铸热锻模具钢的合金成分设计及其高温磨损性能研究摩擦学学报,2006,26(4):382~386
    [12]张昆鹏,宋延沛,谢敬佩,等.复合变质处理对铸造热锻模具钢力学性能的影响[J].热加工工艺,2003,(5):22~23
    [13]Guan Qingfeng, Fang Jianru, Jiang Qichun, et al. Effect of Rare Earth Composite Modification on Microstructure and Properties of a New Cast Hot-Work Die Steel [J]. Journal of Rare Earths,2003,21(3):368~371
    [14]程先华.热作模具钢合金化及其强化机制[J].上海金属,2001,23(2):1~5
    [15]张洪奎,徐明华.浅析我国模具钢的发展空间[J].热处理,2008,23(5):7~15
    [16]潘晓化,朱祖昌.H13热作模具钢的化学成分及其改进和发展的研究[J].模具制造,2006,(4):78~85
    [17]Hu Xinbin. Thermal fatigue behavior of niobium microalloyed H13 steell[J]. Journal of Shanghai University,2006,10(4):375~376
    [18]Shahram Kheirandish, Ahmad Noorian. Effect of niobium on microstructure of cast AISI H13 hot work tool steel[J]. Iron and Steel Research,2008,15(4):61~66
    [19]Cui Xianghong, Wang Shuqi, Jiang Qichun. Research on Thermal Wear of Cast Hot Forging Die Steel Modified by Rare Earths[J]. Journal of Rare Earths,2007,25(1):88~92
    [20]曲传江,常家芸,李忆莲.3Cr3Mo3W2V钢贝氏体马氏体复合组织的研究[J].金属热处理学报,1996,17(1):21~26
    [21]史正龙,刘金龙.热作模具钢的选择与应用[J].煤矿机械,2007,28(12):126~129
    [22]Cui Kun, He Xiangshan, luo Xuexin. High-performance Hot Die steel[A]. The Proceedings of the 1~(st) International Conference on Die & Mould Technology[C]. BeiJing:Mechanical Industry Press,2000
    [23]冯颖章,叶清键,潘振鹏.高热强热作模具钢的研制开发及模具寿命的提高[J].广东机械学院学报,1995,13(3):64~71
    [24]王淼辉.模具钢在中国的现状及未来发展战略[A].中国工程院机械与运载工程学部首届年会论文集[C].北京:机械工业出版社,2006
    [25]王良平,吴晓春.影响奥氏体热作模具钢性能的因素[J].钢铁,2008,43(11):78~81
    [26]潘振鹏,冯颖璋.我国塑料模具钢的新近进展[J].特殊钢,1998,19(5):5~9.
    [27]陈再枝,马党参.塑料模具钢应用手册[M].北京:化学工业出版社,2005,1~13
    [28]罗毅,吴晓春.预硬型塑料模具钢的研究进展[J].金属热处理,2007,32(12):22~25
    [29]陈卓,吴晓春,汪宏斌,等.硼含量及奥氏体化温度对P20B钢淬透性的影响[J].钢铁研究学报,2008,20(10):40~43
    [30]张文玉,刘先兰.塑料模具专用钢的选择及应用[J].模具工业,2008,34(1):61~66
    [31]冯英育.模具钢[J].国外金属热处理,2000,21(4):1~5
    [32]姚新,顾剑锋,胡明娟.P20钢大型塑料模具几种淬火工艺的三维温度与组织模拟[J].金属热处理,2003,28(7):33~37
    [33]宋冬利,顾剑锋.基于数值模拟的718塑料模具钢大模块淬火新工艺设计[J].钢铁,2004,39(9):64~68
    [34]吴晓春,催崑.非调质塑料模具钢的组织与性能[J].华中理工大学学报,1995,23(12):1~6
    [35]江来珠,王习顺,王建会.非调质贝氏体型大截面塑料模具钢的研究和开发——合金成分与组织和机械性能的关系[J].宝钢技术,1999(6):22~40.
    [36]殷志祥,高余顺.塑料模具钢的发展和应用[A].2002年中国工程塑料加工应用技术研讨会论文集[C].济南:济南工程塑料应用杂志社,2002
    [37]倪亚辉,丁义超.常用塑料模具钢的发展现状及应用[J].塑料工业,2008,36(9):5~8
    [38]肖文军,徐春晖,周天瑞.我国塑料模具钢的发展前景及应用现状[J].南方金属,2006,(2):1~12
    [39]蒋锡军.转炉冶炼热作模具钢H13的生产实践[J].宝钢技术,2007,(3):29~32
    [40]许珞萍,吴晓春,李麟,等.我国模具钢标准的思考[J].上海金属,2004,26(2):1~4
    [41]高海潮.氢、氮、氧对钢的危害来源及对策[J].包头钢铁学院学报,1999,18(S1):373~377
    [42]唐文军,吴晓春.高温均匀化对H13钢强韧性的影响[J].上海金属,2002,24(2):14~20
    [43]徐匡迪.关于洁净钢的若干基本问题[J].金属学报,2009,45(3):257~269
    [44]胡心彬,李麟,吴晓春.Thermo-calc在热作模具钢成分计中的应用[J].热处理,2004,(3): 27~30
    [45]Hu Xinbin, Li Lin, Wu Xiaochun, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium[J]. International Journal of Fatigue,2006, 28,175~182
    [46]杨玲玲,邓子玉,曾乐.热作模具钢锻后组织模拟及软件设计[J]锻压技术,2007,32(1):6~9
    [47]洪慧平,康永林.热作模具钢连轧过程力学参数的有限元分析[J].北京科技大学学报,2003,25(1):44~49
    [48]胡心彬,李麟.奥氏体化温度对含铌H13钢热疲劳性能的影响[J].金属热处理,2006,31(12): 66
    [49]Li Guobin, Li Xiangzhi. Study of the thermal fatigue crack initial life of H13 and H21 steels[J]. Journal of Materials processing Technology,1998,74:23~30
    [50]黄春峰.国外新型热作模具钢及其热处理工艺[J].航空精密制造技术,2004,40(3):16~24
    [51]攀东黎.强烈淬火技术——一种新的强化钢的热处理方法[J].热处理,2005,20(4):1~7
    [52]唐明华,刘先兰.模具钢深冷处理的应用研究[J].机床与液压,2003,(5):296~304
    [53]M. Tereclj, A. Smolej. Laboratory assessment of wear on nitrided surfaces of dies for hotextrusion of aluminium[J]. Tribology International,2007,40:374~382
    [54]L. F. Zagonel, F. Alvarez. Tool steel ion beam assisted nitrocarburization[J]. Materials Science and Engineering,2007,465:194~198
    [55]L. L. G. da Silva, M. Ueda. Enhanced corrosion resistance of AISI H13 steel treated by nitrogen plasma immersion ion implantation[J]. Surface & Coatings Technology,2007,201: 8291~8294
    [56]Waheed Ul Haq, Syed Andrew J. Pinkerton. Coincident wire and powder deposition by laser to form compositionally graded material[J]. Surface & Coatings Technology,2007,201: 7083~7091
    [57]Z. H. Zhang, H. Zhou. Tensile property of H13 die steel with convex-shaped biomimetic surface[J]. Applied Surface Science,2007,253:8939~8944
    [58]M. J. Tobar, C. Alvarez. Laser transformation hardening of a tool steel:Simulation-based parameteroptimizationand experimental results. Surface & Coatings Technology,2006, 200:6362
    [59]A. A. C. Recco, I. C. Oliveira. Adhesion of reactive magnetron sputtered TINx and TICy coatings to AISI H13 tool steel. Surface & Coatings Technology,2007,202:1078
    [60]R. Rodr'iguez-Baracaldo, J. A. Benito. High temperature wear resistance of (TiAl)N PVD coating on untreated and gas nitrided AISI H13 steel with different heat treatments. Wear, 2007,262:380
    [61]J. Lin, S. Carrera. Design methodology for optimized die coatings:The case for aluminum pressure die-casting. Surface & Coatings Technology,2006,204:2930
    [62]A. Rojo, J. Oseguera. Process structure properties relationship during formation of CrN and AlN layers on H13 Steel. Surface & Coatings Technology,2008,202:6
    [63]杨俊秋.模具新材料在塑料模中的应用及展望[J].模具制造,2007,(3):64~66
    [64]高玉芳.3Cr2Mo塑料模具钢预硬化热处理工艺参数的研究[J].热加工工艺,2000, (5):26~27
    [65]苏德达,李家俊.钢的高温金相学[M].天津:天津大学出版社,2007,164:168
    [66]赵建生,乔学亮.大截面预硬刑塑料模具钢P20BSCa的组织与性能[J].机械工程材料,1995,19(3):43~58
    [67]侯晓霞,杨华.淬火温度对Si及K/Na、Mo复合变质H13钢性能的影响[J].铸造,2005,54(3):246~248
    [68]刘宗吕,于键.P20塑料模具钢的组织对抛光性能的影响[J].特殊钢,2004,25(5):19~21
    [69]康煜平,常伟.金属固态相变及应用[M].北京:化学工业出版社,2007,187~210
    [70]陆兴,刘世程.热处理工程基础[M].北京:机械工业出版社,2007,150~198
    [71]宋义全,于健.P20塑料模具钢的回火组织与硬度[J].包头钢铁学院学报,2003,22(1):42~45
    [72]彭新荣,张荣花.热作模具钢二次回火热处理工艺研究[J].机电产品开发与创新,2008,21(5):136~137
    [73]刘宗吕.珠光体转变与退火[M].北京:化学工业出版社,2007
    [74]霍晓阳.影响H13热作模具钢等向性的因素[J].钢铁研究学报,2008,20(11):47~54
    [75]刘云旭.低碳合金钢中带状组织的成因、危害和消除[J].金属热处理,2000,(12):2~3
    [76]宋雯雯,闵永安,吴晓春.H13钢中的碳化物分析及其演变规律研究[J].材料热处理学报,2009,30,5:122~126
    [77]蔡美良,丁惠麟,孟沪龙,等.新编工具模具钢金相热处理[M].北京:机械工业出版件,1998
    [78]樊爱民,黄国饮,章瀚,等.提高H13钢的铝合金压铸模热疲劳寿命研究[J].兵器材料科学与工程,1992,15(9):22~27
    [79]李玉凤,史文彬.提高H13钢使用寿命的探讨[J].模具工业,2007,33(3):65~67
    [80]彭欣荣,张荣华.热作模具钢二次回火热处理工艺研究[J].机电产品开发与创新,2008,21(5):136~137
    [81]王平,康沫狂.残余奥氏体回火转变及其对钢的强韧性的影响[J].金属热处理学报,1983,4(2):19~30
    [82]曹光明.H13模具钢的热加工工艺研究[J].潍坊学院学报,2004,4(6):52~56
    [83]马鸣图,Shi M F.先进的高强度钢及其在汽车工业中的应用.钢铁,2004,39(7):68.
    [84]唐荻,米振莉,陈雨来,等.国外新型汽车用钢的技术要求及研究开发现状.钢铁,2005,40(6):1
    [85]党淑娥.双相钢的研究现状及应用前景[J].山西机械,2002,(4):14~15
    [86]左秀荣,陈蕴博,王淼辉.铁素体/马氏体双相钢的组织及性能[J].材料热处理学报,2010,31(1):126~134
    [87]H Kang, H Kwon. Fracture Behavior of Intercritically Treated Complex Structure in Medium-Carbon 6 Nickel Steel [J]. Metall. Trans. A,1987,18A:1580~1585
    [88]A Bag, K K Ray, E S Dwarakasa. Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels[J]. MetallTrans. A, 1999,30A:1587~1591
    [89]M H Saleh, R Priestner. Retained austenite in dual-phase silicon steels and its effect on mechanical properties[J]. Journal of Materials Processing Technology,2001,113(1-3): 587~593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700