用户名: 密码: 验证码:
人子宫颈癌PD-L1的表达及其与肿瘤内浸润T细胞的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宫颈局部微环境免疫水平低下是宫颈癌发生发展的重要因素,且肿瘤内浸润的CD8+T细胞是宫颈癌独立的预后因素之一。T细胞的激活除了接受MHC分子提呈的肿瘤抗原外,还需要接受协同刺激信号。目前已知的协同刺激分子包括正向协同刺激分子如CD28,还包括负向协同刺激分子如程序性死亡配体1(programmed death ligand 1,PD-L1)。文献报道多种恶性肿瘤表达PD-L1,该分子与活化T细胞表达的程序性死亡1(programmed death-1,PD-1)结合抑制T细胞的增殖分化并导致T细胞凋亡。
     本研究采用免疫组织化学染色观察人体5例正常宫颈组织、7例高级别宫颈上皮内瘤变(cervical intraepithelial neoplasiaⅡ-Ⅲ,CINⅡ-Ⅲ)组织和67例子宫颈癌组织PD-L1的表达和淋巴细胞PD-1的表达,免疫荧光染色观察了相应组织内浸润的CD4+T和CD8+T细胞数量,并通过TUNEL法检测了肿瘤内浸润淋巴细胞的凋亡情况。
     研究结果显示正常子宫颈上皮不表达PD-L1;宫颈瘤变上皮不表达或弱阳性表达PD-L1,其相对积分光密度平均值为(0.82±0.75);70%(47/67)的宫颈癌表达PD-L1,浅表浸润(浸润深度<5mm)和深部浸润的宫颈鳞状细胞癌PD-L1的相对积分光密度平均值分别为(2.70±1.68)、(2.90±1.72)。CIN病灶和肿瘤内浸润的部分淋巴细胞表达PD-1。子宫颈瘤变上皮与子宫颈鳞状细胞癌PD-L1表达存在明显差异(P<0.01),浅表浸润的子宫颈鳞状细胞癌PD-L1的表达略低于深部浸润的鳞状细胞癌,但无统计学差异;PD-L1阳性病例肿瘤局部浸润的CD8+T细胞数量显著减少,且PD-L1表达与CD8+T细胞数量明显负相关(r=-0.82,P<0.01),但与肿瘤局部CD4+T细胞数量无明显相关性(r=-0.05,P>0.05);虽然原发灶内宫颈癌细胞表达PD-L1,但淋巴结转移灶内的宫颈癌细胞不表达PD-L1;部分PD-L1阳性的子宫颈癌局部浸润的淋巴细胞存在凋亡现象。
     本研究结论:子宫颈癌细胞异常表达PD-L1,且PD-L1的表达与肿瘤局部浸润的CD8+T细胞数量减少有关,但与浸润的CD4+T细胞数量无关。癌细胞PD-L1的表达与其淋巴结转移无关。癌细胞可能通过PD-L1/PD-1途径促进了肿瘤内浸润的T淋巴细胞凋亡。
The low level of immunity in cervical microenvironment is an important factor in the genesis and progress of cervical cancer, Tumor infiltrating CD8+T is an independent prognostic factor in cervical cancer. The activation of T cells require the message from tumor antigen which presented by MHC molecules, and co-stimulating factor molecules, such as positive co-stimulating factor CD28 and negative co-stimulating factor programmed death ligand1. It was reported that multiple malignant tumors express PD-L1, which can combine with PD-1 of activated T cell, suppressed the proliferation and differentiation of T cells, and induced apoptosis of T cells.
     In this paper, PD-L1 and PD-1 expression was respectively determined in five cases of normal cervical tissue, 7 cases of high-level cervical intraepithelial neoplasia (CINⅡ-Ⅲ) and 67 cases of cervical carcinomas of human by immunohistochemistry staining; the tumor infiltrating CD4+T and CD8+T cell were determined by immunofluorescent staining, and the apoptosis of tumor-infiltration lymphocytes was examined by TUNEL assay in those cases.
     The results showed that no PD-L1 expressed in normal cervical epithelium; PD-L1 negatively or weakly expressed in epithelia of high grade CIN, the average relative optical density was (0.82±0.75); and PD-L1 expressed in 70% (47/67) cervical carcinomas, the average relative optical density in superficial infiltrating (<5mm) and deep infiltrating cervical squamous cell carcinomas was (2.70±1.68) and (2.90±1.72). PD-1 expressed in partial tumor-infiltrating lymphocytes in those cases. There was a significantly different PD-L1 expression between the epithelium of CIN and the cervical carcinomas (P < 0.01), PD-L1 expression density of superficial invasive cervical carcinomas was slightly lower than that of deep invasive cervical carcinomas, but there was no significant statistic difference between them. PD-L1 expression negatively associated with the number of tumor-infiltrating CD8+T cells (r =-0.82, P<0.01), but did not associate with the number of tumor-infiltrating CD4+T cells (r =-0.05, P> 0.05); cervical carcinoma cells in metastatic lymph node did not express PD-L1 although primary cervical carcinoma cells express PD-L1; apoptosis occurred in partial tumor-infiltrating lymphocytes in cervical carcinomas.
     The study concludes that cervical carcinoma cells express PD-L1, and PD-L1 expression negatively associates with the number of tumor-infiltrating CD8+T cells, but do not associates with the number of tumor-infiltrating CD4+T cells. Lymph node metastatic cervical carcinoma cells dose not express PD-L1 although primary cervical carcinoma cells express PD-L1. PD-L1/PD-1 pathway may play role on apoptosis of tumor-infiltrating lymphocytes.
引文
[1] Jayshree SR, Sreenivas A, Tessy M, et al. Cell intrinsic & extrinsic factors in cervical carcinogenesis[J]. Indian J Med Res.2009, 130(3):286-295.
    [2]陈明,林仲秋. HPV感染致宫颈癌的免疫逃逸机制[J].国外医学妇产科学分册. 2007,34(1):50-53.
    [3] Piersma SJ, Jordanova ES, van Poelgeest MI, et al. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer[J]. Cancer Res. 2007, 67(1):354-361.
    [4] Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in escape from host immune system and tumor immunotherapy by PD-L1 blockade[J]. Proc Natl Acad Sci USA. 2002, 99(19):12293-12297.
    [5] Inman BA, Frigola X, Dong H, et al. Costimulation coinhibition and cancer[J]. Curr Cancer Drug Targets. 2007, 7(1):15-30.
    [6] Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion [J]. NatMed. 2002, 8(8):793-800.
    [7] Thompson RH, Dong H, Lohse CM, et al. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma[J]. Clin Cancer Res.2007, 13(6):1757-1761.
    [8] Ghebeh H, Mohammed S, Al-Omair A, et al. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors[J]. Neoplasia. 2006, 8(3):190-198.
    [9] Ghebeh H, Barhoush E, Tulbah A, et al. FOXP3+Tregs and B7-H1+/PD-1+T lymphocytes co-infiltrate the tumor tissues of high-riskn breast cancer patients: Implication for immunotherapy[J]. BMC Cancer. 2008,8:57.
    [10] Hamanishi J, Mandai M, Iwasaki M, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer[J].Proc Natl Acad Sci USA.2007, 104(9):3360-3365.
    [11] Wu C, Zhu Y, Jiang J, et al. Immunohistochemical localization of programmeddeath ligand-1(PD-L1) in gastric carcinoma and its clinical significance[J].Acta Histochem.2006, 108(1):19-24.
    [12] Karim R, Jordanova ES, Piersma SJ, et al. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma[J]. Clin Cancer Res. 2009, 15(20):6341-6347.
    [13] Keir ME, Francisco LM, Sharpe AH. PD-1 and its ligands in T-cell immunity[J]. Curr Opin Immunol. 2007, 19(3):309-314.
    [14] Monnier-Benoit S, Mauny F, Riethmuller D, et al. Immunohistochemical analysis of CD4t and CD8t T-cell subsets in high risk human papillomavirus-associated premalignant and malignant lesions of the uterine cervix[J]. Gynecol Oncol. 2006,102(1):22-31.
    [15] Jordanova ES, Gorter A, Ayachi O, et al. Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatoey T-cell ration: which variable determine survival of cervical cancer patients? [J]. Clin Cancer Res.2008, 14(7):2028-2035.
    [16] R. V. Parry, J. M. Chemnitz, K. A. Frauwirth, et al. CTLA-4 and PD-1 Receptors Inhibit T-cell Activation by Distinct Mechanisms [J]. Mol Cell Biol. 2005, 25(21):9543-9553.
    [17] Psyrri A, DiMaoi D. Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Pract Oncol[J]. 2008, 5(1):24-31.
    [18] Elson DA, Riley RR, Thordarson G, et al. Sensitivity of the cervical transformation zone to estrogen-induced squamous carcinogenesis[J]. Cancer Res.2000, 60(5):1267-1275.
    [19] Pudney J, Quayle AJ, Anderson DJ, et al. Immunological microenvironments in the human vagina and cervix: mediators of cellular immunity are concentrated in the cervical transformation zone[J]. Biol Reprod. 2005, 73(2):1253-1263.
    [20] Adurthi S, Krishna S, Mukherjee G, et al. Regulatory T cells in a spectrum of HPV-induced cervical lesions: Cervicitis, cervical intraepithlialneoplasia and squamous cell carcinoma[J]. Am Reprod Immunol.2008, 60(1):55-65.
    [21] Mota F, Rayment N, Chong S, et al. The antigen presenting environment in normal and human papillomavirus(HPV) related premalignant cervical epithelium[J]. Clin Exp Immunol. 1999, 116(1):33-40.
    [22] Kobayashi A, Miaskowski C, Wallhagen M, et al. Recent developments inunderstanding the immune response to HPV infection and cervical neoplasia[J]. Oncol Nurs Forum. 2000, 27(4):643-653.
    [23] Wang HY, Lee DA, Peng G, et al. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy[J]. Immunity. 2004,20(1):107-118.
    [24] Terabe M, Berzofsky JA. Immunoregulatory T cells in tumor immunity[J]. Curr Opin Immunol. 2004,16(2):157-162.
    [25] Welter MJ, Kenter GG, Piersma SJ, et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine[J]. Clin Cancer Res. 2008, 14(1):178-187.
    [26] Sheu BC, Hsu SM, Ho HN, et al. Reversed CD4/CD8 ratios of tumor-infiltrating lymphocytes are correlated with the progression of human cervical carcinoma[J]. Cancer.1999,86(8):1537-1543.
    [1] Jayshree SR, Sreenivas A, Tessy M, et al. Cell intrinsic & extrinsic factors incervical carcinogenesis[J]. Indian J Med Res. 2009, 130(3):286-295.
    [2] Aguilar-lemarroy A, Gariglio P, Whitaker NJ, et al. Restoration of p53 expression sensitizes human papillomavirus type 16 immortalized human keratinocytes to CD95-mediated apoptosis[J]. Oncogene. 2002, 21(2):165-175.
    [3] Filippova M, Song H, Connolly JL, et al. The human papillomavirus 16 E6 protein binds to tumor necrosis factor(TNF) R1 and protects cells from TNF-induced apoptosis[J]. Biol Chem. 2002, 227(24):21730-21739.
    [4] Lee SH, Kim JW, Lee HW, et al. Interferon regulatory factor-1(IRF-1) is a mediator for interferon-gamman induced attenuation of telomerase activity and human telomerase reverse transcriptase(hTERT) expression[J]. Oncogene. 2003, 22(3):381-391.
    [5] Clarke DT, Irving AT, Lambley EH, et al. A novel method for screening viral interferon-resistance genes[J]. Interferon Cytokine Res. 2004, 24(8):470-477.
    [6] Connor JP, F K, Kane JP, et al. Evaluation of Langerhans cells in the cervical epithelium of women with cervical intraepithelial neoplasia [J]. Gynecol Oncol. 1999,75(1):130-135.
    [7] Matthews K, L C, Baxter L, et al. Depletion of Langerhans cells in human papillomavirus type 16-infectde skin is associated with E6-mediated down regulation of E-cadherin[J]. Virol. 2003, 77(15):8378-8385.
    [8] Bais AG, Beckmann I, Lindemans J, et al. A shift to a peripheral TH2-type cytokine pattern during the carcinogenesis of cervical cancer becomes manifest in CINⅢlesions[J]. Clin Pathol. 2005, 58(10):1096-1100.
    [9] Pudney J, Quayle AJ, Anderson DJ, et al. Immunological microenvironments in the human vagina and cervix: mediators of cellular immunity are concentrated in the cervical transformation zone[J]. Biol Reprod. 2005, 73(2):1253-1263.
    [10] Benoit MS, Mauny F, Riethmuller D, et al. Immunohistochemical analysis of CD4+ CD8+ T cell subsets in high risk human papillomavirus-associated pre-malignant lesions of the uterine cervix[J]. Gynecol Oncol. 2006, 102(1):22-31.
    [11] Adurthi S, Krishna S, Mukherjee G, et al. Regulatory T cells in a spectrum of HPV-induced cervical lesions: Cervicitis, cervical intraepithlialneoplasia and squamous cell carcinoma. Am Reprod Immunol[J].2008, 60(1):55-65.
    [12] Mota F, Rayment N, Chong S, et al. The antigen presenting environment in normal and human papillomavirus(HPV) related premalignant cervical epithelium[J]. ClinExp Immunol. 1999, 116(1):33-40.
    [13] Welter MJ, Kenter GG, Piersma SJ, et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine[J]. Clin Cancer Res. 2008, 14(1):178-187.
    [14] Gajewski TF, Meng Y, Harlin H. Immune suppression in the tumor microenvironment[J]. Immunother. 2006, 29(3):233-240.
    [15] Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy[J].Cancer Immunol Immunother. 2005, 54(4):307-314.
    [16] Blank C, Kuball J, Voelkl S, et al. Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro[J]. Cancer. 2006, 119(2):317-327.
    [17] Karim R, Jordanova ES, Piersma SJ, et al. Tumor-expressed B7-H1 in Relation to PD-1+T-cell infiltration and survival of Patients with Cervical Carcionoma[J]. Clin Cancer Res. 2009, 15(20):6341-6347.
    [18]曹雪芹,黄庆华,李雍龙.与宫颈癌相关的人乳头瘤病毒的持续感染与免疫逃逸[J].国外医学病毒学分册. 2005, 12(6):181-185.
    [19]陈明,林仲秋. HPV感染致宫颈癌的免疫逃逸机制[J].国外医学妇产科学分册. 2007, 34(1):50-53.
    [20]王卫,陈春林,肖露露. HPV及HLA在宫颈癌发生中的免疫机制研究进展[J].国际妇产科学杂志. 2008, 35(4):232-235.
    [21]郝飞人类乳头瘤病毒感染局部细胞免疫缺陷的形成机制[J].国外医学皮肤性病学分册. 2001, 27(3):163-165.
    [22]李昌,勒伟,黄文杰等.引发宫颈癌的人类乳头状病毒及人类免疫缺陷病毒的发现[J].生物物理学报. 2008, 24(6):409-421.
    [23]王静,李晓楠.人类乳头瘤病毒、EB病毒感染与宫颈癌发生、发展的研究[J].中华医学丛刊. 2004, 4(1):3-4.
    [24] Psyrri A, DiMaoi D. Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Pract Oncol[J]. 2008, 5(1):24-31.
    [25] Elson DA, Riley RR, Thordarson G, et al. Sensitivity of the cervical transformation zone to estrogen-induced squamous carcinogenesis[J]. Cancer Res.2000, 60(5):1267-1275.
    [26] Kobayashi A, Miaskowski C, Wallhagen M, et al. Recent developments inunderstanding the immune response to HPV infection and cervical neoplasia[J]. Oncol Nurs Forum. 2000, 27(4):643-653.
    [27] Wang HY, Lee DA, Peng G, et al. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy[J]. Immunity. 2004, 20(1):107-118.
    [28] Terabe M, Berzofsky JA. Immunoregulatory T cells in tumor immunity[J]. Curr Opin Immunol. 2004, 16(2):157-162.
    [29] Sheu BC, Hsu SM, Ho HN, et al. Reversed CD4/CD8 ratios of tumor-infiltrating lymphocytes are correlated with the progression of human cervical carcinoma[J]. Cancer.1999, 86(8):1537-1543.
    [30] zur Hausen H. Papillomaviruses in human cancer[J]. Proc Assoc Am Physicians. 1999, 111(6):581-587.
    [31] Stanley M. Genital human papillomavirus infection-current and prospective therapies[J]. Natl Cancer Inst Monogr. 2003, 31(31):117-124.
    [32] zur Hausen H. Papillomaviruses causing cancer: evasion from host-and-cell control in early events in carcinogenesis[J]. Natl Cancer Inst. 2002, 92(9):690-698.
    [33] Brake T, Lambert PF. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model[J]. Proc Natl Acad Sci USA. 2005, 102(7):2490-2495.
    [34] Hanahan D, Weinberg RA. The hallmarks of cancer[J]. Cell. 2000, 100(1):57-70.
    [35] Zitvogel L, Tesniere A, Kroemer RD. Cancer despite immunosurveillance: immunoselection and immunosubversion[J]. Nature Res Immunol. 2006, 6(10):715-727.
    [36] zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application[J]. Nat Rev Cancer. 2002, 2(5):342-350.
    [37] Adams PD. Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks[J]. Biochim Biophys Act. 2001, 1471(3):123-133.
    [38] Ramdass B, Maliekal TT, Lakshmi S, et al. Coexpression of Notch1 and NF-kappaB signaling pathway components in human cervical cancer progression[J]. Gynecol Oncol. 2007, 104(2):352-361.
    [39] Tae Kim Y, Kyoung Choi E, Hoon Cho N, et al. Expression of cyclin E and p27(KIP1) in cervical carcinoma[J]. Cancer Lett.2000, 153(4):41-50.
    [40] Milde-Langosch K, Riethdorf S. Role of cell-cycle regulatory proteins ingynecological cancer[J]. Cell Physiol. 2003, 196(2):224-244.
    [41] Hardwick JM. Viral interference with apoptosis[J]. Semin Cell Dev Biol. 1998, 9(3):339-349.
    [42] Finzer P, Aguilar-Lemarroy A, Rosl F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis[J]. Cancer Lett.2002, 188(4):15-24.
    [43] Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med. 2004, 10(9):942-949.
    [44] Woo EY, Yeh H, Chu CS, et al. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation[J]. Immunol.2002, 168(9):4272-4276.
    [45] Fattorossi A, Battaglia A, Ferrandina G, et al. Lymphocyte composition of tumor draining lymph nodes from cervical and endometrial cancer patients[J]. Gynecol Oncol.2004, 92(1):106-115.
    [46] Wolf D, Wolf AM, Rumpold H, et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer[J]. Clin Cancer Res. 2005, 11(23):8326-8331.
    [47] Voo KS, Peng G, Guo Z, et al. Functional characterization of EBV-encoded nuclear antigen1-specific CD4+ helper and regulatory T cells elicited by in vitro peptide stimulation[J]. Cancer Res. 2005, 65(4):1577-1586.
    [48] Galon J, Costes A, Sanchez-Cabo F, et al. Type density and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science. 2006, 313(5795):1960-1964.
    [49] Almeida AR, Zaragoza B, Freitas AA. Indexation as a novel mechanism of lymphocyte homeostasis: The number of CD4+CD25+ regulatory T cells is indexed to the number of IL-2-producing cells[J]. Immunol. 2006, 177(1):192-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700