用户名: 密码: 验证码:
输气管道在线内检测器驱动系统力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在线内检测器的驱动系统设计是实现输气管道在线内检测的关键技术,是保证输气管道检测结果真实性的重要因素。本文旨在研究影响在线内检测器稳定运行的各种因素,为在线内检测器的设计及其在输气管道内的速度控制提供理论依据。
     首先,在分析输气管道在线内检测器物理模型的基础上,建立输气管道在线内检测器的受力简化模型和运动方程,得到运动过程中所受的摩擦阻力大小主要取决于驱动皮碗的结构;同时,对在线内检测器运动过程中的爬坡能力、下坡能力、弯道通过能力和越障能力进行分析,建立相应的数学模型。
     其次,建立底部为刚性体的驱动皮碗模型,通过对运动过程中摩擦阻力进行求解,得出在线内检测器稳定运行所需压差与驱动皮碗结构设计的关系。设计了底部为刚性体的驱动皮碗模型,在所搭建的实验台上进行试验,将试验数据与理论计算结果进行比较分析,验证了理论计算的正确性。
     最后,通过对不同驱动皮碗模型在运动过程中所受摩擦阻力的求解,建立各种驱动皮碗模型在实际水平管道和地势起伏地段管道内的运动方程,得到选取不同驱动皮碗时,其自身的结构、管道的粗糙度、管内障碍物等对在线内检测器稳定运行所需驱动压差的影响,以及选用不同驱动皮碗模型,其各部分的结构设计。另外,对在线内检测器的启动、停止情况进行,掌握检测器的启停规律,计算出启动时在短时间内供应大量压缩空气的时间及其输气量,以保证打开阀门时,在线内检测器不被气体反推回来。
Drive system design of on-line detection device is the key technology to realize gas pipeline in-line detection, and the important factor to ensure the authenticity of the test result of gas pipeline. This article aims to study all kinds of factors which impact the stable operation in the gas pipeline of on-line detection device, obtain the relationship between the range of various parts of the structure and the drive pressure, in order to provide the theoretical basis for the speed control of on-line detection device.
     Firstly, at the base of analyzing the physical model of on-line detection device, establish force analysis simplified model and equation of motion of gas pipeline on-line detection device, obtain that the frictional resistance during moving depends on the structural design of drive cuffs. Meanwhile by analyzing the climbing ability, obstacle capability and capacity through the corners, obtain the corresponding mathematical model.
     Secondly , establish drive cuffs model with rigid bottom, by solving the frictional resistance, obtain the relationship between pressure needed and structure design of drive cuffs when the device are moving stably in the gas pipeline. Design a model with rigid bottom, according to the procedure results to design the drive cups model whose bottom is the rigid body. Under different condition try the on-line detection device model with drive of the rigid bottom in the structure of the test stand. Compare the data obtained from a large amount of experimental data and theoretical calculations data, in order to improve the correctness of the theory obtained.
     Lastly, by solving frictional resistance of all kinds of drive cuffs in motion, establish the equations of motion and scheduled procedures when the on-line detection device with all kinds of drive cuffs is moving in the horizontal and the rugged gas pipeline, Through analyzing the curve output of the scheduled procedures, when different drive cuffs were selected, structural design of the drive cuffs, roughness of the pipeline, obstacle in the pipeline and so on impact the driving pressure that needed by the on-line detection device when it’s moving stably in the gas pipeline. Obtain range of various parts of the structure, when different drive cuffs are selected. In addition, by analyzing the stop and the start situation of on-line detection device, grasp the start and the stop law of on-line detection device, calculate the time of supplying a large number of gas before the device start, in order to guarantee that the device is not pushed back against when the valve is opened.
引文
[1]何宏,李琳,江秀汉.管道内腐蚀检测技术进展[J].西安石油学院学报(自然科学版),2001,16(03):43-46.
    [2]李莺莺.油气管道在线内检测技术若干关键问题研究[D].天津:天津大学,2006:1-30.
    [3]卢秀泉.石油管道检测机器人流场数值模拟及PIV实验研究[D].天津:天津大学,2008:1-10.
    [4]姚安林,刘艳华,李又绿灯.国内外油气管道完整性管理技术比对研究.研究与探讨.
    [5]刘强,王树立,赵书华等.油气储运行业管道机器人发展现状与展望[J].管道技术与设备,2006,6:24-26。
    [6]张云伟.煤气管道检测机器人系统及其运动控制技术研究[D].上海:上海交通大学,2007:1-20.
    [7]Seiji AOYAGI, Syoji NAKAI, Kazuyoshi MAEDA.A Basic Study on a Mobile Robot for Maintaining Pipes[J].Int.J.Japan Soc.Prec.Eng.1991,25(3):233-234.
    [8]张学文.管道机器人三轴差动式驱动单元设计与可靠性研究[D].吉林:吉林大学,2008:1-20.
    [9]李著信,苏毅,吕宏庆等.管道在线检测技术及检测机器人研究[J].后勤工程学院学报,2006,04:41-45.
    [10]Allen.A.Pennington.Techniques Developed to Solve Problems of Unpiggable Lines[J].Pipe line Industry,1992(11):71-73.
    [11]Norsk Elektro Optikk A/S﹒www. neo. no /research/pipeline
    [12]孟浩龙,李著信,王芬菊等.管道内差压驱动机器人相关流场数值模拟研究[J].应用力学学报,2007,24(01):102-106.
    [13]S.T.Tolmasquim, A.O.Nieckele.Design and control of pig perations through pipelines[J].Journal of Petroleum Science and Engineering,2008(62):102-110.
    [14]Jun Okamoto Jr, Julio C.Adamowski, Marcos S.G.Tsuzuki.Autonomous system for oil pipelines inspection.Mechatronics,1999(9):731-743.
    [15]F.Esmaeilzadeh, D.Mowla, M.Asemani.Modeling of Pig Operations in Natural Gas and Liquid Pipeline.Society of Petroleum Engineers,2006.
    [16]P.Loilier, C.Omgba-Essama, C.Thompson.Numerical experiments of two-phase flow in pipelines with a two-fluid compressible model.Multiphase Production Technology,2005(12):25-27.
    [17]Haun R.Analysis and Modeling of Pipeline Dewatering and Startup[J].Pipe Line Industry,1986,64(3).
    [18]S.M.Hosseinalipour, A.Zarif Khalili, A.Salimi.Numerical Simulation of Pig Motion through Gas Pipelines[J].Iran Univercity of Scicence and Technology,2007,11.
    [19]邓宗全,毕德学.管道机器人[J].机器人技术与应用,1996(6):12~14.
    [20]姜生元,邓宗全,李斌等.内置动力源管内X射线探伤机器人的研制[J].机器人,2001,3(23):211-216.
    [21]邓宗全,王永福,张晓华等.小口径管内补口作业机器人的研究[J].机器人,1997,4(19).
    [22]徐小云,颜国正,丁国清等.管道机器人适应不同管径的三种调节机构的比较[J].光学精密工程,2004,12(1):60-65.
    [23]陆麟,章亚男,沈林勇等.适应管径变化的管道机器人[J].机械设计,2007,1(24):16-18.
    [24]钱晋武,章亚男,沈林勇等.微小管道检测机器人系统[J].高技术通讯,2001,2:92-94.
    [25]杨金娥.管道内防腐智能补口机及防腐质量检测仪[J].油气田地面工程,2001,3(20):41-42.
    [26]刘鸿升.钢制管道内涂层补口及检测补涂机[J].石油工程建设,1993,1:55-56.
    [27]邓宗全,陈军,姜生元等.六独立轮驱动式管内机器人的研制[J].高技术通讯,2004,9:54-58.
    [28]王忠巍,曹其新,栾楠等.海底管道机器人智能控制器的研制[J].高技术通讯,2008,2(18):142-146.
    [29]白世武.中国石油天然气管道行业的无损检测技术发展及其与国外的交流与合作[J].无损检测,2007,29(12):685-689.
    [30]刘晨东,王琳平等.高精度管道漏磁线检查技术的应用[J].石油和化工设备,2008,02:44-45.
    [31]杨理践,刑燕好,高松巍.高精度管道漏磁在线检测系统的研究[J].无损探伤,2005,29(1):20-22.
    [32]吕平,吴明,栗佳等.清管器在输油管道中的运动规律研究[J].管道技术与设备,2006,5:42-44.
    [33]缪娟,吴明,郑平等.清管作业对低输量原油管道稳定性的影响[J].油气储运,2008,27(9):55-58.
    [34]王亚新,栗佳,包瑞新.输油管道清管器受力分析研究[J].辽宁石油化工大学学报,2007,27(2):39-41.
    [35]史培玉,岳明,李玉星等.水平管路清管过程流动参数变化规律模拟研究[J].中国海上油气(工程)2003,15(6):2-32.
    [36]刘楠,李著信,胡文君等.管道检测机器人动力学及流场分析研究[J].流体传动与控制,2006,3:19-21.
    [37]孟浩龙,李著信,王菊芬等.管内检测机器人周围流场的三维数值计算[J].石油学报,2006,27(6):128-132.
    [38]孟浩龙,李著信,王菊芬等.管道内压差驱动机器人相关流场数值模拟研究[J].应用力学学报,2007,24(1):102-106.
    [39]许冯平,邓宗全.管道机器人在弯道处通过性的研究[J].机器人,2004,26(2):155-160.
    [40]吕英民.天然气长输管道调度手册.石油大学出版社,1994,12:157-167.
    [41]吕英民.材料力学(Ⅰ).石油大学出版社[M],1994,12:157-167.
    [42]徐芝纶.弹性力学(上册).高等教育出版社[M],2006,7:63-67.
    [43]刘宏波,吴明,周立峰.输油管线中清管器运行规律研究[J].天然气与石油,2006,24(1):17-19.
    [44]陈建华,张永兴,李秀全等.清管器发射接收装置的实际及应用[J].石油矿场机械,2009,38(8):82-84.
    [45]SY/T6597-2004,钢制管道内检测技术规范[S].
    [46]SY/T5922-2003,天然气管道运行规范[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700