用户名: 密码: 验证码:
多镀种电镀生产线控制系统的研制与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电镀技术是一种重要的表面处理技术,应用十分广泛,与人们的生活息息相关。在我国,电镀行业企业规模普遍较小,大多数中小型企业仍在使用许多过时的技术和设备,大量的生产线为半自动化控制,甚至有些还是手工生产线,过程可控性差,直接影响产品质量,导致生产效率低,最终结果是企业的经济效益下降。现代市场竞争日趋激烈,企业迫切需要提高生产效率和产品质量的稳定性,于是提高电镀生产线的自动化程度具有重要的意义。
     本文以多镀种电镀生产线控制系统的研制和应用为目标,通过对国内某企业镀锌、镀铜、镀镍等电镀生产以及金黄色化学氧、脉冲阳极氧化等氧化生产的工艺要求和控制系统技术指标进行了分析后,结合车间的实际情况,将这些镀种整合到同一条生产线上,研制出了应用PROFIBUS现场总线的多镀种电镀生产线分布式分层递阶自动控制系统。
     在对该生产线控制系统的电气部分进行设计之后,着重对多通道槽液温度检测与控制进行了研究,利用PID控制方法取代了槽液温度传统定点开关控制方法,进而使温度平稳达到目标值,大幅度降低了加热阶段槽液温度的过冲和保温阶段槽液温度的波动,实现了槽液温度的精确控制。同时,还研制了PLC与整流器、变频器的多机实时通讯软件。
     通过多镀种电镀生产线实际运行表明,槽液温度控制精度高,可达±0.5℃;PLC与整流器、变频器多机通讯实时性好。实践证明,多镀种电镀生产线控制系统采用分布式分层递阶控制结构可靠性高,实用性强,完全可以满足实际生产的需求,提高了电镀产品的质量和生产效率,实现了电镀生产集成自动化。
Electroplating technology is an important surface treatment technology, which has been used widely and linked with people's daily life closely. In China, the scale of electroplating industries is generally small. Most small and medium enterprises are still using outdated technologies and equipments. A large number of production lines are semi-automatic, even some of them are manual, so that product quality is poor, and production efficiency is extremely low. All of these lead to a bad economic efficiency to enterprise. Competition in market is more and more fierce, which causes enterprises urgently to improve production efficiency and stability of product quality, that is why improving the automation of an electroplating production line is great importance.
     In this paper, research and apply on the control system of multiple automatic electroplating line has been taken as a target. After the analysis of the production process requirements of zinc, copper, nickel plating and oxidation surface treatment of an enterprise in our country, considering the actual situation of the workshop, all kinds of plating were integrated into one production line, and the distributed hierarchical control system with PROFIBUS was developed.
     After the electrical system design, the emphasis focused on the multi-channel temperature detection and control system of electroplating solution, where taken PID control method instead of the traditional fixed-point switch control method. In this method, not only increased temperature to target value stably, but also temperature overshoot at the end of heating process and fluctuation in holding process was greatly reduced. Furthermore, multi-machine instant communication programs between rectifiers, inverters and PLC were developed.
     Practical experience of the multiple automatic electroplating line indicates that precision of electroplating solution temperature control is high, which is up to±0.5℃, and multi-machine communication works well. Practice proves that control system of multiple automatic electroplating line by means of distributed hierarchical control structure has high reliability and strong practicality, besides that it fully meets the needs of actual production. Not only did product quality and production efficiency improved, but also realized integrated automation of electroplating.
引文
[1]张允诚.电镀手册[M].北京:国防工业出版社,1997.
    [2]冯辉,张勇,张林森.电镀理论与工艺[M].北京:化学工业出版社,2008.
    [3]刑文长.中国电镀与清洁生产前沿技术[J].电镀与精饰,2006,28(4):32-37.
    [4]于维新,程军梅.电镀工艺及其发展方向[J].航天工艺,1995(2):54-56.
    [5]史先焘,周靖,陈拓霖.电镀生产中的微机控制系统[J].电镀与涂饰,2005,24(7):54-56.
    [6]吴顺山.电镀工艺参数的自动化控制[J].电镀与环保,1993,13(3):9-10.
    [7]王晓莉等.国内外塑料电镀技术的应用现状及未来发展趋势[J].表面工程咨讯,2007. 4.
    [8]刘海涛.ABS全自动塑料电镀生产线三维设计及关键结构优化研究[D].江南大学,2009.
    [9]石海亮.直线式电镀自动线的现状与发展趋势[J].电气工厂设计,1997,93:18-20.
    [10]刑文长.中国电镀与清洁生产前沿技术[J].电镀与精饰,2006,28(4):32-37.
    [11]任芳勇,袁华.多镀种自动环形电镀生产线[J].电镀与精饰,1998,20(6):13-15.
    [12] Roger Mouton.Three-Dimensional PCB Electroplating Simulation Tools[J].IPC Printed EXPO,2001:1-12.
    [13]张立茗.我国电镀设备的发展和现状[J].电镀与精饰,2001,23(5):13-16.
    [14]黎德育,李宁,张允诚.电镀材料和设备手册[M].北京:化学工业出版社,2007:320-323.
    [15]杨鹏.微机控制的单臂电镀流水线系统[J].浙江工贸职业技术学院学报,2007:2.
    [16]郦振声,杨明安.现代表面工程技术[M].北京:机械工业出版社,2007:26.
    [17]沈品华.我国电镀行业主要镀种世纪回眸和现状[J].电镀与涂饰,2002,21(1):60-65.
    [18]谢家业.我国电镀清洁生产审核现状综述[J].中国行业咨询大全表面处理行业卷,2007.
    [19]王程程,王佳,尹晓宏.分层递阶控制理论与地铁环控系统构建[J].都市快轨交通,2009.10(5):25-29.
    [20] J.R.Jamesand G.J.Suski,Asurvey of some implementations of knowledge-based systemsforreal-time control[J].inProc.IEEE Int.Conf.DecisionContr.,1988.580-585.
    [21] K.L Anderson,G.L Blankship,andLG.Lebow,Arule-based adaptive PID controller. in Proc[J].IEEE Int.Conf. Decision Contr.,1988.564-569.
    [22] B.Porter,A,H. Jonesand C.B.McKeown,Real-time expert controller for plants with actuator non-linearities[J],inProc,IEEE The 2nd Int.Symp.Intelligent Contt,1987,pp,171-177.
    [23] LinJ,WangM,Robert RD.Improvements on the Formulation and Solution Approach for Stochastic Optimizing Control of Stead-State Industrial Process[J].International Journal of Control,1990,52:517-548.
    [24] PsalitisD,SiderisS,YamamuraAA. Amultilayered Neural Network Control[J]. IEEE Control System Magazines,1988,8(2):17-21.
    [25] AstromKJ.Towards Intelligent Control[J]. IEEE Control System Magazine,1989,9(3):60-64.
    [26]顾洪军.工业企业网与现场总线技术及应用[M].北京:人民邮电出版社,2002.15-19.
    [27]崔坚,李佳,杨光.西门子工业网络通讯指南(上册)[M].北京:机械工业出版社,2005.35-50.
    [28]宋振寰.Profibus现场总线在烟草制丝生产线中的应用研究[D].华北电力大学,2009.
    [29]胡晓东.集散型控制系统的应用[J].北京:自动化与仪器仪表,1996:36-37.
    [30]刘寄声.分布式控制系统设计与应用实例[M].北京:电子工业出版社,2007.
    [31]杨秀丽.浅谈集散控制系统的特点[M].甘肃:甘肃科技出版社,2004.
    [32]薛福珍等.工业过程集散控制系统的设计及应用[J].北京:计算机工程,2001.
    [33]西门子.西门子DCS系统在化工领域的应用[M].北京:西门子(中国)有限公司自动化与驱动集团,2008:10-30.
    [34]刘勇.SIMATICPCS7集散计算机控制系统现场控制站软件系统设计和应用[M].,北京:西门子(中国)有限公司自动化与驱动集团,2006.
    [35]史运涛,高东杰.工业加热炉的基于内模的分层递阶智能控制[J],北京:控制工程,2006,3:161-167.
    [36]焦连渤.模糊PID控制在温湿度控制系统中的应用[J].南京航空航天大学学报,1998,(04):437-442.
    [37]王正茂等.电机学[M].西安:西安交通大学出版社,2000.
    [38]谢应璞.电机学[M].成都:四川大学出版社,2007.
    [39]台达电子.VFD-S系列变频器使用手册[M].中达电通股份有限公司,2006.
    [40] GB5023.3-1997-3.额定电压450/750V及以下聚氯乙烯绝缘电缆-第3部分:固定布线用无护套电缆.
    [41] GB5031.2-2007.综合布线工程验收规范.
    [42]赵小灵.浅谈PID调节在温度控制系统中的应用[J].Equipment Manufacturing Technology,2009(5):104-106.
    [43]柴天佑,王中杰.加热炉控制技术的回顾与展望[J].冶金自动化,1998,22(5):124.
    [44] Astrom KJ, Anton JJ, Arzen KE. Expert control[J].Automatica,1986,22(3):277-286.
    [45]田秀华,杨顺.几种温度控制方法的特点及应用[J].自动化与仪表,2001.16(6):62-68
    [46]蔡自兴.智能控制基础与应用[M].北京:国防工业出版社,1998.
    [47]西门子.PID温度控制[M].北京:西门子(中国)有限公司自动化与驱动集团,2008.
    [48]西门子.用于S7-300/400系统和标准功能的系统软件[M].北京:西门子(中国)有限公司自动化与驱动集团,2005.
    [49]李萍,李峰,赵虎等.模糊自整PID控制器的设计和仿真[J].仪器仪表学报.2004,25(4):264-267.
    [50]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,2000.4
    [51] Cho Hyun-Joon,ChoKwang-Bo,Wang Bo-Hyeun. FuZZy-PID Hybrid Control Automatie Rule Generation Using Genetie Algorithms[J].FuZZySetsandSystems,1997,(3):92-97.
    [52]邹政.多股簧数控加工机床钢丝张力自适应模糊控制系统的研制[D].重庆大学,2009.
    [53]西门子.SIMATIC与SIMATIC通讯[M],北京:西门子(中国)有限公司自动化与驱动集团,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700