用户名: 密码: 验证码:
岷江上游干旱河谷植被垂直带群落物种多样性及交错带的定量判定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岷江上游干旱河谷是青藏高原特殊气候与地理环境条件下形成的脆弱生境,该区丰富的生物多样性资源是维持山地生态系统稳定与可持续发展的基础。由于近几十年在恶劣的自然环境和人为过度干扰共同驱动下,干旱河谷地区生态环境日益恶化,自然灾害频发,严重制约着区域社会经济发展,并对岷江流域生态安全构成严重威胁。因此,开展生物多样性的基础研究,对于揭示该区生态系统退化与修复机制,有效的促进植被恢复与重建具有重要意义。本文选取岷江上游干旱河谷植被垂直带植物群落为研究对象,沿其海拔梯度(1790-2510 m,下同)进行调查取样,对该区植物群落、物种多样性特征及其与环境因子相关性进行了研究,并结合游动分割窗技术,对植被垂直带群落交错带进行了定量判定,主要结论如下:
     1.在调查区域中,共记录到维管植物252种,隶属57科146属,其中乔木2科2属2种,灌木34科58属133种,草本35科91属117种。该区域优势科属明显,优势科内属以菊科(Compositae)、蔷薇科(Rosaceae)、禾本科(Graminea)为主;优势科内种以蔷薇科、菊科和忍冬科(Caprifoliaceae)为主;优势属内种最以柳属(Salix)、栒子属(Cotoneaster)和绣线菊属(Spiraea)为主。植物生活型以灌木为主,占总数的48.02%。植被垂直带群落灌木、草本植株平均高度和盖度都随海拔高度上升而增加,植物群落在物种组成及生活习性上表现为干旱河谷植物向半湿润植物再到亚高山植物过渡,植物群落结构特征在海拔梯度上分异明显。
     2.植物群落物种丰富度在海拔梯度上具有明显的分布规律。灌木、草本以及群落物种丰富度随海拔上升表现为先增加后降低再增加的规律,总体呈增加的趋势。物种丰富度在海拔1790 m处最低,在海拔2100 m处较高,在海拔2510m处达到最高。
     3.植物群落物种α多样性在海拔梯度上分布规律较明显。灌木α多样性的Shannon-Wiener指数随海拔升高呈先增加后减小再增加的规律,Simpson优势度指数和Pielou·均匀度指数在海拔梯度上差异较小。群落草本α多样性的Shannon-Wiener指数在海拔梯度上也呈先增加后减少而后又增加的规律,但变动幅度较灌木小,Simpson优势度及Pielou均匀度指数在海拔梯度上差异较小。
     4.相邻样地群落β多样性的海拔梯度分布规律明显。相邻植物群落β多样性的Jaccard指数、Sorenson指数和Bray-Curtis指数随海拔梯度上升都表现为先减小后增加再下降的规律,而Cody相异性指数呈先增加后减小再增加的规律。相邻样地灌木、草本、群落在海拔1790 m处相似度指数最高,相异性指数最低,表明物种的替代程度和速率低;在海拔2510 m处,相邻群落相似度指数较低,相异性指数较高,物种的替代程度和速率高。此外,在海拔2100 m处,相邻植物群落存在较高的物种替代程度和速率。
     5.群落物种丰富度、多样性与环境因子相关性分析表明,灌木、草本物种丰富度与海拔、土壤含水量、有机质、土壤容重、PH值呈极显著相关关系;群落物种α多样性的Shannon-Wiener指数与环境因子中的海拔、土壤含水量、PH值呈显著相关关系,而Simpson优势度和Pielou均匀度指数与环境因子相关性不显著。群落物种丰富度、多样性与环境因子回归分析得知,PH值、海拔是影响群落物种丰富度和物种多样性的主要影响因子。干旱河谷植被垂直带植物群落与环境因子的除趋势典范对应分析法(DCCA)排序图显示,群落与海拔、土壤养分、水分具有较高的相关性,这表明岷江上游干旱河谷植物群落物种丰富度、多样性的海拔梯度分布格局是土壤养分、水分与海拔共同作用的结果。
     6.基于群落二元属性数据和灌木重要值,采用平方欧式距离计算的游动分割窗峰值图都出现了一个较明显的峰值,表明岷江上游干旱河谷植被垂直带上群落交错特征明显。交错带以蔷薇、毛榛、绣线菊等灌丛与牛奶子、辽东栎等灌木和高山栎林的交错,海拔范围介于2060-2240 m之间,群落分界位置在2120-2160 m,交错带宽度120-160 m,属于渐变型过渡带,表现为干旱河谷灌丛-山地森林交错带。
The arid valley of the Minjiang River was a fragility ecological environment, which caused by the climate of Qinghai-Tibet plateau and the local geography environment. Biodiversity resources were the foundation of ecosystem and sustainable development on this area. However, under the anthropogenic influences and severe natural environments, the ecological environment was depravation, disaster appeared frequency, which serious obstruct the social development and threaten to the whole drainage basin of Minjiang River. Therefore, it is necessary to take research on the biodiversity, which make a foundation theoretical basis for vegetation restoration and ecosystem reconstructing. This paper based on the vegetation of the elevation(1790-2510 m, the same below) on the arid valley of the Minjiang River, the characteristic on vegetation, species diversity and their altitudinal patterns was carried out. Meanwhile, the correlation between species richness or diversity and environment factors was also researched. Based on the Moving split-window techniques, the vegetation ecotone was quantitative detected. The results as follows:
     1. In this investigation region, there are 252 species of vascular bundle plant, which belong to 57 families and 146 genera respectively. There are 2 tree species, which belong to 2 families and 2 genera respectively, and 133 shrub species, which belong to 34 families and 58 genera respectively, and 117 herb species, which belong to 35 families and 91 genera respectively. The plant of families and genera was obviously. Compositae, Rosaceae and Graminea were the dominant genera in families. Rosaceae, Compositae and Caprifoliaceae were the dominant species in families. Salix, Cotoneaster and Spiraea were the dominant species in genera. Shrub was the primary life form of plant, which account for 48.02%. With the rising of elevation, the average height and coverage of the shrub and herb was obviously increased, and the species composition, behaviors change from the arid plant to semi-humid and to subalpine. It indicated that the characteristic of community's structure was obviously on the elevation gradient.
     2. Plant communities of species richness have large difference on the elevation. With the rising of the elevation, species richness increased first and then decreased and finally increased. The species richness was minimal on the lower altitude (1790m), and better on the middle altitude (2100 m), and maximal on the high altitude (2510 m).
     3. Plant communities of species a diversity have large difference on the elevation. The Shannon-Wiener index of shrub species diversity increased first and then decreased and finally increased with the elevation. But the Simpson and Pielou index was not obvious on the elevation. The Shannon-Wiener index of plant communities for herb species diversity also have large difference on the elevation, which increased first and then decreased and finally increased with the elevation, but the value on fluctuant was lower than the shrub. The Simpson and Pielou index was not obvious on the elevation.
     4. Theβdiversity of communities on the adjacent sites was difference on the elevation. With the rising of elevation, the Jaccard, Sorenson and Bray-Curtis index of communities on the adjacent sites was decreased first and then increased and finally decreased, but the Cody similarity index was increased first and then decreased and finally rapidly increased. Similarity index of shrub, herb and communities was maximal on the 1790 m altitude, and the Cody index was minimal, which species' replace of rate was lower. At the 2510 m altitude, community similarity index was minimal and dissimilarity was maximal. The rate of species' replace was higher. Otherwise, species' replace of rate was high on the middle altitude.
     5. The result of correlation analysis between species richness or a diversity and environment factors indicated that species richness of shrub and herb was positive correlations with elevation, soil bulk densities, PH value, moisture and organic matter, and the elevation, moisture,PH value was positive correlations with the species Shannon-Wiener index. The correlations between species Simpson or Pielou index with environment factors was indistinctively. The results of regress analysis showed that PH value and elevation was principal component to the species richness and diversity. Diagram of DCCA on communities and environment factors indicated that soil nutrient, soil moisture and elevation was higher correlation. Characteristic of the plant communities on the altitudinal pattern was affected synthetically by soil nutrient, soil moisture and elevation.
     6. Based on the shrub important values and communities present-absent date, with the Squared Euclidean Distance (SED) methods used for the moving split-window, the results showed that the peak was obvious on the plant communities. The ecotone was interlaced by Rosa, Corylus mandshurica, Spiraea shrub and Elaeagnus umbellate, Quercus liaotungensis, Quercus, Which altitude area was 2060-2240 m,located in 2120-2160 m, panned 120-160 m, belong to gradual type. The ecotone was the dry valleys shrubs community and Mountain forest.
引文
[1]Hooper DU. The role of complimentarily and competition in ecosystem responses to variation in plant diversity.Ecology,1998,79:704-710.
    [2]马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究:Ⅱ丰富度、均匀度和物种多样性的研究.生态学报,1995,15(3):268-277.
    [3]Whitttaker RH.Evolution and measurement of species diversity. Taxen,1972,21:213-251.
    [4]马克平.生物群落多样性的测定方法Ⅰα多样性的测度方法(上).生物多样性,1994,2(3):162-168.
    [5]马克平,刘玉明,生物群落多样性的测定方法Ⅰα多样性的测度方法(下).生物多样性,1994,2(4):231-239.
    [6]张金屯.数量生态学.科学出版社.北京:2004,77-96.
    [7]马克平,刘灿然,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅲ.几种类型森林群落的种-多度关系研究.生态学报,1997,17(6):573-583.
    [8]Fosaa AM. Biodiversity patterns of vascular plant species in mountain vegetation in the Faroe Islands. D iversityand D istributions,2004,10:217-223.
    [9]Grytnes JA, Beaman JH. Elevational species richnes spatterns for vascular plants on Mount Kinabalu, Borneo.Journal ofB iogeography,2006,33:1838-1849.
    [10]刘贵峰,臧润国,郭仲军,等.不同经度天山云杉群落物种丰富度随海拔梯度变化.应用生态学报,2008,19(7):1407-1413.
    [11]朱源,康幕谊,江源,等.贺兰山木本植物群落物种多样性的海拔格局.植物生态学报,2008,32(3):574-581.
    [12]冶民生,关文彬,谭辉,等.岷江干旱河谷灌丛α多样性分析.生态学报,2004,24(6):1123-1130.
    [13]熊莉军,郭柯,赵常明,等.四川大巴山巴山水青冈群落的物种多样性特征.生物多样性,2007,15(4):400-407.
    [14]周金星,董林水,陈浩,等.晋西黄土高原天然次生林木本植物垂直分布格局.林业科学研究,2007,20(2):272-277.
    [15]马克平,刘灿然,刘玉明.生物群落多样性的测定方法Ⅱβ多样性的测度方法.生物多样性,1995,3(1):38-43.
    [16]Wilson MV,Sehmida A. Measunng beta diversity with Presenee-absence data.Journalof Eeology,1984,72:1055-1064.
    [17]Campoamor JN and Molina JA. Diversity of Tricholomataceae along a Mediterranean altitudinal gradient. Cryptogamie Mycol,2001,22 (3):175-784.
    [18]关文彬,冶民生,马克明,等.岷江干旱河谷植物群落物种周转速率与环境因子的关系.生态学报,2004,24(11):2367-2373.
    [19]王应刚,张秋花,李贇,等.方山中山丘陵区植物多样性研究.生态学杂志,2005,24(12):1430-1433.
    [20]牟长城,倪志英,李东,等.长白山溪流河岸带森林木本植物多样性沿海拔梯度分布规律.应用生态学报,2007,18(5):943-950.
    [21]Noss RF.Indicators for monitoring biodiversity:A hierarchical app roach. Conservation Biodiversity,1990,4:355-364.
    [22]Kratochwil A.Biodiversity in ecosystems:some principles, In:Kratochil A. (ed.)Biodiversity in Ecosystems.KIuwer Academic Publishers.Dordrecht:1999.5-38.
    [23]汪殿蓓,暨淑仪,陈飞鹏.植物群落物种多样性研究综述.生态学杂志,2001,20(4):55-60.
    [24]唐志尧,方精云.植物物种多样性的垂直分别格局.生物多样性,2004,12(1):20-28.
    [25]Odland A, Birks H J B. The altitudinal gradient of vascular plant richness in Aurland, western Norway.Ecography,1999,22:548-566.
    [26]Dolezal J, Srutek M. Altitudinal changes in composition and structure of mountain temperate vegetation:a case study from the Western Carpathians. Plant Ecology,2002.158:201-221.
    [27]Gaston K J. Global patterns in biodiversity. Nature,2000,405:220-226.
    [28]Vazquez GJA, Givnish TJ. Altitudinal gradients in tropical forest composition, structure, and diversity in the SierradeManantlan. Journal of Ecology,1998,86:999-1020.
    [29]Aiba S,Kitayama K. Structure, composition and species diversity in an altitude substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology, 1999,140:139-157.
    [30]Fosaa AM. Biodiversity patterns of vascular plant species in mountain vegetation in the Faroe Islands. Diversity and Distributions,2004,10:217-223.
    [31]Rahbek C. The relationship among area, elevation, and regional species richness in Neotropical birds. AmericanNaturalist,1997.149:875-902.
    [32]Tang CQ, Ohsawa M. Zonal transition of evergreen, deciduous, and coniferous forests along the altitudinal gradient on a humid subtrop ical mountain Mt. Emei, Sichuan, China. Plant Ecology,1997,133:63-78.
    [33]Grytnes JA, Beaman JH. Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo Journal ofBiogeography,2006,33:1838-1849.
    [34]Stevens GC. The elevational gradient in altitudinalrange:an extension of Rapoport's latitudinal rule to altitude. A merican Naturalist,1992,140:893-911.
    [35]贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征.生态学报,1997,17(1):91-99.
    [36]Willis KJ, Whittaker RJ. Species diversity-scale matters. Science.2002.295:1245-1248.
    [37]Whittaker RJ, Willis KJ, Field R. Scale and species richness:towards a general, hierarchical theory of species diversity. Journal of Biogeography,2001,28:453-470.
    [38]Lyons SK, Willig MR. A hemispheric assessment of scale dependence in latitudinal gradients of species richness. Ecology,1999,80:2483-2491.
    [39]Pendry CA, Proctor J. Altitudinal zonation of rain forest on Bukit Belalong, Brunei:soils, forest structure and floristics. Journal of Tropical Ecology,1997,13:221-241.
    [40]Hsieh CF, Chen Z S, Hsu YM, et al,. Altitudinal zonation of evergreen Broad-leaved forest on Mount Lopei, Taiwan. Journal of Vegetation Science,1998,9:201-212.
    [41]Aiba S, Kitayama K. Structure, composition and species diversity in an altitude substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology,1999,140: 139-157.
    [42]郝占庆,于德永,杨晓明,等.长白山北坡植物群落α多样性及其海拔梯度的变化.应用生态学报,2002,13(7):786-789.
    [43]四川植被协作组.四川植被.成都:四川人民出版社,1980.
    [44]四川植物志编辑委员会四川植物志.成都:四川人民出版社,1981.
    [45]四川森林编辑委员会.四川森林.北京:中国林业出版社.1992.
    [46]张荣祖.横断山区干早河谷.北京:科学出版社,1992.
    [47]包维楷,陈庆恒,刘照光.岷江上游山地生态系统的退化及其恢复与重建对策.长江流域资源与环境,1995,4(3):277-282.
    [48]包维楷,陈庆恒,刘照光.退化植物群落结构及其物种组成在人为干扰梯度上的响应.云南植物研究,1999,22(3).307-316.
    [49]包维楷,王春明.岷江上游山地生态系统的退化机制.山地学报,2000,18(1):57-62.
    [50]包维楷,刘照光,刘庆.生态恢复重建研究与发展现状及存在的主要问题.世界科技研究与发展,2001,23(1):44-48.
    [51]冶民生,关文彬,谭辉,等.岷江干旱河谷灌丛a多样性分析.生态学报,2004,24(6):1123-1130.
    [52]冶民生,关文彬,吴斌,等.岷江干旱河谷植物群落的复杂性.生态学报,2006,26(10):3159-3165.
    [53]杨钦周.岷江上游干旱河谷灌丛研究.山地学报.2007,25(1):1-32.
    [54]张文辉,卢涛,马克明,等.岷江上游干旱河谷植物群落分布的环境与空间因素分析.生态学报,2004,24(3):552-559.
    [55]陈泓,黎燕琼,郑绍伟,等.岷江上游干旱河谷灌丛群落种-面积曲线的拟合及最小面积确定.生态学报,2007,27(5):1818-1825.
    [56]Clements F E. Research methods in ecology. Lincoln Nebraska USA. University of Nebraska Publishing Company,1905,334.
    [57]Leopld A. Game management, New York:Charles Scribiner s Sons,1933.
    [58]Tansley A G, Chipp T F. Aims and methods in the study of vegetation. London:British Empire Vegetation Committee,1926.
    [59]Odum E P. Basic Ecology Philadelphia:Saunders college Publishing,1983.429-437.
    [60]Holand M M. SCOPE/MAB technical consultations on landscape boundaries:report on A SCOPE/MAB workshop on ecotones.Biol.Int.1988,17(Special Issue):47-106.
    [61]朱芬萌,安树青,关保华,等.生态交错带及其研究进展.生态学报,2007,27(7):3032-3042.
    [62]Laurance W F, Didham R K, Power M E. Ecological boundaries:a search for synthesis Trebds Ecol.Ecology,2001,16(2):70-71.
    [63]石培礼,李文华.生态交错带的定量判定.生态学报,2002,22(4):586-592.
    [64]Gosz,J.R. Ecological functions in a Biome transition zone:translating local response to broad-scale dynamics. In:Hansen A.J. and diCastri,F.(eds). Landscape Boundaries.New York:Springer-Verlag,1992,56-74.
    [65]Whitaker R H, Vegetation of the Siskiyou Mountains, Oregon and California, Ecological Monographs,1960,30,279-338.
    [66]Ludwing J A and Coreius J M, Locating discontinuities along ecological gradients, Ecology, 1987,68 (2):448-450.
    [67]石培礼,刘兴良.游动分割窗技术在生态交错带定量判定中的应用:以四川巴郎山岷江冷杉林线为例.植物生态学报,2002,26(2):189-194.
    [68]于大炮,唐立娜,王绍先,等.长白山被迫垂直带群落交错区的定量判定.应用生态学报,2004,15(10):1760-1764.
    [69]李丽光,何兴元,李秀珍,等.岷江上游花椒地/林地边界土壤水分影响域的定量判定.应用生态学报,2006,17(11):2011-2015.
    [70]Beal E W, Vegetation change along altitude gradients, Science,1969,165,981-985.
    [71]Imaz A, Hernandez M A, Arino A H,et al. Diversity of soil nematodes across a Mediterranean ecotone. Appl. Soil Ecol,2002,20(3):191-198.
    [72]Weckstrem J, Korhola A. Patterns in the distribution, composition and diversity of diatom assemblages in relation to ecoclimatic factors in Arctic Lapland.J.Biogr,2001.28(1):31-45.
    [73]Williams S E,Marsh H, Winter J. Spatial scale, species diversity, and habitat structure: Small mammals in Australian tropical rain forest. Ecology,2002,83(5):1317-1329.
    [74]Wumburger N, Hartshorn A S, Hendrick R L. Ectomycorrhizal fungal community structure across a bog-forest ecotone in southeastern Alaska. Mycorrhiza,2004,14(6):383-389.
    [75]Lloyd K M, McQueen A A M, Lee B J, et al. Evidence on ecotone concepts from switch, environmental and anthropogenic ecotones. J. Veg. Sci,2000,11(6):903-910.
    [76]Baker J, French K, Whelan R J. The edge effect and ecotonal species:Bird communities across a natural edge in southeastern Australia. Ecology,2002,83(11):3048-3059.
    [77]Walker S,Wilson J B, Steel J B, et al. Properties of ecotones:Evidence from five ecotones objectively determined from a coastal vegetation gradient. J. Veg. Sci,2003,14(4):579-590.
    [78]Turner M G, Gardner R H.Quantitative methods in landscape ecology. New York: Spring-Verlag,.1991,216-218.
    [79]Hansen A. Epilogue:biodiversity and ecological flows across ecotones, Hansen A J and Di. castir F(eds) Landscape Boundaries, New York:Springer-Verlag,1992,424-438.
    [80]王庆锁,冯宗炜,罗菊春.河北北部、内蒙古东部森林-草原交错带生物多样性研究.植物生态学报,2000,24(2):141-146.
    [81]王庆锁,刘涛,冯宗炜,等.森林-草原交错带白桦林和山杨林植物多样性研究.林业科学,2000,1(36):110-115.
    [82]石培礼,李文华,王金锡,等.四川卧龙亚高山林线生态交错带群落的种-多度关系.生态学报,2000,20(3):384-389.
    [83]牟长城,罗菊春.长白山林区森林/沼泽群落交错带的植物多样性.生物多样性,1998,6(2):132-137.
    [84]牟长城.长白山落叶松和白桦-沼泽生态交错带群落演替规律研究.应用生态学报,2003,14(11):1813-1819.
    [85]邓坤枚,石培礼,杨振林.长白山树线交错带的生物量分配和净生产力.自然资源学报,2006,21(6):942-948.
    [86]杨振林,石培礼.高山树线交错带的景观格局与生态过程.地理科学进展,2007,26(1):44-55.
    [87]何又均,崔国发,冯宗炜,等.三江源自然保护区森林-草甸交错带植物优先保护序列研究.应用生态学报,2007,15(8):1307-1312.
    [88]李瑞,张克斌,王百田,等.北方农牧交错带不同植被保护及恢复措施物种多样性研究.生态环境,2006,15(5):1035-1041.
    [89]乔青,高吉喜,王维,等.川滇农牧交错带土地利用动态变化及其生态环境效应.水土保持研究,2007,14(6):362-366.
    [90]左小安,赵学勇,张铜会,等.中国北方农牧交错带植被动态研究进展.水土保持研究,2005,12(1):162-166.
    [91]詹存卫,于丹,吴中华,等.梁子湖水-水陆交错区水生植物群落生态学研究.植物生态学报,2001,25(5):573-580.
    [92]王玉朝,赵成义.绿洲-荒漠生态脆弱带的研究.干旱区资源与环境,2001,15(2):25-30.
    [93]伊澄清.内陆水-陆地交错带的生态功能及其保护与开发前景.生态学报,1995,15(3):331-335.
    [94]吴宁,刘庆.山地退化生态系统的恢复与重建-理论与岷江上游的实践.四川:四川科学技术出版社,2007,143,180.
    [95]陈安勇.岷江上游地区水土保持的特别重要性及战略措施.农村经济,1998,65.
    [96]刘文彬.岷江上游半干旱河谷灌丛的主要类型.山地研究,1994,12(1):27-31.
    [97]杨兆平,常禹,杨孟,等.岷江上游干旱河谷景观边界动态及其影响域.应用生态学报,2007,18(9):1972-1976.
    [98]晏兆莉,陈可明,陈建中,等.岷江干旱河谷的生态特征与植被恢复研究.世界科技研究与发展,2000,S1:36-38.
    [99]庞学勇,包维楷,吴宁.岷江上游干旱河谷气候特征及成因.长江流域资源与环境,2008,17(Z1):46-53.
    [1oo]郭永明,汤宗祥,唐时嘉,等.岷江上游土壤资源的保护性利用.山地研究,1993,11(4):251-256.
    [101]王春明,包维楷,陈建中,等.岷江上游干旱河谷区褐土不同亚类剖面及养分特征.应用与环境生物学报,2003,9(3):230-234.
    [102]刘彬,吴福忠,张健,等.岷江干旱河谷-山地森林交错带震后生态恢复的关键科学技术问题.生态学报,2008,28(12):5892-5897.
    [103]鲁如坤主编.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    [104]Pielou E C. Ecological Diversity. Wiley, New York,1975.
    [105]马克平,黄建辉,于顺利,等.北京东灵山区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数.生态学报,1995,15(3):268-277.
    [106]王长庭,龙瑞军,王启基,等.高寒草甸不同草地群落物种多样性与生产力关系研究.生态学杂志,2005,24(5):483-487.
    [107]温远光,陈放,,刘世荣,等.广西桉树人工林物种多样性与生物量关系.林业科学,2008,44(4):14-19.
    [108]方精云,沈泽昊,唐志尧,等.“中国山地植物物种多样性调查计划”及若干技术规范.生物多样性,2004,12(1):5-9.
    [109]宋永昌.植被生态学.上海:华东师范大学出版社,2001,102-105.
    [110]李建东,杨允菲.松嫩平原羊草草甸植物的生态及分布区型结构分析.草地学报,2002,11(4):10-20.
    [111]焦菊英,张振国,贾燕锋,等.陕北丘陵沟壑区撂荒地自然恢复植被的组成结构与数量分类.生态学报,2008,28(7):2981-2997.
    [112]王志恒,陈安平,朴世龙,等.高黎贡山种子植物物种丰富度沿海拔梯度的变化.生物多样性,2004,12(1):82-88.
    [113]赵淑清,方精云,宗占江,等.长白山北坡植物群落组成、结构及物种多样性的垂直分布.生物多样性,2004,12(1):164-173.
    [114]刘贵峰,臧润国,郭仲军,等.不同经度天山云杉群落物种丰富度随海拔梯度变化.应用生态学报,2008,19(7):1407-1413.
    [115]兰思仁.武夷山国家级自然保护区植物物种多样性研究.林业科学,2003,39(1):36-43.
    [116]茄文明.张金屯.张峰.等.历山森林群落物种多样性与群落结构研究.应用生态学报,2006,17(4):561-566.
    [117]刘士华,高信芬,涂卫国,等.彭州白水河国家级自然保护区植物群落α多样性的海拔梯度变化.应用与环境生物学报,2008,14(3):303-307.
    [118]任国玉.全新世东北平原森林-草原生态过渡带的迁移.生态学报,1998,18(1):33-37.
    [119]周志琼,包维楷,吴福忠,等.岷江干旱河谷黄蔷薇(Rosa hugonis)生长与繁殖特征及其空 间差异.生态学报,2008,28(4):1820-1828.
    [120]包维楷,陈庆恒,陈克明.岷江上游干旱河谷植被恢复环境优化调控技术研究.应用生态学报,1999,10(5):542-544.
    [121]Hufjens K, Ceulemans R,Scheunders P.Estimating the ecotone width in patchy ecotones using a sigmoid wave approach. Ecological informatics,2008,3:97-104
    [122]Jacquez G M,Maruca S,Fortin M J. From fields to objects:a review of geographic boundary analysis. Jounrmal of Geographical Systems 2000,2:221-241.
    [123]Csillag F, Kabos S. Wavelets, boundaries, and the spatial analysis of landscape pattern. Ecoscience 2002,9:177-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700