用户名: 密码: 验证码:
表面硅烷化改性纯钛及其细胞相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及其合金材料具有良好的机械性能和生物相容性,在口腔和骨修复以及外科矫形种植领域有着广泛的应用。但是,钛作为生物惰性材料,植入人体后很难和宿主骨间形成强有力的化学键合;除此之外,钛表面形成的氧化膜很薄,在生理环境和负载条件下,无法完全阻止种植体向基体材料释放金属离子。这些都严重影响了钛基种植体的临床应用。因此,有必要对钛进行表面改性来完善其生物学性能以适应临床应用。
     为了促进材料表面的细胞粘附、增殖和分化并且改善组织愈合,本研究首先对纯钛表面进行碱洗处理,再通过采用γ-氨丙基三乙氧基硅烷偶联剂(KH-550)硅烷化改性处理在表面构建过渡层,并体外评价活性过渡层对成骨细胞生物学的影响。
     为了在钛表面获得富含Ti-OH基团的活性氧化膜,纯钛首先进行了碱处理。处理后借助XRD(X-射线衍射)、XPS(X-光电子能谱)表征表面的化学成分,SEM(扫描电镜)观察钛表面氧化膜的微观形貌。结果显示,碱处理后钛表面为微孔结构,表面为含羟基的二氧化钛层。表明碱热处理后的纯钛表面富含的羟基增加了材料的活性,而且通过钛羟基与硅醇的缩合反应为纯钛材料表面硅烷化提供了可能。
     纯钛经过碱热预处理以后,本研究通过采用直接浸渍法和冷凝回流法在材料表面共价固定γ-氨丙基三乙氧基硅烷(KH-550),然后通过KH-550的活性氨基基团还可以作为后续实验中固定生物大分子的功能基团,为金属材料的生物化、智能化奠定基础。采用SEM、XPS、EDX(X-射线能谱仪)FT-IR(傅里叶红外光谱仪)等技术及其他现代分析手段对材料进行较为深入系统的研究。
     通过对体外培养的4-5代HMSCs(入骨髓间质干细胞)在材料表面黏附、增殖及分化的检测,评价材料的细胞相容性。结果显示硅烷化改性纯钛可促进HMSCs向成骨细胞分化,并且促进了细胞的早期黏附,用荧光免疫组化的方法对细胞骨架蛋白观察发现在24h内可使形成良好的铺展形态;倒置荧光显微镜和扫描电镜观察及MTT结果表明硅烷化改性纯钛具有良好的生物相容性,可促进人骨髓间质干细胞在活性层表面的黏附、铺展、增殖和分化。本文通过利用硅烷化改性的方法研究了纯钛材料表面构建活性过渡层的可行性,为钛基金属的表面改性和生物活性设计提供了一种新思路。活性过渡层使材料表面成分更为合理,在分子及细胞水平符合细胞、机体的要求,将可能使材料表面特性在骨整合不同阶段更加优化及合理。
Titanium metal and its alloys have been widely used as dental implants, skeletal repair and orthopedic for their superior mechanical properties and good biocompatibility. However, as bio-inert material, it is difficult to form a strong chemical bonding between titanium and host bone after implantation. In addition, the oxidation film on titanium surface is too thin to prevent ion release from matrix under the physical environment and load conditions. These have seriously affected the clinical application of titanium-based implant. Therefore, it is necessary to improve its surface properties to adapt to clinical application.
     In this paper, the titanium plates were alkali-treatment and modified withy-aminopropyl triethoxysilane coupling agent (KH-550) to form a transition layer on it to improve the adhesion, proliferation and differentiation of cell and the healing of tissue. The biological property of the transition layer was evaluated by in-vitro test.
     The titanium plates were treated with alkali first to get enough Ti-OH on it. The chemical composition of the specimens were evaluated by XRD and XPS, and the morphology was characterized by SEM. It shows that there is pores structure on titanium surface after alkali-treatment, and there is a layer of TiO2 containing Ti-OH. It illustrated that the activity of the titanium was improved after alkali-treatment, and it provides the possibility to get silane surface of titanium by the condensation reaction of Ti-OH and Si-OH.
     They-aminopropyl triethoxysilane coupling agent (KH-550) was prepared on the titanium surface after alkali-treatment by direct impregnation and reflux condensation method. Then, the -NH2 on KH-550 could be used to bond functional groups of biological macromolecules to form bioactive and intelligent surface on metal. A in-depth research specimens properties was processed by SEM, XPS, EDX and FT-IR.
     The HMSCs (generation 4 to 5) were cultured on the surface of the specimens, and the biocompatibility of the specimens was evaluated by the adhesion, proliferation and differentiation of the HMSCs. It shows that the silane surface could improve the adhesion of the cells on early stage, and promote the differentiation of the HMSCs to osteoblast. The cytoskeletal protein was observed by the fluorescent immunohistochemistry method, and the result shows that the cells have a well spread on silane surface. The results of inversion fulorescence microscope, scanning electron microscopy and MTT test show that the silane titanium has good biocompatibility, and could promote the adhesion, spread, proliferation and differentiation of HMSCs. The saline titanium surface were prepared to form a transition layer in this paper, and it provide a new idea to improve the bioactivity of the titanium implantation.
     The transition layer made the components of the surface more reasonable at the level of molecular and cell, and maybe optimize the property of the materials surface at different stages of osseointegration.
引文
[1]Li DH, Liu BL. The microstruction of medical-use titanium surface, Overseas Medicine-Biomedicine Engineering Fasci-cule,1997;20(1):24[李德华,刘宝林。医用钛表面的微观改造.国外医学生物医学工程册,1997;20(1):24].
    [2]Nanci A,Wuest JD,Peru L,Brunet P,et al.Chemical modification of titanium surfaces for covalent attachment of biological molecules.J-Biomed-Mater=Res.1998;40(2):324-335
    [3]Kasemo B.Biological surfaces science.Surface Science,2002;500:656-677
    [4]Puleo DA, Nanci A.Understanding and controlling the bone-implant interface. Biomaterials, 1999;20(23-24);2311-2321.
    [5]Puleo DA, Nanci A.Understanding and controlling the bone-implantinterface. Biomaterials, 1999;20(23-24);2311-2321.
    [6]Brunski JB, Puleo DA, Nanci A.Biomaterials and biomechanics-of oral and maxillofacial implants:current status and future developments.Int J Oral Maxillofac Implants,2000;15(1):15-46
    [7]Cooper LF, Masuda T, Whitson SW, et al.Formation of mineralizing osteoblast cultures on machined, titanium oxide grit-blasted, and plasma sprayed titanium surfaces.Int J Oral Maxillofac Implants,1999,14(1):37-47.
    [8]Cochran DL, Schenk RK,Lussi A,et al.Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface:a histometric study in the canine mandible.J Biomed Mater Res,1998;40(1):1-11.
    [9]Baier RE. Implant surface preparation. Int J Oral Maxillofac Implant,1988;3(1):9-20.
    [10]Hamamoto N, Hamamoto Y, Nakajima T,et al. Histological,histocytochemical and ultrastructural study on the effects of surface charge on bone formation in the rabbit mandible. Arch Oral Biol,1995,40(2):97-106.
    [11]Krckowski M, Shively RA, Osdoby P,Eppley BL. Stimulation of craniofacial and intramedullary bone formation by negatively charged beads. J Oral Maxillofac Surg,1990, 48:468-475.
    [12]Casaletto MP,Ingo GM,Kaciulis S, Mattogno G,et al.Surface studies of in vitro biocompatibility of titanium oxide coatings. Applied Surface Science,2001,172:167-177.[13] Lacefield WR. Current status of ceramic coatings for dental implants. Implant Dent,1998;7(4):315-22.
    [14]Oliva A,Salerno A, Locard B, et al. Behaviore of human osteoblasts cultured on bioactive glasss coatings.Biomaterials,1998; (19):1019-1025.
    [15]Puleo DA,Nanci A.Understanding and controlling the bone-implant interface.Biomaterials,1999;20(23-24);2311-2321
    [16]Stanford CM. Surface modifications of implants, Oral Maxillofacial Surg Clin N Am,2002; 14:39-51.)
    [17]Puleo DA,Nanci A.Understanding and controlling the bone-implant interface.Biomaterials,1999;20(23-24);2311-2321
    [18]王涛,张其清。表面生物控制-生物材料,国外医学生物医学工程分册,1997;20(2):90-94
    [19]Hench LL,Polak JM.Third-generation biomedical materials.Science,2002;295:1014-1017.
    [20]Puleo DA,Nanci A.Understanding and controlling the bone-implant interface.Biomaterials,1999;20(23-24);2311-2321
    [21]Healy KE.Molecular engineering of materials for bioreactivity[review].Current Opinion in Solid State & Materials Science,1999;4:381-387
    [22]Rezania A,Healy KE.Biomimetic peptide surfaces that regulate adhesion,spreading,sytoskeketal organization,and mineralization of the matrix deposited by osteoblast-like cells.Biotechnol Prog,1999; 15:19-32
    [23]Puleo DA,Nanci A. Understanding and controlling the bone-implantinterface.Biomaterials,1999;20(23-24);2311-2321.
    [24]Brunski JB,Puleo DA,Nanci A.Biomaterials and biomechanics-of oral and maxillofacial implants:current status and future developments.Int J Oral Maxillofac Implants,2000;15(1):15-46
    [25]Schwartz J,Avaltroni MJ,Danahy MP,et al.Cell attachment and spreading on metal implant materials.Materials Science and Engineering C,2003;23:395-400
    [26]Kokubo T,Hyun-Min Kim HM,Kawashita M.Novel bioactive materials with different mechanical properties.Biomaterials,2003;24:2161-2175
    [27]Uchida M,Kim HM,Kokubo T,et al.Structral dependence of apatite formation on titania gels in a simulated body fluid.J Biomed Mater Res,2002;60:277
    [28]Kim HM,Miyaji F,Kokubo T,et al.Effect of heat treatment on apatite forming ability of Ti metal induced by alkali treatment.J.Mater Sci;Mater Med,1997; 105:111
    [29]Li PJ,Degroot K.Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo.J Biomed Mater Res,1993,27:1495-1500
    [30]Wang XX,Hayakawa S,Tsuru K,et al.Improvement of the bioactivity of H2O2/TaC15-treated titanium after asubsequent heat treatment.J Biomed Mater Res,2000;52:171-176
    [31]Wang XX,Hayakawa S,Tsuru K,et al.Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution.Biomaterials,2002;23:1353-1357
    [32]Uchida M,Kim HM,Kokubo T,et al.Structral dependence of apatite formation on titania gels in a simulated body fluid.J Biomed Mater Res,2002;60:277
    [33]Wu JM,Hayakawa S,Tsuru K,et al.Crystallization of anatase fromamorphous titania in hot water and in vitro biomineralization.J.Ceram Soc Jpn,2002;11078
    [36]Puleo DA,Kissling RA,Sheu MS.A technique to immobilize bioactive proteins,including bone morphogenrtic protein-4(BMP-4),on titanium alloy.Biomaterials,2002;23:2079-2087
    [35]Morra M,Cassinelli C,Cascardo G,et al.Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies.Biomaterials,2003;24:4639-4654
    [34]陈治清,张敏,邱静,冉均国等。低温等离子体活化处理骨修复材料的组织学研究,中华口腔医学杂志1998,33(5):294-296
    [37]赵清。医用氧化铝生物陶瓷材料表面的离子束改性。清华大学硕士学位论文,1993
    [38]白薇。纯钛材料表面离子束改性的研究。四川大学博士学位论文,2002
    [39]杨云志。人体硬组织生物梯度材料的研究。华西医科大学博士后工作报告,1999
    [40]Shirkhanzadeh M.Nanoporous alkoxy-derived titanium oxide coating:a reactive overlayer for functionalizing titaniym surface.J Mater Sci:Mater Med,198;9(6)355
    [41]Campell AA,Fryxell GE,Linehan JC,et al.Surface induced mineralization:A new method for producing calcium phosphate coatings.J Biomed Mater Res,1996;32(1)111-117
    [42]Endo K. Chemical modification of meitallic implant surfaces with biofuncational proteins (Part 1).Molecular structure and biological activity of a modified NiTi alloy surface.Dent Mater.1995; 14:185-189
    [43]Puleo DA.Activity of enzyme immobilized on silanized Co-Cr-Mo.J Biomed Mater Res.1995;29:951-957
    [44]黄辉,马轩祥,付涛等。生物材料表面固定粘附肽调节小鼠成骨细胞骨钙素的表达。使用空腔医学,2001,17(2):86-88
    [45]黄辉,马轩祥,朱光辉等,粘附肽精氨酸甘氨酸-天冬氨酸促进小鼠成骨细胞在材料表面的附着和铺展,实用口腔医学,2001,17(4)294-296
    [46]EdwinE.P.著。梁发思,谢世杰译。硅烷和钛酸酯偶联剂[M].上海:上海科学技术文献出版社,1987:2.
    [47]周宁琳。有机硅聚合物导论[M].北京:科学出版社,2000:168-172.
    [48]Vignesh Palanivel, Danqing Zhu, Wim J. van Ooij. Nanoparticle-filled silane films as chromate replacements for aluminum alloys[J]. Progess in Organic Coatings,2003,(47):384-392.
    [49]晨光化工研究院有机硅编写组.有机硅单体及聚合物[M].北京:化学工业出版社,1986:430.
    [50]何敏婷.偶联剂在涂料及复合材料中的应用[J].现代涂料与涂装,2002,02:32-349.
    [51]R.C.Hooper, Proc.SPIConf. Reinforced Plast,Div.11th Sect8-B(1956).
    [52]W.A.Zisman.Sruface chemistry of plastics reinforced by strong fibers[J].I E C Product Research and Development,1963,8(2):98-111.
    [53]E.P.Plueddeman.Interfaceon polymer Matrix Composites [J].Acadmemic Press,1974:1-10.
    [54]Child T.F.and vanOoijW.J.Application of Silane Technology to Prevent Corrosion of Metals and Improve Paint Adhesion[J],Trans IMF,1999,77(2):64-70.
    [55]W.J. Van Ooij, T.Child.Protecting metals with silane coupling agents[J].Chemtech,1998,28(2):26-35.
    [56]G.P..Sundararajan,W.J.vanOoij.Silane based pretreatments for automotive steels.Surface Engineering,2000[J],16(4):315-320.
    [57]W.J. Van Ooij.Metal preteatde with an aqueous solution containing a dissolved inorganic silicate or aluminate, organofunctional and a nonfunctional silane for enhance corrosion resistance[P]. US.5,433,976;July 18,1995.
    [58]Van Ooij.Metal substrate with enhanced corrosion resistance and improved paint adhension [P].US.5,455,080;Octoer3,1995.
    [59]Van Ooij.Metal substrate eith enhance corrosion resistance and improved paint adhension [P].US.5,539,031; July23,1996.
    [60]徐溢。硅烷试剂防腐蚀工艺研究[J].材料保护,2001,34(11):32-34.
    [61]赖琛。耐高温防腐蚀涂料的研制[D].湖南大学,2002:25-27.
    [62]赖春晓。涂膜起泡和剥离的形成机理及防止方法[J].全面腐蚀控制,2001,16(2):15-18.
    [63]刘志文,刘敬福,李赫亮。表面处理对环氧涂胶层剪切强度的影响[J].表面技术,2002,31(3):12-14.
    [64]王胜先,林薇薇,段洪东.硅烷改性丙烯酸系乳胶涂料抗蚀性的阻抗谱研究[J].中国腐蚀与防护学报,1998,18(1):62-66.
    [65]尹志岚,袁媛,刘昌胜。硅烷偶联剂对不锈钢表面膜基结合强度的影响[J].功能高分子学报,2004,17(2):298-303.
    [66]周宁琳.有机硅聚合物导论[M].北京:科学出版社,2000,5,第1版:168-172.
    [67]Pan G. Adhesion promoters-surface coating [J]. Thin Solid Films,2006 (5):34-39.
    [68]D. Zhu, W. J. van Ooij, Electrochim. Acta 49 (2004) 1113.
    [69]W. Trabelsi, L. Dhouibi, E. Triki, M. F. Montemor, Surf. Coat. Technol.192 (2005)284.
    [70]F. Deflorian, S. Rossi, L. Fedrizzi, Electrochim. Acta 51 (2006) 6097.
    [71]徐斌,满瑞林,曹晓燕等.镀锌钢板的硅烷表面改性[J].防腐科学与防护技术,2008,20(2).
    [72]ZHU D Q, VAN OOIJ W J. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane [J]. Progress in Organic Coatings, 2004,49 (1):42-53.
    [73]ZHU D Q,VAN OOIJ W J. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl].tetrasulfide and bis-[trimethoxysilylpropyl] amine [J].Electrochimica Acta,2004,49 (7):1113-1125.
    [74]CHOU T P, CHANDRASEKARAN C, LIMMER S J, et al. organic hybrid coatings for corrosion protection [J]. Journal of Non-Crystalline Solids,2001,290 (2/3):153-162.
    [75]METROKE T L, GANDHI J S, APBLETT A. Corrosion resistance properties of Ormosil coatings on 2024-T3 aluminum alloy [J]. Progress in Organic Coatings,2004,50 (4):231-246.
    [76]METROKE T L, KACHURINA O, KNOBBE E T. Spectroscopic and corrosion resistance characterization of amine and super acid-cured hybrid organic-inorganic thin films on 2024-T3 aluminum alloy [J]. Progress in Organic Coatings,2002,44 (3):185-199.
    [77]METROKE T L, APBLETT A. Effect of solvent dilution on corrosion protective properties of Ormosil coatings on 2024-T3 aluminum alloy [J]. Progress in Organic Coatings,2004,51(1): 36-46.
    [78]Gettings M, Kinloch A J J.Mater. Sci,1977,12 (8):2511-2518
    [79]徐溢,唐守渊,张晓凤.金属表面硅烷试剂膜结构及性能表征方法[J].光谱学与光谱分析,2004,(04).
    [80]Kevin C, Olbriich, Thomas T,et al. Surfaces modified with covalently immobilized adhesive peptides affect fibroblast population motility.Biomaterials,1996; 17(8):759
    [81]Plueddemann EP, Leyden DE (1991) Silane Coulpling Agents.Plenum Press, New York
    [82]陈佳龙,李全利,陈俊英,黄楠等.利用胶原-肝素自组装多层膜改善纯钛表面血液相容性的研究.功能材料,2008,39(8):1363-1369.
    [83]ChenJialong et al. Functional Materials [J],2008,8 (39):1363-1369. [84] Yu Sen et al. Rare Metal Materials and Engineering [J],2009,38(3):0384-0388.
    [85]庄燕燕,胡仁,陈菲,等.钛植入体表面生物化学改性的研究进展[J].生物医学工程学杂志,2005,22(3):618-621.
    [86]Morra M.Biochemical modification of titanium surfaces:peptide and ECM proteins. Eur Cell Mater.2006,12:1-15.
    [87]Guozhi, Xie et al. Applied Polymer Science [J],2009,4(114):2344-2347.
    [88]Wen, Jianping et al. Chinese Ceramic Society [J],2008,8(35):1040-1045.
    [89]Li, Yin et al.Donghua University (English Edition) [J],2008,4(25):453-457.
    [90]Zhang, Yi et al. Macro molecular Science, PartB:Physics [J],2009,2(48):391-404
    [91]赵瑶兴,孙祥玉.有机分子结构光谱鉴定[M].北京:科学出版社.2003.3.
    [92]Muschler GF, Midura RJ. Connective tissue progenitors:practical concepts for clinical applications. Clin Orthop,2002,39:66-80.
    [93]Kuznetsov SA, Mankani MH, Gronthos S, et al. Circulation skeleted stem cell. Cell Biol, 2001,15:1134-1140.
    [94]Takafumi O, Masanobu K, Kasuiku H. Age- related changes of human bone marrow, a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophage. Mechan Age Develop,2000,117:57-68.
    [95]Grundel RE, Chapman MW, Yee T, Moore DC. Autogeneie bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna.Clin OrthoP Relat Res,1991,266:244-258
    [96]Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet,1987, 20(3):263-272.
    [97]Bianco P, Robey PG Stem cells in tissue engineering. Nature,2001,414 (6859):118-121
    [98]杨志明,余希杰,解慧琪,等.不同来源成骨细胞生物学特性比较研究.中华创伤杂志,2001;17(1):10-13.
    [99]. Kadiyala S, Young RG, Thede MA, et al. Culture expanded canine mesenchymal stem cells possess osteochongrogenic potential in vivo and in vitro. Cell Transplant,1997,6(2):125-134.
    [100]Jaiswal N, haynesworth SE, Caplan Al, et al. Osteogenic differentiation of purified, culture expanded human mesenchymal stem cells in vivo. J Cell Biochem,1997,64(2):295-312.
    [101]Orlie D, Kajstura J, Chimenti S, et L. Bone marrow cells regenerate infarcted myocardium.Nature,2001,410(6829):701-705.
    [102]Majumdar MK, Thiede MA, Mosea JD, et al. Phenotypie and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells.J Cell Physiol,1998,176(1):57-66.
    [103]项鹏,张丽蓉,陈振光,夏文杰,张秀明,李艳,李树浓.成人骨髓间质干细胞定向诱导为脂肪细胞的研究.中国病理生理杂志,2001,17:598-601。
    [104]Digirolamo CM, Stokes D, Colter D, et al. Propagation and senescence of human marrow stromal cells in culture:a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol,1999,275-281.
    [105]Minguell JJ,Eriees A, Conget P. Mesenehymal stem cells. ExP Biol Med (Maywood),2001, 226(6):507-520.
    [106]Kadiyala S, Young RG, Thiede MA, Bruder Sp. Culture expanded canine mesenehymal stem cells possess osteoehondrogenie potential in vivo and in vitro. Cell Trans Plant,1997, 6(2):125-34.
    [107]Cheng SL, Zhallg SF, Avioli LV, Expression of bone matrix proteins during dexamethasone-induced mineralization of human bone marrow stromal cells. J Cell Bioehem, 1996,61(2):182-93.
    [108]Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part11: effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials,2000:21(11):1095-102.
    [109]Wlodarski KH. Properties and origin of osteoblasts. Clin Orthop Relat Res. United States, 1990,276-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700