用户名: 密码: 验证码:
催化裂化反应再生系统流动与反应耦合模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先根据实验室小冷模装置(H=3.0m,D=0.012m)的实验数据(以空气及FCC(RHZ-300)催化剂为流化介质,表观气速U o为2.95~3.44 m /s ,固体质量通量Gs为23~40 kg /m 2s )建立了一个可预测的CFB提升管数学模型。计算及实验数据均表明:(a)在表观气速一定的情况下,轴向平均空隙率随固体循环通量的增加而减小;(b)在固体循环通量一定的情况下,轴向平均空隙率随表观气速的增大而增大;(c)在表观气速一定的情况下,整个提升管压降随固体循环通量的增大而增大,尤其是提升管底部变化最为明显。
     模型将CFB提升管轴向分两段进行建模:底部加速段—即从固体颗粒入口处到被加速到一个不变的上行速度段及充分发展段—即流动特性均不再随提升管高度变化,从加速段结束处直到提升管出口段。模型假设提升管内气固两相呈环-核流结构,模型的输入参数包括提升管操作条件(如固体循环通量、表观气速)、提升管几何尺寸和流化介质的物理属性。同时,该模型可以很容易地与反应动力学模型耦合进行过程模拟
     其次,为了适应气体体积膨胀的反应过程,建立了变气速循环流化床流体力学模型,并采用其特例定气速实验数据进行了验证,结果表明数学模型完全可靠。
     最后,采用该变气速流体力学模型结合四集总反应动力学模型建立了适合于FCC提升管的流动反应耦合模型,在模拟的小提升管(H=3.0m,D=0.012m)中计算表明:(a)原料油VGO通过3m长的提升管的最终转化率为93%。中间产物汽油在大约1m处就达到了最大值(约57%),之后随着二次反应的深入而逐渐下降,最终出口收率43%左右。C1-C4气体及焦炭则随着反应的加深而不断上升,出口收率分别为约40%和10%。(b)颗粒与气相两相温度分布规律:入口处,由于裂化反应剧烈,大量吸热,导致催化剂温度迅速下降,油汽温度迅速上升,大约在提升管高度的三分之一处,两相温度基本达到平衡。(c)催化剂颗粒在提升管底部有大量聚集,提升管上部空隙率很快达到一个定值。(d)从入口到出口,整个模拟提升管压降大约在8.6kPa。
     此外,尝试建立了常规单段逆式再生器的烧焦反应模型。将再生器按拟均相两区模型进行建模,即密相床和自由沉降区。模拟计算了再生器内催化剂含碳随时间的动态变化规律、催化剂碳含量随再生器位置的分布规律、烟道气中氧,一氧化碳,二氧化碳等组分相对于再生空气/烟道气的摩尔比率分布规律等。
In the present study, based on the data from a bench scale riser (H=3.0m, D=0.012m, air and FCC catalyst are used as fluidizing agent, superficial velocity U0=2.95~3.44m/s, solid flux Gs=23~40kg/m2s). Firstly, a predictive mathematical model is proposed. The model calculation and experimental data shown: (a) Axial voidage increases with superficial velocity and decreases with the solid flux; (b) Higher solid volume fraction along riser in small scale riser than that in large scale one in the similar condition, especially in the bottom zone; (c) With the same superficial gas velocity, pressure gradient along the riser increases with the solid flux.
     The proposed model assumes the CFB riser to be axially composed of two regions: an acceleration zone at the riser base, where solids re-injected from a standpipe are accelerated to a constant upward velocity, and a fully-developed region, where the flow characteristics are invariant with height, extending from the end of the acceleration region to the rise exit. The model postulates the existence of core-annulus type of flow structure and is based on both fundamental principles and empirical relationships. The input parameters to the model including the riser operate conditions (solids circulation flux and gas superficial velocity), riser geometry and gas and solids physical properties. What’s more, it can be easily coupled to kinetic models for process simulation.
     Secondly, in order to couple the model with gas expanded reaction, a“variable-superficial velocity”hydrodynamic model was established for CFB riser, and applied the model to predict normal experimental data, it further confirmed the reliability of the proposed model. Finally, coupling the variable-superficial velocity hydrodynamic model with four lumps kinetic model, a hydro-kinetic model was established for FCC riser. The simulation proposed a riser reactor with 3 meter in height and 0.012 meter in diameter. The predictive results shown: (a) The conversion of the feedstock (VGO) is 93% through the 3-meter riser reactor, and most reaction take place in the initial third height of the riser. Intermediate product gasoline reach a peak (about 57%) at 1m, then gradually decreased for the secondary reaction. Final yield is 43% at the exit. As the final product, C1-C4 and coke final yield are 40% and 10%, respectively. (b) Two phase temperature distribution: at the inlet, the catalyst temperature declined for the fierce absorbs heat of catalytic reaction. And for feedstock (VGO), it fast increased to the balance with catalyst at one-third length of riser. (c) It shown that catalyst particles clustered in the bottom, but soon be accelerated and a constant average voidage is obtained in the upper section. (d) From the entrance to the exit, absolute pressure is decline, the whole riser pressure drop about 8.6kPa.
     Besides, a conventional single-stage reverse-type regenerator is considered in the present thesis. The proposed model assumes the regenerator to be axially composed of two regions: dense bed, where majority of the catalyst are located and coke burning reactions take place, and freeboard, where a few ejected catalyst are captived by gravity and cyclones and after-burning take place. The model is used to simulation the coke concentration on catalyst against residence time, the coke concentration on regenerated catalyst against the height of regenerator, and the molar ratio of oxygen, carbon monoxide, carbon dioxide to regenerate air and/or to total stack gas along the regenerator.
引文
[1] F. Berruti, T. S. Pugsley, L. Godfroy, et al. Hydrodynamics of circulating fluidized bed risers: A review[J]. The Canadian Journal of Chemical Engineering, 1995, 73(5): 579-602
    [2] K. S. Lim, J. X. Zhu, J. R. Grace. Hydrodynamics of gas-solid fluidization[J]. International Journal of Multiphase Flow, 1995, 21(Supplement 1): 141-193
    [3] D. Bai, A. S. Issangya, J. R. Grace. A novel method for determination of choking velocities[J]. Powder Technology, 1998, 97(1): 59-62
    [4] L. Marmo, G. Rovero, G. Baldi. Modeling of catalytic gas-solid fluidised bed reactors[J]. Catalysis Today, 1999, 52(2-3): 235-247
    [5] A. Gungor. One dimensional numerical simulation of small scale CFB combustors[J]. Energy Conversion and Management, 2008, In Press, Corrected Proof.
    [6] A. Gungor. Predicting axial pressure profile of a CFB[J]. Chemical Engineering Journal, 2008, 140(1-3): 448-456
    [7] A. Gungor, N. Eskin. Hydrodynamic modeling of a circulating fluidized bed[J]. Powder Technology, 2007, 172(1): 1-13
    [8] J. J. Nieuwland, R. Meijer, J. A. M. Kuipers, et al. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows[J]. Powder Technology, 1996, 87(2): 127-139
    [9] M. J. Rhodes, M. Sollaart, X. S. Wang. Flow structure in a fast fluid bed[J]. Powder Technology, 1998, 99(2): 194-200
    [10] D. M. J. Puchyr, A. K. Mehrotra, L. A. Behie, et al. Modelling a circulating fluidized bed riser reactor with gas-solids downflow at the wall[J]. The Canadian Journal of Chemical Engineering, 1997, 75(2): 317-326
    [11] D. M. J. Puchyr, A. K.Mehrotra, L. A. Behie. Hydrodynamic and kinetic modelling of circulating fluidized bed reactors applied to a modified claus plant[J]. Chemical Engineering Science, 1996, 51(pp): 5251-5262
    [12] P. Schlichthaerle, J. Werther. Axial pressure profiles and solids concentration distributions in the CFB bottom zone[J]. Chemical Engineering Science, 1999, 54: 5485-5493
    [13] A. S. Issangya, J. R. Grace, D. Bai, et al. Further measurements of flow dynamics in a high-density circulating fluidized bed riser[J]. Powder Technology, 2000, 111(1-2): 104-113
    [14] X. Qi, J. Zhu, W. Huang. Hydrodynamic similarity in circulating fluidized bed risers[J]. Chemical Engineering Science, 2008, 63(23): 5613-5625
    [15] D. Bai, E. Shibuya, Y. Masuda, et al. Flow structure in a fast fluidized bed[J]. Chemical Engineering Science, 1996, 51(6): 957-966
    [16]李静海,欧阳洁,高士秋,等.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社, 2005: 122
    [17] M. J. Rhodes, X. S. Wang, H. Cheng, et al. Similar profiles of solid flux in circulating fluidized-bed risers[J]. Chemical Engineering Science, 1992, 47(7): 1635-1643
    [18] G. S. Patience, J. Chaouki. Gas phase hydrodynamics in the riser of a circulating fluidized bed[J]. Chemical Engineering Science, 1993, 48(18): 3195-3205
    [19] T. A. Berry, T. R. McKeen, T. S. Pugsley, et al. Two-Dimensional Reaction Engineering Model of the Riser Section of a Fluid Catalytic Cracking Unit[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5571-5581
    [20] N. Mostoufi, J. Chaouki. Flow structure of the solids in gas-solid fluidized beds[J]. Chemical Engineering Science, 2004, 59(20): 4217-4227
    [21] N. Mostoufi, H. Cui, J. Chaouki. A Comparison of Two- and Single-Phase Models for Fluidized-Bed Reactors[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5526-5532
    [22] H. T. Bi. Some Issues on Core-Annulus and Cluster Models of Circulating Fluidized Bed Reactors[J]. The Canadian Journal of Chemical Engineering, 2002, 80: 809-817
    [23] J. Wang, M. A. van der Hoef, J. A. M. Kuipers. Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: A tentative answer[J]. Chemical Engineering Science, 2008, In Press, Corrected Proof: 622-625
    [24] T. S. Pugsley, F. Berruti. A predictive hydrodynamic model for circulating fluidized bed risers[J]. Powder Technology, 1996, 89(1): 57-69
    [25] T. S. Pugsley, F. Berruti. The circulating fluidized bed catalytic reactor: Reactor model validation and simulation of the oxidative coupling of methane[J]. Chemical Engineering Science, 1996, 51(11): 2751-2756
    [26] R. Wong, T. Pugsley, F. Berrut. Modelling the axial voidage profile and flow structure in risers of circulating fluidized beds[J]. Chemical Engineering Science, 1992, 47(9-11): 2301-2306
    [27] T. S. Pugsley, G. S. Patience, F. Berruti, et al. Modeling the catalytic oxidation of n-butane to maleic anhydride in a circulating fluidized bed reactor[J]. Industrial &Engineering Chemistry Research, 1992, 31(12): 2652-2660
    [28] J. J. Nieuwland, E. Delnoij, J. A. M. Kuipers, et al. An engineering model for dilute riser flow[J]. Powder Technology, 1997, 90(2): 115-123
    [29] L. Huilin, S. Qiaoqun, H. Yurong, et al. Numerical study of particle cluster flow in risers with cluster-based approach[J]. Chemical Engineering Science, 2005, 60(23): 6757-6767
    [30] H. Sabbaghan, R. Sotudeh-Gharebagh, N. Mostoufi. Modeling the acceleration zone in the riser of circulating fluidized beds[J]. Powder Technology, 2004, 142(2-3): 129-135
    [31] H. Cui, N. Mostoufi, J. Chaouki. Characterization of dynamic gas-solid distribution in fluidized beds[J]. Chemical Engineering Journal, 2000, 79(2): 133-143
    [32] S. K. Gupta, F. Berruti. Evaluation of the gas-solid suspension density in CFB risers with exit effects[J]. Powder Technology, 2000, 108(1): 21-31
    [33]周鲁,刘钟海.复杂反应动力学基础[M].重庆:成都科技大学出版社, 1994
    [34] V. W. Weekman, D. M. Nace. Kinetics of Catalytic Cracking Selectivity in Fixed,Moving,and Fluid Bed Reactors[J]. AIChE J, 1970, 16(3): 397-404
    [35] S. M. Jacob, B. Gross, S. E. Voltz, et al. A Lumping and Reaction Scheme for Catalytic Cracking[J]. AIChE J, 1976, 22(4): 701-713
    [36] B. Gross, S. M. Jacob, C. Hill, et al., Simulation of catalytic cracking process[M]. United States, 1976.
    [37]毛信军,翁惠新,朱钟敏,等.催化裂化集总动力学模型的研究Ⅲ.轻燃料油原料和产物的分析及动力学常数的测定[J].石油学报(石油加工), 1985, 1(4): 11-17
    [38]沙颖逊,陈香生,刘继绪,等.催化裂化集总动力学模型的研究Ⅰ.物理模型的确立[J].石油学报(石油加工), 1985, 1(1): 3-15
    [39]王顺生,翁惠新,毛信军,等.催化裂化集总动力学模型的研究Ⅳ.重燃料油网络动力学参数的测定[J].石油学报(石油加工), 1988, 4(3): 18-25
    [40]翁惠新,王顺生,朱钟敏,等.催化裂化反应动力学模型的研究——轻燃料油催化裂化反应网络及动力学常数的确定[J].石油炼制, 1986, 2): 16-22
    [41]朱开宏,毛信军,翁惠新,等.催化裂化集总动力学模型的研究Ⅱ.实验方案的计算机事前模拟[J].石油学报(石油加工), 1985, 1(3): 47-55
    [42] X. Meng, C. Xu, J. Gao. Coking behavior and catalyst deactivationfor catalytic pyrolysis of heavy oil[J]. Fuel, 2007, 86(1720-1726
    [43]刘英聚,张韩.催化裂化装置操作指南[M].北京:中国石化出版社, 2005
    [44]陈俊武.催化裂化工艺与工程(第二版)下册[M].北京:中国石化出版社, 2005
    [45]罗雄麟,袁璞,林世雄.催化裂化装置的动态模拟与操作分析[J].石油大学学报(自然科学版), 1999, 23(5): 102-109
    [46] I.-S. Han, C.-B. Chung. Dynamic modeling and simulation of a fluidized catalytic cracking process. Part I: Process modeling[J]. Chemical Engineering Science, 2001, 56(5): 1951-1971
    [47] L. R. Willams, Modeling and Optimization of a Two-Stage Regenerator Fluid Catalytic Cracking Unit[D]. Houston, Texas: Rice University, 1998
    [48]罗雄麟,袁璞,林世雄.催化裂化装置动态机理模型Ⅱ.再生器部分[J].石油学报(石油加工), 1998, 14(02): 61-65
    [49] R. Roman, Z. K. Nagy, M. V. Cristea, et al. Dynamic modelling and nonlinear model predictive control of a Fluid Catalytic Cracking Unit[J]. Computers & Chemical Engineering, 2008, In Press, Corrected Proof(1-13
    [50] I.-S. Han, C.-B. Chung. Dynamic modeling and simulation of a fluidized catalytic cracking process. Part II: Property estimation and simulation[J]. Chemical Engineering Science, 2001, 56(5): 1973-1990
    [51] C. Jia, S. Rohani, A. Jutan. FCC unit modeling, identification and model predictive control, a simulation study[J]. Chemical Engineering and Processing, 2003, 42(4): 311-325
    [52] H. Ali, S. Rohani, J. P. Corriou. Modelling and Control of a Riser Type Fluid Catalytic Cracking (FCC) Unit[J]. Chemical Engineering Research and Design, 1997, 75(4): 401-412
    [53] I.-S. Han, J. B. Riggs, C.-B. Chung. Modeling and optimization of a fluidized catalytic cracking process under full and partial combustion modes[J]. Chemical Engineering and Processing, 2004, 43(8): 1063-1084
    [54]陈俊武.催化裂化工艺与工程(第二版)中册[M].北京:中国石化出版社, 2005
    [55] I.-S. Han, C.-B. Chung, J. B. Riggs. Modeling of a fluidized catalytic cracking process[J]. Computers & Chemical Engineering, 2000, 24(2-7): 1681-1687
    [56] A. Gupta, D. Subba Rao. Effect of feed atomization on FCC performance: simulation of entire unit[J]. Chemical Engineering Science, 2003, 58(20): 4567-4579
    [57] R. Ramachandran, G. P. Rangaiah, S. Lakshminarayanan. Data analysis, modeling and control performance enhancement of an industrial fluid catalytic cracking unit[J]. Chemical Engineering Science, 2007, 62(7): 1958-1973
    [58] U. K. Chitnis, A. B. Corripio. On-line optimization of a model IV fluid catalytic cracking unit[J]. ISA Transactions, 1998, 37(3): 215-226
    [59]罗雄麟,袁璞,林世雄.催化裂化装置动态机理模型Ⅰ.反应器部分[J].石油学报(石油加工), 1998, 14(01): 34-40
    [60]罗雄麟,袁璞,林世雄.催化裂化装置动态机理模型Ⅲ.催化剂流动和压力系统[J].石油学报(石油加工), 1998, 14(03): 33-37
    [61]罗雄麟,袁璞,林世雄.催化裂化装置动态机理模型Ⅳ.模型求解与仿真软件平台[J].石油学报(石油加工), 1998, 14(04): 50-56
    [62] G. S. Patience, J. Chaouki, F. Berruti, et al. Scaling considerations for circulating fluidized bed risers[J]. Powder Technology, 1992, 72(1): 31-37
    [63] S. Ouyang, X.-G. Li, O. E. Potter. Circulating fluidized bed as a catalytic reactor: Experimental study[J]. AIChE Journal, 1995, 41(6): 1534-1542
    [64] M. Das, A. Bandyopadhyay, B. C. Meikap, et al. Axial voidage profiles and identification of flow regimes in the riser of a circulating fluidized bed[J]. Chemical Engineering Journal, 2008, 145(2): 249-258
    [65] S. Ouyang, O. E. Potter. Consistency of circulating fluidized bed experimental data[J]. Industrial & Engineering Chemistry Research, 1993, 32(6): 1041-1045
    [66] L.-S. Lee, Y.-W. Chen, T.-N. Huang, et al. Four-lump kinetic model for fluid catalytic cracking process[J]. The Canadian Journal of Chemical Engineering, 1989, 67(4): 615-619
    [67] H. Zupeng, Modeling, simulation,stability analysis and control of a modern fluidized catalytic cracker[D]. New York: City University of New York, 1995
    [68] R. Mabrouk, J. Chaouki, C. Guy. Effective drag coefficient investigation in the acceleration zone of an upward gas-solid flow[J]. Chemical Engineering Science, 2007, 62(1-2): 318-327
    [69] K. N. Theologos, N. C. Markatos. Advanced modeling of fluid catalytic cracking riser-type reactors[J]. AIChE Journal, 1993, 39(6): 1007-1017
    [70] A. Almuttahar, F. Taghipour. Computational fluid dynamics of a circulating fluidized bed under various fluidization conditions[J]. Chemical Engineering Science, 2008, 63(6): 1696-1709
    [71] X.-B. Qi, J. Zhu, W.-X. Huang. A new correlation for predicting solids concentration in the fully developed zone of circulating fluidized bed risers[J]. Powder Technology, 2008, 188(1): 64-72
    [72] D. Bai, K. Kato. Quantitative estimation of solids holdups at dense and dilute regions of circulating fluidized beds[J]. Powder Technology, 1999, 101(3): 183-190
    [73] R. Koenigsdorff, J. Werther. Gas-solids mixing and flow structure modeling of the upper dilute zone of a circulating fluidized bed[J]. Powder Technology, 1995, 82(3): 317-329
    [74] H. T. Bi, J. Zhou, S. Z. Qin, et al. Annular wall layer thickness in circulating fluidized bed risers[J]. The Canadian Journal of Chemical Engineering, 1996, 74(5): 811-814
    [75] K. S. Won, K. Gorkem, B. Hsiaotao, et al. Flow structure and thickness of annular downflow layer in a circulating fluidized bed riser[J]. Powder Technology, 2004, 142(1): 48-58
    [76] A. T. Harris, R. B. Thorpe, J. F. Davidson. Characterisation of the annular film thickness in circulating fluidised-bed risers[J]. Chemical Engineering Science, 2002, 57(13): 2579-2587
    [77] W. Zhang, F. Johnsson, B. Leckner. Fluid-dynamic boundary layers in CFB boilers[J]. Chemical Engineering Science, 1995, 50(2): 201-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700