用户名: 密码: 验证码:
NaCl胁迫对牧草种子萌发与幼苗生理生化的影响及耐盐性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牧草种植是改良盐碱地的有效途径,而耐盐性的评价则是筛选、推广利用优质牧草种质的重要基础,对于改良与利用滨海盐渍化土壤具有重要意义。本研究以草木樨、苜蓿王、紫云英、沙打旺和小冠花5种豆科牧草为试验材料,采用0.0%(CK)、0.2%、0.4%、0.6%、0.8%、1.0%、1.2%、1.4%和1.6%九个NaCl盐浓度梯度,对5种牧草种子萌发和幼苗生长两个阶段进行盐胁迫处理。通过对牧草种子的相对发芽率、相对发芽势、耐盐指数、幼苗生长势及相对含水量、细胞膜透性、叶绿素含量、脯氨酸含量、丙二醛和可溶性糖含量以及保护酶活性等生理生化指标的测定,观测其在盐胁迫下的一系列生理生化反应,并进行综合评价得出其耐盐性强弱。结果表明:
     (1)供试的5种牧草种子萌发对NaCl盐胁迫的敏感浓度不一致。低盐浓度(0.2%,0.4%和0.6%)对牧草种子萌发具有促进作用,草木樨、苜蓿王和沙打旺的相对发芽率高于对照;随着盐浓度的升高,供试牧草的相对发芽率和相对发芽势呈明显的下降趋势。盐浓度>0.8%时相对发芽势下降幅度增大,盐浓度为1.6%时,相对发芽率和相对发芽势分别下降到72%和70%以下。二者与盐浓度之间均呈显著至极显著相关关系。
     (2)低浓度盐胁迫对幼苗生长具有一定的促进作用,在盐浓度为0.2%~0.8%之间,5种牧草的幼苗生长势均高于对照。幼苗生长势与耐盐指数均随盐浓度增大呈现先增加后降低的趋势。
     (3)随着盐浓度的增加,5种牧草叶片相对含水量下降,细胞膜透性增加;盐胁迫下,其叶绿素总量、叶绿素a、叶绿素b含量变化一致,随着盐浓度梯度的升高表现为先增大后降低的趋势,其开始降低的NaCl浓度>0.4%,叶绿素含量的变化主要归因于叶绿素a含量的变化;供试牧草叶绿素a含量与盐浓度之间呈显著至极显著相关关系,叶绿素b含量与盐浓度之间的相关关系依品种不同而有差别。
     (4)5种牧草幼苗MDA含量和可溶性糖含量依品种及盐浓度的不同而不同,总体上呈现出低浓度(<0.4%)时升高,随着盐浓度增加而显著降低。在低盐浓度(0.2%和0.4%)时,草木樨、沙打旺、苜蓿王和紫云英的可溶性糖含量高于对照,小冠花变化不明显;不同牧草可溶性糖含量差异明显,MDA含量和可溶性糖含量与盐浓度间均呈极显著负相关关系。
     (5)5种牧草体内游离脯氨酸含量和三种酶活性的变化随着盐处理浓度的增大呈现出先增大后降低的变化趋势。不同牧草体内脯氨酸的变化趋势各异,草木樨和沙打旺在不同浓度下游离脯氨酸含量均高于对照。NaCl浓度>1.0%时,苜蓿王、小冠花和紫云英的SOD活性明显下降,草木樨和沙打旺的SOD活性随着盐浓度的增大仅有小幅度的减小。供试牧草的POD和CAT活性在盐浓度为0.4%左右时出现峰值,随着盐浓度的增大而明显下降。
     (6)应用主成分分析法对耐盐性评价指标的筛选表明,在牧草种子萌发阶段,相对发芽率、相对发芽势、耐盐指数及幼苗生长势可作为牧草种子耐盐性的评价指标;在幼苗生长阶段,游离脯氨酸、叶绿素含量、SOD活性和可溶性糖含量可作为幼苗生长期耐盐性评价的首选指标。
     (7)应用隶属函数法对5种牧草进行综合评价,种子萌发阶段耐盐性大小顺序为苜蓿王>沙打旺>草木樨>小冠花>紫云英;牧草幼苗生长阶段耐盐性大小为草木樨>沙打旺>小冠花>苜蓿王>紫云英;对两个生育阶段耐盐性的综合评价为草木樨>沙打旺>苜蓿王>小冠花>紫云英。草木樨、沙打旺可在轻度、中度盐化土壤上种植,苜蓿王、小冠花可在轻度及潜在盐化土壤上种植,而紫云英不耐盐碱,仅可在潜在盐化土壤上种植。
Herbages growing is an effective way to modify the saline land,and assessment of salt tolerance is the important foundation of screening、utilizing and popularizing germplasms of high quality herbages. It plays an important role in modifying and utilizing coastal salinization soil. In this study, 5 leguminous herbages such as Melilotus albus L.、Medicago stiva L.、Astragalus sinicus L.、Astragalus adsurgens Pall. and Coronilla variable L. were employed to analyze as test materials. Using 9 salt concentration gradients that was 0.0%(CK)、0.2%、0.4%、0.6%、0.8%、1.0%、1.2%、1.4% and 1.6%,we made salt stress treatment to 5 herbages seeds in two stages that was seed germination and seedling growth. With determining some physiological and biochemical indexes,including relative germination rate、relative germination potential、salt tolerance index、seedling growth potential、relative water content、cell membrane permeability、Chlorophyll content、free proline content、MDA content、soluble sugar content and protective enzyme activity and so on, observing a series of physiological and biochemical response on salt stress treatment,and evaluating comprehensively,the order of salt tolerance could be obtained.The results showed that:
     (1) The sensitive concentration of of NaCl stress for 5 tested herbages were different.Low salt concentration (0.2%,0.4% and 0.6%) had promoting effect on seed germination of herbages.The relative germination rate of Melilotus albus、Medicago stiva and Astragalus adsurgens were higher than that in the control group.With the increase of salt concentration,relative germination rate and relative germination potential showed apparent downtrend.When the salt concentration was higher than 0.8%,relative germination rate and relative germination potential of tested herbages decreased a lot. When the salt concentration was 1.6%,relative germination rate and relative germination potential of tested herbages decreased to less than 72% and 70% respectively.Both showed significantly and extremely significant correlation with salt concentrations.
     (2) Low salt stress concentration had promotion effect on seedling growth of herbages.Between 0.2% and 0.8% salt concentrations,the seedling growth potential of 5 herbages were all higher than those in the control group.With the increase of salt concentration,seedling growth potential and salt tolerance index had the same change tendency as first increasing and then decreasing.
     (3) With the increase of salt concentration,the leaf relative water content of 5 herbages decreased,cell membrane permeability increased;Chlorophyll content、Chlorophyll a content and Chlorophyll b content showed similar changes on salt stress,the trend was first increasing and then decreasing.When the salt concentration was higher than 0.4%,the change of Chlorophyll content mainly attributed to the change of Chlorophyll a content. Chlorophyll a content showed significantly and extremely significant correlation with salt concentrations.The correlation between Chlorophyll b content and salt concentration were different relaying on the varieties of herbages.
     (4) The MDA content and soluble sugar content of 5 herbages varied according to varieties of herbages and salt concentration,both showed increasing at low salt concentration(less than 0.4%),and then decreasing significantly with the increasing of salt concentration.At the low salt concentration(0.2% and 0.4%),soluble sugar content of Melilotus albus、Astragalus adsurgens、Medicago stiva and Astragalus sinicus were higher than that in the control group,but Coronilla variable did not change significantly;different herbages had obviously different soluble sugar content, MDA content and soluble sugar content all showed extremely negatively significant correlation with salt concentrations.
     (5) The change of free proline content and three kinds of protective enzyme activity in 5 herbages showed first increasing and then decreasing trend with the increase of salt concentration.The change of free proline content showed different trends in different herbages,free proline content in Melilotus albus and Astragalus adsurgens were higher than that in the control group. When the salt concentration was higher than 1.0%, SOD activity of Medicago stiva、Coronilla variable and Astragalus sinicus decreased obviously,and SOD activity of Melilotus albus and Astragalus adsurgens had only small range of decreasing with the increase of salt concentration.When the salt concentration was 0.4%, POD activity and CAT activity appeared peak value,and with the increase of salt concentration,they decreased obviously.
     (6) Using principal component analysis to assess the index of salt tolerance,it showed that on the germination stage of herbages,the assessment index of salt tolerance of herbages seeds were relative germination rate、relative germination potential、salt tolerance indexand seedling growth potential;on the seedling growth stage of herbages,the first choice to assess salt tolerance were free proline content、Chlorophyll content、SOD activity and soluble sugar content.
     (7) Using membership function to assess comprehensively 5 herbages,it showed that the sequence of salt tolerance on the germination stage of herbages was Medicago stiva>Astragalus adsurgens > Melilotus albus > Coronilla variable > Astragalus sinicus;on the seedling growth stage of herbages,it was Melilotus albus>Astragalus adsurgens>Coronilla variable>Medicago stiva>Astragalus sinicus;on the two stages of growing, it was Melilotus albus>Astragalus adsurgens> Medicago stiva>Coronilla variable>Astragalus sinicus. Melilotus albus and Astragalus adsurgens could be planted on mild and moderate salinization land, Medicago stiva and Coronilla variable could be planted on mild or potential salinization land, Astragalus sinicus could not be tolerant of saline and alkaline,it could only be planted on potential salinization land.
引文
[1].班乃荣,陈兴会,张永宏,等.耐盐植物对盐碱地的改良效果试验[J].宁夏农林科技,2004(1):26-27
    [2].曹礼.旱稻对盐胁迫的生理响应[D].兰州:兰州大学硕士学位论文,2006
    [3].陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报,2003(2):177-182
    [4].陈洁.水稻幼苗耐盐性的定量鉴定及耐盐性生理生化研究[D].海口:华南热带农业大学硕士学位论文,2003
    [5].陈瑞珊.果树植物的耐盐力[J].河北农学报.1981,2:25-28
    [6].陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90
    [7].陈穗云,夏光敏,陈惠民,等.小麦与高冰草(长穗偃麦草)体细胞杂种株系与其亲本幼苗抗盐性的比较[J].西北植物学报,2000,20(3):327-332
    [8].陈月艳,孙国荣,李景信,等.Na2CO3胁迫对星星草种子萌发过程中水分吸收及膜透性的影响[J].草业科学,1997,(2):27-30
    [9].冯毓琴.天蓝苜蓿坪用性状的研究[D].兰州:甘肃农业大学硕士学位论文,2003,6:24-36
    [10].傅秀云,崔光泉,林昶.冬小麦耐盐力与脯氨酸含量的关系[J].山东农业科学,1988(2):5-7
    [11].高光林,蒋卫兵,俞开锦,等.盐胁迫对果树光合生理的影响[J].果树学报,2003,20(6):493-497
    [12].高桂娟,毛凯,杨春华,等.牧草及草坪草种子耐盐性研究进展[J].四川草原,2002,4:33-36
    [13].高英,同延安,赵营,等.盐胁迫对玉米发芽和苗期生长的影响[J].中国土壤与肥料,2007(2):30-34
    [14].龚明,丁念诚,贺子义,等.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841-846
    [15].韩清芳,李崇巍,贾志宽.不同苜蓿品种种子萌发期耐盐性的研究[J].西北植物学报,2003,23(4):597-602
    [16].侯建华,云锦凤,张东晖.羊草与灰色赖草及其杂交种的耐盐生理特性比较[J].草业学报,2005,14(1):73-77
    [17].郇树乾.热带牧草种子萌发期及幼苗期耐盐性研究[D].海口:华南热带农业大学硕士学位论文,2005
    [18].贾恢先,孙学刚.中国西北内陆盐碱地植物[M].北京:中国林业出版社, 2005
    [19].贾娜尔·阿汗,杨春武,石德成,等.盐生植物碱地肤对盐碱胁迫的生理响应特点[J].西北植物学报,2007,27(1):79-84
    [20].焦秀洁.NaCl胁迫下榉树生理生化特性的研究[D].南京:南京林业大学硕士学位论文,2009
    [21].卡恩.种子萌发的生理生化[M].北京:农业出版社.1990
    [22].李得全,邹琦,程炳嵩.植物渗透调节研究进展[J].山东农业大学学报,1991,22(1):86-90
    [23].李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:164-169
    [24].李加宏,愈仁培.水-土壤-植物系统中盐分的迁移和植物耐盐性研究进展[J].土壤学进展,1995,23(6):9-17
    [25].李建设,沈国伟,任长忠,等.燕麦种子萌发和幼苗生长对不同盐胁迫的反应[J].麦类作物学报,2009,29(6):1043-1047
    [26].李景生,黄韵珠.浅述植物的耐盐生理[J].植物学通报,1995,12(3):15-19
    [27].李善春.NaCl盐胁迫下5种地被观赏竹生理特性的研究[D].南京:南京林业大学硕士学位论文,2005
    [28].李尉霞.NaCl胁迫对大麦种子萌发及幼苗生理生化特性的影响[D].新疆:石河子大学硕士学位论文,2007
    [29].李影丽.NaCl胁迫对4树种生理生化和光合特性影响的研究[D].浙江:浙江林学院硕士学位论文,2008
    [30].梁云媚,李燕,多立安,等.不同盐分胁迫对苜蓿种子萌发的影响[J].草业科学,1998,15(6):21-25
    [31].廖详儒,贺普超,万怡震,等.盐胁迫对葡萄新梢叶片的伤害作用[J].果树科学,1996,13(4):211-214
    [32].廖详儒,贺普超.盐胁迫对葡萄叶H2O2消除系统的影响[J].园艺学报,1996,23(4):389-391
    [33].刘春华,苏加楷,黄文惠.禾本科牧草5个耐盐生理指标的研究[J].草业科学,1993(1):45-54
    [34].刘凤荣,陈火英,刘杨,等.盐胁迫下不同基因型番茄可溶性物质含量的变化[J].植物生理与分子生物学学报,2004,30(1):99-104
    [35].刘国道.热带牧草栽培技术[M].海南:海南出版社,2003
    [36].刘华,舒孝喜,赵银,等.盐胁迫对碱茅生长及碳水化合物含量的影响[J].草业科学,1997,14(1):18-20
    [37].刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].1987(4):1-7
    [38].刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994
    [39].卢少云,郭振飞.草坪草逆境生理研究进展[J].草业学报,2003,12(4):7-13
    [40].马健.几种引进树种耐盐性响应及耐盐性评价研究[D].南京:南京林业大学硕士学位论文,2009
    [41].毛培春.18种多年生禾草种子萌发期和幼苗期的耐盐性比较研究[D].内蒙古:内蒙古农业大学硕士学位论文,2004
    [42].穆俊丽,李建科,杨静慧,等.不同油葵品种种子萌发期的耐盐性研究[J].北方园艺,2009(5):26-30
    [43].穆俊丽,杨静慧,丁密超,等.7个草木樨品种的耐盐性研究[J].西北农林科技大学自然科学版,2009,37(1):73-78
    [44].齐冰洁,易津,袁金柱等.赖草属牧草种子及幼苗耐盐性生理基础的初探[J].干旱区资源与环境,2001,15(5)增刊:41-44
    [45].秦伟,韩晶,克热木·伊力.盐胁迫对榅桲种子萌发率、成苗率和酶活性的影响[J].新疆农业科学,2009,46(1):23-27
    [46].盛云飞.崇明农业园区滨海盐渍土上园林树木的生长适应性研究[D].南京农业大学,2004,62(5):38~42
    [47].束良佐,刘英慧.硅对盐胁迫下玉米幼苗叶片膜脂过氧化和保护系统的影响[M].厦门大学学报,2001,40(6):1295-1300
    [48].宋丹.几个引进树种幼苗耐盐特性及耐盐性评价研究[D].内蒙古:内蒙古农业大学硕士学位论文,2006
    [49].孙金月,赵玉男,常汝镇,等.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究[J].中国农业科学,1997,30(4):9-15
    [50].孙伟泽,韩博,胡晓宁,等.不同浓度盐胁迫下苜蓿丙二醛含量变化[J].安徽农业科学,2009,37(5):1905-1906,1911
    [51].谈建康,安树青,王铮锋,等.NaCl,Na2SO4和Na2CO3胁迫对小麦叶片自由基含量及质膜透性的比较研究[J].植物学通报,1998,(15):82-86
    [52].汤章诚.逆境条件下植物脯氨酸的积累及其可能的意义[J].植物生理学通讯,1984(l):51-54
    [53].吐尔逊娜依,高辉远,安沙舟,等.8种牧草耐盐性综合评价[J].中国草地,1995(1):30-32
    [54].汪良驹,马凯,姜卫兵,等.五种落叶果树的氯离子分布与耐盐性研究[J].中国南方果树1996,25(4):34-38
    [55].汪月霞,孙国荣,王建波,等.NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系[J].生态学报,2006,26(1):121-128
    [56].王斌,蔡兴旺.静电场处理对茄子种发芽的影响[J].韶关学院学报,2002,23(3):36-38
    [57].王广印,周秀梅,张建伟,等.不同黄瓜品种种子萌发期的耐盐性研究[J].植物遗传资源学报,2004,5(3):299-303
    [58].王洪春.植物抗性生理[J].植物生理学通讯,1981(6):72-73
    [59].王建华,刘鸿先,徐同,等.超氧化物酶(SOD)在植物逆境和意志生理中的作用[J].植物生理学通讯,1989(1):1-7
    [60].王敬龙.直立型小冠花品系生态适应性及耐盐性评价[D].甘肃:甘肃农业大学硕士学位论文,2007
    [61].王罗霞,赵志光,王锁民.一氧化氮对水分胁迫下小麦叶片活性氧代谢及膜脂过氧化的影响[J].草业学报,2006,15(4):104-108
    [62].王萍,郭继勋.盐碱化草地常见牧草耐盐机理研究[J].东北师范大学学报(自然科学版),1998a,3:116-119
    [63].王萍,殷丽娟,李建东,等.松嫩平原盐碱化草地羊草的生长适应性及耐盐性生理特性的研究[J].生态学报,1994(3):306-311
    [64].王萍,周天.在NaCl胁迫下羊草幼苗生理及外源钙的缓解效应[J].草地学报,1998c, 6(1):20-25
    [65].王萍.碳酸钠胁迫下羊草幼苗的生理效应及外源脱落酸的缓解效应[J].草业学报,1998b, 7(1):24-28
    [66].王锁民,朱兴运,赵银.盐胁迫对拔节期碱茅游离氨基酸成分和脯氨酸含量的影响[J].草业学报,1994,3(3):22-26
    [67].王晓栋.10份豆科牧草种质材料耐盐性研究[D].内蒙古:内蒙古农业大学硕士学位论文,2008
    [68].王晓鹏.外源性可溶性糖对长春花响应盐胁迫的影响[D].哈尔滨:东北林业大学硕士学位论文,2009
    [69].王怡丹,全炳武,朴京珠,等.水分胁迫对4种牧草苗期的抗旱性比较[J].延边大学农学学报,2007,29(2):101-106
    [70].王征宏,孔祥生,吕淑芳,等.盐胁迫下大豆叶片有机物质及荧光参数的变化[J].河南科技大学学报(农学版),2003,23(4):30-31
    [71].王遵亲.中国盐渍土[M].北京:科学出版社,1993.
    [72].翁森红,聂素梅,徐恒刚,等.禾本科牧草K+/Na+与其耐盐性的关系[J].四川草原,1998(2):22-23
    [73].翁森红,徐柱,师文贵,等.牧草叶片的叶绿素含量与牧草耐盐性的关系[J].四川草原,1999(1):11-14
    [74].翁森红.牧草耐盐性鉴定指标和方法的初步研究[J].中国草地,1992(1):30-32
    [75].武春霞,杨静慧,杜长城.日本农业环境保护对中国盐碱地改良的启示[J].天津农业科学,2008,14(3):43-44
    [76].肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818-825
    [77].徐恒刚,张萍,李临杭,等.对牧草耐盐性测定方法及其评价指标的探讨[J].中国草地,1997(5):52-54,64
    [78].徐恒刚.中国盐生植被及盐渍化生态治理[M].北京:中国农业科学技术出版社,2004
    [79].徐柱文.NaCl胁迫下五种一年生苜蓿的耐盐性比较研究[D].甘肃:甘肃农业大学硕士学位论文,2006
    [80].许鹏主编.新疆荒漠区草地与水盐植物系统及优化生态模式[M].北京:科学出版社,1998
    [81].许详明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387
    [82].易津,王学敏,谷安琳,等.驼绒藜属牧草种苗耐盐性评价及生理基础研究[J].草地学报,2003,11(2):110-116
    [83].尹尚军,石德成,颜红.Na2CO3胁迫下的星星草胁变反应部位的差异[J].草业学报,2001,10(4):101-106
    [84].于卓,孙祥,戴君峰,等.草地早熟禾品种间幼苗耐盐性差异的研究[J].草业学报,1997,5(2):128-132
    [85].张德罡.盐胁迫对五个早熟禾草坪草品种苗期细胞膜伤害性的研究[J].甘肃农业大学学报,1998,33(1):38-41
    [86].张建锋,李秀芬,宋玉民,等.盐分胁迫对林木种子发芽率的影响研究[J].中国生态农业报,2004,12(3):27-28.
    [87].张建锋,邢尚军,郗金标.黄河三角洲重盐碱地白刺造林技术的研究[J].水土保持学报,2004,18(6):144-147
    [88].张士功,高吉寅,宋景芝,等.硝酸钙对小麦幼苗生长过程中盐害的缓解作用[J].麦类作物,1998,18(5):60-64
    [89].张士功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响[J].植物学通报,1999,16(4):429-432
    [90].张述义,王金胜,郭春绒.盐胁迫下稀土元素对小麦萌发期过氧化氢酶过氧化物酶活性的影响[J].山西农业大学学报,1996,16(2):197-199
    [91].张苏江,江承凤,李艳霞.NaCl胁迫对4种豆科牧草种子萌发的影响[J].黑龙江畜牧兽医,2006(3):13-15
    [92].张宪政,作物生理研究法[M].北京:农业出版社,1992
    [93].张永峰,殷波.混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响[J].草业学报,2009,18(1):46-50
    [94].张玉霞,李志刚,杜晓艳,等.四种草地早熟禾抗盐碱生理生化特性的研究[J].中国农学通报,2004,20(5):209-213
    [95].张远冰,刘爱荣,方蓉.外源一氧化氮对镉胁迫下黑麦草生长和抗氧化酶活性的影响[J].草业学报,2008,17(4):57-64
    [96].张云起,刘世琦,王海波.耐盐砧木嫁接对西瓜幼苗抗盐特性的影响[J].上海农业学报,2004,20(3):62-64
    [97].张振华,严少华,胡永红.覆盖对滨海盐化土水盐运动和大麦产量影响的研究[J].土壤通报,1996,27(3):136-138
    [98].张振霞,刘萍,杨中艺.25个多年生黑麦草品种萌发期对盐胁迫的抗性研究[J].草业科学,2007,27(2):14-19
    [99].赵可夫,李法曾.中国盐生植物[M].科学出版社,1999
    [100].赵可夫,王韵糖.作物抗性生理[M].北京:农业出版社,1990
    [101].赵可夫.作物抗性生理[M].农业出版社,1990:249-313
    [102].赵忠,贾敬芬.苜蓿和红豆草耐盐细胞系的筛选及其生理生化特性的分析[J].兰州大学学报(自然科学版),1992,28(3):109-114
    [103].郑伟,王彬,蔡永强,等.NaCl胁迫下对火龙果种子萌发的影响[J].种子,2008(1):82-85
    [104].中山包著,马永彬译.发芽生理学[M].北京:农业出版社,1988:157-171,256-269
    [105].周爱清,罗顺.种子活力[M].北京:农业出版社,1990
    [106].周桂莲.麦类作物耐盐性机制研究进展[J].西北农业大学学报,1998,7(4):97-101
    [107].周滈,卓丽环,张荻.NaCl胁迫对偃伏梾木幼苗生理的影响[J].东北林业大学学报,2007,35(6):13-15
    [108].周学丽,卢素锦,周青平,等.NaCl胁迫对同德小花碱茅苗期生理特性的影响[J].草业科学,2009,26(6):101-105
    [109].朱建峰,田增荣,余玲,等.小麦耐盐性基因型差异研究[J].甘肃农业科技,1996,(8):7-8
    [110].朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报,1996,16(4):332-338
    [111].朱兴运,王锁民,阎顺国,等.碱茅属植物抗盐性与抗盐机制的研究进展[J].草业科学,1994,11(3):9-15
    [112].邹琦主编.植物生理学试验指导[M].北京:中国农业出版社,2000,7
    [113]. Borsani O.,Valpuesta V. and Botella M.A.Developing salt tolerant plants in a new century: a molecular biology approach [J]Plant Cell, Tissue and Organ Culture,2003,73(2):101 -115
    [114]. Cheeseman JM. Mechnaisms of salinity tolerance in plnats[J].Plant Physiol,1988,87:547-550
    [115]. Farquhar C D and Sharkey T D.Stomatal conductance and photosynthesis.Annual Review of Plant Physiology.1982,33:317-345.
    [116]. Fortmeier R,and Schubert S. Salt tolerance of maize(zea may L): the role of sodium exclusion[J]. Journal of Plant Cell and Environment, 1995,18:1041-1047.
    [117]. Gill K.S.et al.Physiological aspects of salt tolerance in barley and wheat grown in pots in coastal saline conditions.Indian J.of Agri. Sci.1987 (6):409-415.
    [118]. Hanson AD,Nelsen CE,Everson EH.Evalution of free proline accumulation as an index of drought resistance using two contrasting barley cultivars[J].Crop Sci.1977,17:720-734.
    [119]. Hason J B. Uptake by soybean Root Tissue Depleted of Calcium by Ethycenediamine tertaacetic Acid. Plant physiology,1960,39:450-460.
    [120]. Horst GL,Beadle NB.Salinity effects germination and growth of tall fescue cultivars[J].J Amer Soc Hort Sci.1984,109(3):419-422.
    [121]. Kovda V A.Loss of productive land due to salinazation[J].Ambio,1983,XII(2): 91-93
    [122]. L、Berntein.作物生产与盐渍度-土壤学译丛[M].北京:农业出版社.1983
    [123]. Lee D H,Y.S.Kim,C.B.Lee.The inductive responses of the antioxidantenzymes by salt stress in the rice(Oryza sativa L.)[J].PlantPhysiol.,2001,158:737-745
    [124]. Lepold A C. Willing R P. Evidence for toxicity effects of salt on memtranes in salt. Tolerance in Plants[C]. John Wiley & Sons. New York.1984:67-76.
    [125]. Levitt J.Responses of plants to environmental stress.Vol.Ⅱ2nd ed.New York:Acadamic press.1980.
    [126]. Malcolm E,Sumner R N.Sodic soils-distribution,properties,management,and environmental consequences[M].New York :Oxford University Press,1998.
    [127]. Mamis V B. Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis [J].Plant Physiology, 2002,128:73-83
    [128]. Manohar M S.Effect of osmotio systems on germintion of peas ( Pisum sativum,L.)[M].Planta.1966(71):81-86
    [129]. Mansour MMF.Changes in growth,osmotic potential and cell permeability of wheat cultivars under salt stress[J].Biologia Plantarum 1994,36(3):429-434
    [130]. Marcar N, Ismail S, Hossain A. Trees, shrubs and grasses for saltlands [M]. Canberra:Australian Centre for International Agricultural Research,1999
    [131]. Meyer MT,Smith MAL,Knight SL.Salinity effects on ST. Augustine grass:A novel system to quantify stress response[J].Plant Nutri.1989,12(7):893-908
    [132]. Munns R A. Whole plant responses to salinity. Aust J Plant Physical[J].1986(13):143-160
    [133]. Munns R,Gardner A,Tonnet ML and Rawson HM. Growth and development in NaCl-treated plants.Ⅱ.Aust J Plant Physical.1988(15):529-540
    [134]. Niknam S·R·&Mccomb J·Salt tolerance screening of selected Australianwoody species-a review[J]·Forest Ecol. Manage,2000,139:1-19
    [135]. Ochiai K·&MatohT·Mechanism of salt tolerance in the grass species, Anneurolepidium chinense·I·Growth response to salinity and osmotic adjustment[J]·Soil Sci·Plant Nutr, 2001,47: 579-585·
    [136]. Petrusa LM and Winicol L.Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl.Plant Physiol Biochem.1997,35:303-310
    [137]. Qian Y L,Ball S T an Z,et al. Freezing tolerance of six cultivars of buffalo grass[J].Crop Sci.2001,41:1174-1178
    [138]. Qian Y L,Wilhelm S J,Marcum K B. Comparative responses of two Kentucky bluegrass cultivars to Salinity stress[J].Crop Sci.2001,41:1895-1900
    [139]. Ralph W.Salt sensitivity in wheat[J].Journal of Plant Physiology.1986,(80):651-654
    [140]. Rao G G rao G R.Pigment composition and chlorphyllase activity in pigeon pea and ginegelle v and NaCl Salinity[J].Indian journal experimental biology,1981,19:768-770
    [141]. Rubio M.C.,E.M.Gonzalez and F.R.Minchin,et al.Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa over expressing superoxidedismutases[J]. Physiol. Plant.,2002,115:531-540
    [142]. Rumbaugh M D.Germination inhibination of alfalfa by two component salt mixture[J].Crop Sci.1993,33:1046-1050
    [143]. Sanada Y,Veda H,Kuribayashi K et al.Novel light-dark change of proline levels in halophyte (Mesembryanthemum crystallinum L.) and glycophytes (Hordeumvulgare L.and Triticum aestivum L.) leaves and roots under salt stress. Plant Cell Physiol.1995,36(6):965-970
    [144]. Santa-Cruz A,Acosta M,Rus A et al.Short-term salt tolerance mechanisms in differentially salt tolerant tomato species.Plant Physiol Biochem.1999,37(1):65-71
    [145]. Shannon M C.Principles strategies ingreeding for higher salt tolerance[J].Plant soil. 1985(9): 227-241
    [146]. Soussi M,Ocana A and Liuch C.Effects of salt stress on growth,photosynthesis and nitrogen fixation in chick-pea(Cicer arietinum L.).J Exp Bot,1998,49(325):1329-1337
    [147]. Stewar C R,Lee J A.The role of proline accumulation in halophytes[J].Planta,1974:120-279
    [148]. Watad AA,Reinhold L,Lerner HR.Comparision between as table NaCl selected Nicotianacell lieand wild type[J].Plant Physiol,1983,73:624-632
    [149]. Werber A,Stelzer R.Physiological response of the mangrove RhizoPhora mangle growth in the absence and presence of NaCl[J].Plan Cell and Eneiron,1990(13):243-255

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700