用户名: 密码: 验证码:
基于稻草和污泥为营养源硫酸盐还原菌处理酸性矿山排水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在无外加中和剂的情况下,以活性污泥为硫酸盐还原菌(SRB)的接种菌群,考察了接种菌群对酸性废水初始pH的耐受范围,分别添加稻草、油菜秆、乙醇、乙酸和葡萄糖等五种有机物,评价了硫酸盐还原菌对这五种有机碳源的可利用性,深入研究了硫酸盐还原菌以稻草和污泥为营养源处理酸性矿山排水(pH=2.5)的过程,并分析了稻草和污泥投加量对处理过程的影响,以期为低成本原位处理酸性矿山排水(AMD)提供指导和方法。
     在不投加化学中和剂的情况下,以污泥为硫酸盐还原菌的接种菌群,在初始pH为3~7的模拟矿山排水中,经过短期培养可实现SRB驯化及硫酸盐还原;而在初始pH为2的条件下,SRB活性受到抑制,经过三周培养无明显硫酸盐还原。分别向体系中添加五种有机碳源后,仅投加了乙醇或稻草的体系可在短期内实现硫酸盐还原,其中投加乙醇的体系中SO42-还原率最高为94.5 %,其次为稻草,SO42-还原率为54.2 %。对照实验(仅含污泥的体系)中硫酸盐浓度仅降低了约50 mg/L,说明外加碳源可促进体系中SRB驯化及硫酸盐还原。
     SRB以稻草和污泥为营养源处理人工模拟酸性矿山排水时,污泥中的碱性物质可在反应之初迅速中和废水的部分酸度,使反应体系pH值升至适宜SRB生长的水平。SRB以污泥为碳源时硫酸盐还原率较低,添加稻草可促进反应体系中硫酸盐的还原,使硫酸盐还原率从65.9 %升至79.2 %。含污泥的反应体系中铜离子去除率均高于99 %,SRB驯化前铜离子的去除主要归因于污泥的吸附作用。改变体系中污泥和稻草的投加比例,一方面影响着体系中pH的变化,因为反应基质的酸中和能力主要与污泥的投加量或浓度有关。另一方面,污泥和稻草的投加比例直接决定供给SRB利用的C、N和P的水平。当污泥和稻草的投加比例为0.077时,体系中C:N:P比值为92:3.2:1,硫酸盐还原率最高为79.8 %,说明当pH不是抑制SRB活性的因素时,在此投加比例下硫酸盐还原菌还原硫酸盐的能力最强。以稻草和污泥为营养源可实现低成本酸性矿山排水处理,这对于矿山环境的原位修复有实际意义。
In this thesis, a series of experiments were conducted to offer a low cost and effective way for in situ acid mine drainage (AMD) treatment. Sewage sludge was used as sulfate-reducing bacteria (SRB) seed and the tolerance degree of inoculation bacteria to initial pH of acid waste water was tested. Five organic materials (rice straw, rape straw, ethanol, acetate and glucose) were selected to investigate how well these promote sulfate reduction by SRB. A further research was carried out to study the process of SRB biological treatment of synthetic acid mine drainage (pH=2.5) by using rice straw and sewage sludge as nutrition sources, and to analyze the effect function of dosage of these two organic substrates.
     Batch experiment results showed that when sewage sludge was used as SRB seed, SRB acclimation was achieved and sulfate reduction was detected in reactors containing waste water with initial pH 3~7 after a short-term incubation, but three weeks later in the reactor containing waste water with initial pH 2, no sulfate reduction was observed because the activity of SRB was inhibited. A small quantity (~ 50 mg/L) sulfate was reduced in the control reactor containing only sewage sludge. When the five organic materials were added, ethanol was most effective in promoting sulfate reduction (94.5 %), followed by rice straw (54.2 %), the other three materials generally showed low reactivity. This suggests that SRB acclimation and sulfate reduction can be enhanced by additional organic carbon source.
     A further research indicated that certain amount of alkaline substance present in sewage sludge could neutralize acidity of synthetic acid mine drainage on the first day of experiment, elevating pH value from the initial 2.5 to around 5.4~6.3 and achieving suitable pH condition for SRB growth. Sewage sludge contained fewer biodegradable organic substances, reactive mixture with single sewage sludge showed the lowest sulfate reduction (65.9 %). When the single sewage sludge was supplemented with rice straw, SRB reducing sulfate was enhanced (79.2 %), because the degradation rate of rice straw was accelerated by the specific bacteria in sewage sludge, providing relatively abundant carbon source for SRB. Metal removal efficiency in all reactors was as high as 99 % for copper, early copper removal was mainly attributed to the adsorption capacity of sewage sludge prior to SRB acclimation. The proportion of sewage sludge and rice straw could have effect on both pH value and the three nutritious elements (carbon, nitrate and phosphate) present in reaction system, because the acid neutralization capacity of sludge depended on its dosage or concentration, and the available level of C, N and P was determined by the proportion of sewage sludge and rice straw. When the dosing ratio of sewage sludge and rice straw was up to 0.077, sulfate reduction rate reached 79.8 %, this indicated that C:N:P with a ratio of 92:3.2:1 was most suitable for SRB growth and promoting sulfate reduction as the activity of SRB was not inhibited by pH .
     It is feasible for using rice straw and sewage sludge as nutrition sources for SRB treating acid mine drainage at a low cost, this may have significant implication for in situ bioremediation of mine environment.
引文
[1] Lovell HL. Coal mine drainage in the US-an overview [J]. Water Sci Technol, 1983, 15: 1-25.
    [2] Johnson DB. Acidophilic microbial communities: candidates for biore- mediation of acidic mine effluents [J]. Int Biodeter Biodegr, 1995, 35: 41-58.
    [3] Cocos IA, Zagury GJ, Cléments B, Samson R. Multiple factor design for reactive mixture selection for use in reactive walls in mine drainage treatment [J]. Water Res, 2002, 32: 167-177.
    [4] Akcil A, Koldas S. Acid Mine Drainage (AMD): Causes, treatment and case studies [J]. Journal of Cleaner Production, 2006, 14: 1139-1145.
    [5]陈天虎,冯军会,徐晓春.国外尾矿酸性排水和重金属淋滤作用研究进展[J].环境污染治理技术与设备,2001,2: 41-46.
    [6]吴攀,刘丛强,杨元根,张国平.矿山环境中(重)金属的释放迁移地球化学及其环境效应[J].矿物学报,2001,21: 213-218.
    [7]陈天虎,冯军会,徐晓春,陈兴海,崔龙鹏.尾矿中硫化物风化氧化模拟实验研究[J].岩石矿物学杂志,2002,21: 298-302.
    [8]丛志远,赵峰华.酸性矿山废水的现状及展望[J].中国矿业,2003,12: 15-17.
    [9]刘玉强,郭敏.我国矿山尾矿固体废料及地质环境现状分析[J].中国矿业,2004,13: 1-5.
    [10]朱继保,陈繁荣,卢龙,谢兴华.广东凡口Pb-Zn尾矿中重金属的表生地球化学行为及其对矿山环境修复的启示[J].环境科学学报,2005,25: 414-422.
    [11]华凤林,王瑚.矿山酸性废水的形成机理及防治途径初探[J].河海大学报,1993,21:55-61.
    [12] Gazea B, Adam K, Kontopoulos A. A review of passive systems for the treatment of acid mine drainage [J]. Miner Eng, 1996, 9: 23-42.
    [13] Fiset JF, Zinck JM, Nkinamubanzi PC. Chemical stabilization of metal hydroxide sludge [C]. In: Proc. of Tenth Int. Conf. on Tailings and Mine Waste, Colorado, USA. 2003, 329-332.
    [14] Cohen RRH. Use of microbes for cost reduction of metal removal from metals and mining industry waste streams [J]. Journal of Cleaner Production, 2006, 14: 1146-1157.
    [15] Hallberg KB, Johnson DB. Biological manganese removal from acid minedrainage in constructed wetlands and prototype bioreactors [J]. Sci Total Environ, 2004, 338: 115-124.
    [16] Hallberg KB, Johnson DB. Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine [J]. Sci Total Environ, 2005, 338: 53- 66.
    [17] Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla S S. The role of sawdust in the removal of unwanted materials from water [J]. J Hazard Mater, 2002, 95: 137-152.
    [18] Yu LJ, Shukla SS, Dorris KL, Shukla A, Margrave JL. Adsorption of chromium from aqueous solutions by maple sawdust [J]. J Hazard Mater, 2003, 100: 53-63.
    [19] Tshabalala MA, Karthikeyan KG, Wang D. Cationized milled pine bark as an adsorbent for orthophosphate anions [J]. J Appl Polym Sci, 2004, 93: 1577-1583.
    [20] Shukla SR, Pai RS. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres [J]. Biores Technol, 2004, 96: 1430-1438.
    [21] Murphy V, Hughes H, McLoughlin P. Comparative study of chromium biosorption by red, green and brown seaweed biomass [J]. Chemosphere, 2008, 70: 1128-1134.
    [22] Huisman J, Schouten G, Schultz C. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry [J]. Hydrometallurgy, 2006, 83: 106-113.
    [23] Postgate JR. The sulfate-reducing bacteria (second ed) [M]. Cambridge Univ. Press, Cambridge, U.K. 1984.
    [24]冯颖,康勇,张忠国.含重金属离子酸性废水的厌氧生物处理[J].环境科学与技术,2004,27: 104-106.
    [25]李亚新,苏冰琴.利用硫酸盐还原菌处理酸性矿山废水研究[J].中国给水排水,2000,16: 13-17.
    [26]王浩源,缪应祺.高浓度硫酸盐废水治理技术的研究[J].环境导报,2001,1: 22-25.
    [27] Buchanan R E, Gibbons N E编著,中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984. 663-679.
    [28]缪应祺.废水生物脱硫机理及技术[M].北京:化学工业出版社,2004. 5-7, 23-24.
    [29]赵宇华,叶央芳,刘学东.硫酸盐还原菌及其影响因子[J].环境污染与防治,1997,19: 41-43.
    [30]竺建荣,胡纪萃,顾夏声.硫酸盐还原作用对厌氧消化过程的影响与控制[J].中国沼气,1993,11: 13-18.
    [31]钱泽澍.硫酸盐对厌氧消化的影响[J].中国沼气,1994,12: 3-6.
    [32] Nagpal S, Chuichulcherm S, Livingston A, Peeva L. Ethanol utilization by sulfate-reducing bacteria: An experimental and modeling study [J]. Biotechnol Bioeng, 2000, 70: 533-543.
    [33] Zaluski MH, Trudnowski JM, Harrington-Baker MA, Bless DR. Post-mortem findings on the performance of engineered SRB field-bioreactors for acid mine drainage control [C]. In: Proc. of the Sixth Int. Conf. on Acid Rock Drainage, Cairns, QLD. 2003, 845-853.
    [34] Gibert O, de Pablo J, J Cortina L, Ayora C. Chemical characterization of natural organic substrates for biologicalmitigation of acid mine drainage [J]. Water Res, 2004, 38: 4186-4196.
    [35] Maree J P, Strydom W F. Biological sulphate removal from industrial effluents in an upflow packed bed Reactor [J], Water Res, 1987, 21: 141-146.
    [36] Tsukamoto TK, Killion HA, Miller GC. Column experiments for microbiological treatment of acid mine drainage: Low-temperature, low-pH and matrix investigations [J]. Water Res, 2004, 38: 1405-1418.
    [37] Willow MA, Cohen RRH. pH, dissolved oxygen, and adsorption effects on metal removal in an aerobic bioreactors [J]. J Environ Qual, 2003, 32: 1212-1221.
    [38] Rinzema T, Houten V, Lettinga G. A novel reactor design for biological sulphate removal [C]. In: Proc. of Eighth Int. Conf. on Anaerobic Design, Sendai, Japan. 1997, 97.
    [39] Dvorak DH, Hedin RS. Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactor [J]. Biotechnol Bioeng, 1992, 40: 609-616.
    [40] Elliott P, Ragusa S, Catcheside D. Growth of sulfate-reducing bacteria under acidic conditions in an up flow anaerobic bioreactor as a treatment system for acidic mine drainage [J]. Water Res, 1998, 32: 3724-3730.
    [41] Gyure RA, Konopka A, Brooks A, Doemel W. Microbial sulfate reduction in acidic (pH 3) strip-mine lakes [J]. FEMS Microbiol Ecol, 1990, 73: 193-202.
    [42] Kolmert A, Johnson DB. Remediation of acidic waste waters using immobilized, acidophilic sulfate-reducing bacteria [J]. J Chem Technol Biotechnol, 2001, 76: 836-843.
    [43] Koschorreck M, Wendt-Potthoff K, Geller W. Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina [J]. Environ Sci Technol, 2003, 37: 1159-1162.
    [44] Johnson DB. Biodiversity and ecology of acidophilic micro-organisms [J]. Mini Rev FEMS Microbiol Ecol, 1998, 27: 307-317.
    [45] Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR. Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage [J]. Environ Toxicol, 2002, 17: 40-48.
    [46] Utgikar VP, Chen BY, Chaudhary N, Tabak HH, Haines JR, Govind R. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50 [J]. Environ Toxicol Chem, 2001, 20: 2662-2669.
    [47] Utgikar VP, Tabak HH, Haines JR, Govind R. Quantification of toxic inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria [J]. Biotechnol Bioeng, 2003, 82: 306-312.
    [48] Utgikar VP, Chaudhary N, Koeniger A, Tabak HH, Haines JR, Govind R. Toxicity of metal sand metal mixtures: Analysis of concentration and time dependence for zinc and copper [J]. Water Res, 2004, 38: 3651-3658.
    [49] Gray NF, O’Neill C. Acid mine drainage toxicity testing [J]. Environ Geochem Health, 1997, 19: 165-171.
    [50] Sani RK, Geesey G, Peyton BM. Assessment of lead toxicity to Desulfovibrio desulfuricans G20: Influence of components of Lactate C medium [J]. Adv Environ Res, 2001, 5: 269-276.
    [51] Sani RK, Peyton BM, Brown LT. Copper-induced inhibition of growth on Desulfovibrio desulfuricans G20: Assessment of its toxicity and correlation with those of zinc and lead [J]. Appl Environ Microbiol, 2001, 67: 4765-4772.
    [52] Sani RK, Peyton BM, Jadhyala M. Toxicity of lead in aqueous medium to Desulfovibrio desulfuricans G20 [J]. Environ Toxicol Chem, 2003, 22: 252-260.
    [53] Hao OJ, Huang L, Chen JM, Buglass RL. Effects of metal additions on sulfate reduction activity in wastewaters [J]. Environ Toxicol Chem, 1994, 46: 197-212.
    [54] Hao OJ, Chen JM, Huang L, Buglass RL. Sulfate-reducing bacteria [J]. Crit Rev Environ Sci Technol, 1996, 26: 155-187.
    [55] Maree JP, Hulse G. Pilot plant studies on biological sulphate removal from industrial effluent [J]. Water Sci Technol, 1991, 23: 1293-1300.
    [56] Maree JP, Hill E. Biological removal of sulphate from industrial effluents and concomitant production of Sulphur [J]. Sci Technol, 1989, 21: 265-276.
    [57] Garcia C, Moreno DA, Ballester A, Blazquez ML, Gonzalez F. Bioremediation of an industrial acid mine water by metal-tolerant sulfate-reducing bacteria [J]. Miner Eng, 2001, 14: 997-1008.
    [58]万由令,李龙海.玉米芯为碳源实现酸性矿山废水生物处理[J].工业安全与环保,2004,30: 11-15.
    [59] Johnson DB, Hallberg KB. The microbiology of acidic mine waters [J]. Res Microbiol, 2003, 154: 466-473.
    [60] Rinzema A, Lettinga G. The effect of sulphide on the anaerobic degradation of propionate [J]. Environ Technol, 1988, 9: 83-88.
    [61] Zagury GJ, Kulnieks VI, Neculita CM. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment [J]. Chemosphere, 2006, 64: 944-954.
    [62] Edenborn HM. Use of poly (lactic acid) amendments to promote the bacterial fixation of metals in zinc smelte rtailings [J]. Biores Technol, 2004, 92: 111-119.
    [63] Mizuno O, Li YY, Noike T. The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion [J]. Water Res, 1998, 32: 1626-1634.
    [64] Christensen B, Laake M, Lien T. Treatment of acid mine water by sulfate reducing bacteria: results from a bench scale experiment [J]. Water Res, 1996, 30: 1617-1624.
    [65] Kaksonen AH, Plumb JJ, Franzmann PD, Puhakaka JA. Simple organic electron donors support diverse sulfate-reducing communities influidized-bed reactors treating acid metal-and sulfate-containing wastewater [J]. FEMS Microbiol Ecol, 2004, 47: 279-289.
    [66] Waybrant KR, Blowes DW, Ptacek CJ. Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage [J]. Environ Sci Technol, 1998, 32: 1972-1979.
    [67] Chang IS, Shin PK, Kim BH. Biological treatment of acid mine drainage under sulfate reducing condition with solid waste materials as substrate [J]. Water Res, 2000, 34: 1269-1277.
    [68] Boshoff G, Duncan J, Rose PD. Tannery effluent as a carbon source for biological sulphate reduction [J]. Water Res, 2004, 38: 2651-2658.
    [69] Logan MV, Reardon KF, Figueroa LA, McLain JET, Ahmann DM. Microbial community activities during establishment, performance, and decline ofbench-scale passive treatment systems for mine drainage [J]. Water Res, 2005, 39: 4537-4551.
    [70] Gibert O, de Pablo J, Cortina JL, Ayora C. Evaluation of a sheep manure/limestone mixture for in-situ acid mine drainage treatment [J]. Environ Eng Sci, 2008, 25: 43-52.
    [71] Lindsay MBJ, Ptacek CJ, Blowes DW, Gould WD. Zero-valent iron and organic carbon mixtures for remediation of acid mine drainage: batch experiments [J]. Appl Geochem, 2008, 23: 2214-2225.
    [72] Wang AJ, Ren NQ, Wang X, Lee DJ. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria [J]. J Hazard Mater, 2008, 154: 1060-1065.
    [73] Velasco A, Ramírez M, Sepúlveda TV, Sánchez AG, Revah S. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation [J]. J Hazard Mater, 2008, 151: 407-413.
    [74] Ji SW, Kim SJ. Lab-scale study on the application of In-Adit-Sulfate- Reducing System for AMD control [J]. J Hazard Mater, 2008, 160: 441-447.
    [75] Neculita CM, Zagury GJ. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization [J]. J Hazard Mater, 2008, 157: 358-366.
    [76] McCauley CA, O’Sullivan AD, Milke MW, Weber PA, Trumm DA. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum [J]. Water Res, 2009, 43: 961-970.
    [77] Martins M, Faleiro ML, Leonor M, Barros RJ, Veríssimo AR, Costa MC. Biological sulphate reduction using food industry wastes as carbon sources [J]. Biodegradation, 2009, 20: 559-567.
    [78] Costa MC, Santos ES, Barros RJ, Pires C, Martins M. Wine wastes as carbon source for biological treatment of acid mine drainage [J]. Chemosphere, 2009, 75: 831-836.
    [79] Erkan S. Microbial sulfate reduction at low (8℃) temperature using waste sludge as a carbon and seed source [J]. Int Biodeter Biodegr, 2009, 63: 245-251.
    [80] Hamilton WA. Sulfate-reducing bacteria: physiology determines their environmental impact [J]. Geomicrobiol J, 1998, 15: 19-28.
    [81] Barton CD, Parathanasis AD. Renovation of a failed constructed wetland treating acid mine drainage [J]. Environ Geo, 1999, 39: 39-50.
    [82] Bhat S, Goodenough PW, Bhat MK, Owen E. Isolation of four major subunits from Clostridium thermocellum cellulosome and their synergism in the hydrolysis of crystalline cellulose [J]. Int J Biol Micromolecules, 1994, 16: 335-342.
    [83] Prasad D, Wai M, BérubéP, Henry JG. Evaluating substrates in the biological treatment of acid mine drainage [J]. Environ Technol, 1999, 20: 449-458.
    [84] Glombitza F. Treatment of acid lignite mine flooding water by means of microbial sulfate reduction [J]. Waste Management, 2001, 21: 197-203.
    [85] Béchard G, Yamazaki H, Gould WD, Bédard P. Use of cellulosic substrates for the microbial treatment of acid mine drainage [J]. J Environ Qual, 1994, 23: 111-116.
    [86] Machemer SD, Wildeman TR. Adsorption compared with sulfide precipitation as metal removal processes from acid mine drainage in a constructed wetland [J]. J Contam Hydrol, 1992, 9: 115-131.
    [87] Gibert O, de Pablo J, Cortina JL, Ayora C. Sorption studies of Zn (II) and Cu (II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage [J]. Water Res, 2005, 39: 2827-2838.
    [88] Reinertsen SA, Elliott LF, Cochran VL, Campbell GS. Role of available carbon and nitrogen in determining the rate of wheat straw decomposition [J]. Soil Biol and Biochem, 1984, 16: 459-464.
    [89] Kaksonen AH, Franzmann PD, Puhakaka JA. Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater [J]. Biodegradation, 2003, 14: 207-217.
    [90] Dar SA, Stams AJM, Kuenen JG, Muyzer G. Coexistence of physiologically similar sulfate-reducing bacteria in a full-scale sulfidogenic bioreactor fed with a single organic electron donor [J]. Appl Microbiol Biotechnol, 2007, 75: 1463-1472.
    [91] Johnson DB, Hallberg KB. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system [J]. Sci Total Environ, 2005, 338: 81-93.
    [92]谢家仪,董光军,刘振英.扫描电镜的微生物样品制备方法[J].电子显微学报, 2005, 24: 440-440.
    [93] Chockalingam E, Sivapriya K, Subramanian S, Chandrasekaran S. Rice husk filtrate as a nutrient medium for the growth of desulfotomaculum nigrificans: characterisation and sulfate reduction studies [J]. Biores Technol, 2005, 96: 1880-1888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700