用户名: 密码: 验证码:
纳米银/海藻酸钠复合薄膜的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米银优良的抗菌性能和潜在的选择性抑制细胞增生性能引起了人们的关注,希望除现有的体外应用外,还能够用于人体植入体如血管支架等,预防植入后局部细胞过度增生的问题。为了使纳米银粒子能应用于各种不同的植入材料表面,并且避免过多的自由粒子与人体接触后带来的安全隐患,本研究拟采用海藻酸钠作为载体,将纳米银固化在其中,制备出纳米银/海藻酸钠复合薄膜,通过缓控释作用将纳米银逐步释放出来,在局部维持一定的作用浓度,达到持续抑制细胞增生的同时,减轻纳米银的团聚和迁移带来的危害。
     本文采用机械混合匀胶凝胶法制备出均匀完整,与玻片基底间具有一定结合强度的纳米银/海藻酸钠复合薄膜,采用x射线衍射(XRD)、X射线能谱分析(EDS)、扫描电子显微镜观察(SEM)、原子力显微镜观察(AFM)、紫外分光光度法测量、电化学法Ⅳ曲线测量等手段,对薄膜中纳米银的成份与分布,薄膜的表面形貌、电学性能、缓释性能等进行了研究;同时采用MTT、LDH法研究了复合薄膜对体外细胞培养增殖性能的影响,对纳米银/海藻酸钠复合薄膜的缓释机制以及对细胞增殖产生影响的原因进行了分析和讨论。
     实验结果表明:采用凝胶匀胶法,利用含有不同浓度纳米银的2.5%的海藻酸钠溶胶,匀胶机转速为4000 r/min条件下,可在玻璃基底上制备出厚度约为1μm完整均匀的纳米银/海藻酸钠复合薄膜。复合薄膜具有欧姆特性,其电阻值随纳米银掺杂量的增加而增加,符合麦克斯韦的有效介质模型。薄膜表面不平整,均布着直径约为1μm左右的凹坑,纳米银以这些凹坑为分布形态,以物理混合的方式总体均匀地存在于薄膜中。复合薄膜以侵蚀作为主要的缓释机制,银的缓释量与掺入银的浓度、缓释液体环境有关。纳米银的掺杂量越大,在相同时间内释放出来的纳米银越多,其中部分银是包含在海藻酸钠碎屑中的。在类体液中薄膜的缓释速率最小,在无血清的培养基中薄膜的缓释速率次之,在有血清培养清中薄膜的缓释速率最大。纳米银/海藻酸钠复合薄膜对细胞具有显著的抑制作用,其作用主要来自于被释放出来的银粒子与细胞间的交互作用,以及侵蚀碎屑给细胞生长带来的影响。
The excellent antibacterial property of nano-Ag, as well as its selective-restrain effect on cell proliferation caused interests of applying it on human implants besides present application of external antimicrobial. For example, apply it on human vascular stent to avoid restenosis. In the sake of apply nano-Ag on different kinds of implant surface, and reduce the security problem caused by the use of nano particles, sodium alginate (AGS) was considered to be used as the carrier of nano-Ag in this study. Via controlling the releasing rate of nano-Ag from the film, the local concentration of Ag can be continuously maintained to a certain level, which is benefit to reducing the harm of aggregation and immigration of nano-Ag while inhibiting the cell proliferation.
     In this paper, nano-Ag/AGS composite film is prepared on glass substrate by spin coating method, using the nano-Ag and 2.5 w.t.% AGS mixture as the sol. By using X-ray diffraction (XRD), X-ray energy spectra (EDS), Scan electronic microscopy (SEM), Atomic force microscopy (AFM), UV-Spectrophotometry, andⅣmeasurement method, the distribution of nano-Ag in the film, the surface morphology of the film, the electronic property and releasing property of the films are studied. Meanwhile, the cell proliferation behavior on the films was study by MTT assay, and the acute cytotoxicity of the films was studied by LDH as well. The releasing mechanism and the inhibition effect of the film are discussed in detail..
     The results show that:The nano-Ag/AGS composite films prepared here are uniform, with the thickness of 1μm. The films have Ohmic contact property, whose resistance is increasing with the increase of Ag doping concentration, which matches the model of Maxwell's theory of effective media. The surface morphology is rough with concavities. The distribution of Ag is generally uniform and follows the shape of the concavities. The releasing mechanism of the films is erosion, and the releasing rate is related to the concentration of nano-Ag and the solution. The released nano-Ag partly exists in the chips peeled from film, and its total amount is increasing with its doping concentration. The releasing rate of Ag is different among simulate body fluid (SBF), cell culture medium without bovine albumin, and medium with bovine albumin, which is low in SFB and high in medium with bovine albumin. Nano-Ag/AGS films have significant effect on the restrain of cell proliferation, and the reason can be attributed to the interaction between the released nano-Ag particles, and the influence of the peeled chips.
引文
[1]Delecrin J, Deschamps C, Romih M, et al. Influence of bone environment on ceramic osteointegration in spinal fusion:comparison of bone poor and bone rich sitesJ. Eur Spine J, 2001,10:110-113
    [2]Heungsoo Shin,Seong bong Jo, Antonios G.Biomimetic materials for tissue engineering, Biomaterials,2003,24:4353-4364
    [3]Hench L L.Short term bonding behaviour of bioglass coatings on metal substrate[J].Journal of Biomechanics, Volume 13,Issue 9,1980,Pages 807-808
    [4]晨爱民,万涛.生物医学材料研究与展望[J].武汉理工大学学报.2005,27(8):116-118
    [5]王安东,戴起勋.生物医用材料316L不锈钢的磨损腐蚀特性研究[J].金属热处理.2005,30(3):33-36
    [6]李云胜,金属生物材料的抗腐蚀性能和生物相容性研究[J].药物分析杂志.2006,26(7):1028-1029
    [7]王桂生,朱明.金属植入材料及其腐蚀[J].稀有金属.2003(27)1:43-48
    [8]周宇,杨贤金,崔振铎.新型医用β钛合金的研究现状及发展趋势[J].金属热处理.2005,30(1):47-50
    [9]焦永峰,赵磊.生物陶瓷材料的研究进展[J].江苏陶瓷.2008(41)2:7-12
    [10]Talber CK, Thesis M S. Clemson University, Gemson, South Carol ina,1969
    [11]Hench LL. Bioceramics[J].J Am Ceram Soc,1996,79(9):1 705~728
    [12]Feng Zhang, Xianghuai Liu, Yingjun Mao, Nan Huang, Yu Chen, Zhihong Zheng, Zuyao Zhou, Anqing Chen, Zhenbin Jiang. Artificial heart valves::improved hemocompatibility by titanium oxide coatings prepared by ion beam assisted deposition. Surface and Coatings Technology, Volumes 103-104, May 1998, Pages 146-150
    [13]C. Larsson, P. Thomsen, B.-O. Aronsson, M. Rodahl, J. Lausmaa, B. Kasemo, L. E. Ericson. Bone response to surface-modified titanium implants:studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials, Volume 17, Issue 6, March 1996,e
    [14]林思聪.高分子生物材料分子工程研究进展(上)[J].高分子通报.1997.3:1-14
    [15]Hench Larry L. Bioceramics:From Concept to Clinic[J].J. Am. Ceram. Soc.,1991,74 (7):1487.
    [16]Talber CK, Thesis M S. Clemson University, Gemson, South Carolina,1969
    [17]郑岳华,张宏泉,李世普.生物陶瓷及制品的研究现状和发展前景[J].中国陶瓷,1998,34(2):36-37
    [18]林思聪.高分子生物材料分子工程研究进展(下)[J].高分子通报.1997.5:1-14
    [19]Peppas N A, Langer R. Science,1994,263(March):1715
    [20]LangerR, Vacami J P. Tissue Engineering[J]. Science,1993(260):920-926
    [21]Hench L L and Plak J M. Science,2002,295:1014~1017
    [22]陈宝林.组织工程材料的细胞相容性研究(Ⅰ)[J]呼伦贝尔学院学报,2000,8(3):80-81
    [23]Shelton R.M., Rasmussen C.,Davise J.E.,Biomatemals,1998,9:24~29.
    [24]Lee H.B., Frontiers of Macromolecular Science, Seagusa T, Abe A. and Higashimura T, eds, Oxford, Blackwell Scientific Publications,1989,579.
    [25]Lee J.H., Khang G.,Park J.W, J.Korean Coc. Med. Biological Eng,1989,10:43
    [26]Claude Klein-Soyer, Sylvie Hemmendinger, Jean-pierre Cazenave, Biomaterials,1989,10(3):85-90
    [27]Perry TE, Kaushal S, Sutherland FW, et al. Thoracici Surgery Directors Association Award. Bone marrow as a cell source for tissue engineering heart valves[J]. Ann Thorac Surg,2003,75:761-767
    [28]Deqing Huang, Gary Balian, A. Bobby Chhabra. Tendon Tissue Engineering and Gene Transfer:The Future of Surgical Treatment. The Journal of Hand Surgery, Volume 31, Issue 5, May 2006, Pages 693-704
    [29]Yang YW,Liu JL. Latest advances in the researches in and application of nanoparticle silver. Industrial Cat alysis,2003,11(12).
    [30]Furno F, Morley KS, Wong B, et al. Silver nanoparticles and polymeric medical devices:a new approach to prevention of infection. [J] Antimicrob Chemother,2004;54(6):1019
    [31]Alt V, Bechert T, Steinrucke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanopariculate silver bone cement. Biomaterials,2004;25(18):4383]
    [32]夏金兰,王春,刘新星.抗菌剂级抗菌机理[J].贵金属,2004,25(2):28-32.]
    [33]徐刚,周荣芳.MEBO结合纳米银敷料治疗烧伤后期残余创面的临床观察.中国烧伤创疡杂志.2008年第20卷第2期,122-123
    [34]陈粹,何祥辉,张淳.纳米银凝胶治疗烧伤残余创面的效果观察.现代实用医学.2007((19)3:231-232
    [35]汪道新,张灵,张力勇,朱美抒,王峰,范锟铻,张蜕安,许晓光,李伟萍,朱志祥,谢立华.复合纳米银凝胶修复烧伤创面的实验观察和临床应用.临床外科杂志,2007,15(8):558-560
    [36]张逸,鲁双云,高文娟,潘立群,顾海鹰.丹参纳米银复合材料的生物安全性研究.中国美容医学.2007,16(5):596-599
    [37]曾荣洽,郑若.纳米银敷料治疗烧伤创面的临床观察.现代医院.2006,6(5):26-27
    [38]钟金栋,夏雪山,张若愚,高毅颖。纳米银材料抗菌效果研究及其安全性初步评价.昆明理工大学学报(理工版),2005,30(5):91-93
    [39]Hussain SM, Hess KL, Gearhart JM, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells[J]. Toxicol in vitro,2005,19(7):975-983
    [40]Oberdorster E. Manufactured nanomat erials(fullerenes,C60)induce oxidative stress in the brain of juvenile largemouth bass[J]. Environ Health Perspect,2004,112(10)1058.
    [41]Shvedova AA, Cast ranova V, Kisin ER, et al. Exposure to carbon nanotube material:assessment of nanotube cytoto xicity using human keratinocyte cells[J]. Toxicol Environ Health A. 2003,66(20):1909
    [42]Nemmar A, Vanbilloen H, Hoylaerts MF, et al. Passage of intra tracheally instilled ultrafine particles from the lung into the systemic circulation in hamster[J]. Am J Respir Crit Care Med, 2001,164(9):1665
    [43]陈丹丹,奚廷斐,白净,王谨.纳米银和微米银在大鼠组织器官中的分布[J].北就生物医学工程,2007,26(6):607-609
    [44]汤京龙,奚廷斐.纳米银生物安全性研究[J].生物医学工程学杂志,2008,25(4),958-960
    [45]熊玲,奖学华,陈亮,汤京龙,奚廷斐.不同粒径银粒子的体外细胞毒性比较[J].中国生物医学工程 学报.2007,26(4)600-604
    [46]蒋学华,奚廷斐.纳米银的细胞生物学及透过血屏障的体外研究[J]四川大学学报
    [47]Jansson G, Harms Ringdahl M. Stimula ting effects of me rcuric and silver ions on the super oxideanion production in human poly morphonuclear lecukocytes. Free Radic Res Commun,1993; 18(2)87
    [48]Hussain SM, Hes KL, Gearhart J M,et al. In vitrotoxicity of nanoparticles in BRL3A rat liver cells. Toxicol In Vitro,2005;19(7):975
    [49]Takenaka S,Karg E, Moller W, et al. Amorphologic study on the fate of ultrafine silver particles: distribution patter of phagocytized metallic silver in vitro and in vivo[J], Inhal Toxicol, 2000,12(3):291
    [50]Niall Stobie, Brendan Duffy, Declan E. McConnack, Hohn Colreavy, Martha Hidalgo, Patrick McHale, Steven J. Hinder. Prevention of staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol-gel coating. Biomaterials,29, 2008,p963-969
    [51]Evan M. Hetrick, Mark H. Schoenfisch. Reducing implant-related infections:active release strategies[J]. Chemical Society Reviews 35(9) 2006,780-789
    [52]Chen W, Liu Y,Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating [J]. Biomaterials,27 (32) 2006, p5512-5517
    [53]Radhesh Kumar, Helmut Munstedt. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials,26,2005, p2081-2088
    [54]J.J. Blakera, S.N. Nazhatb, A.R. Boccaccinia. Development and characterisation of silver-doped bioactive glasscoated sutures for tissue engineering and wound healing applications. Biomaterials 25 (2004) 1319-1329
    [55]Katakam S, Krishna DSR, Kumar TSS. Microwave processing of functionally graded bioactive materials[J]. Materials Letters 57 (18) 2003,2716-2721
    [56]De la Riviere AB, Dossche KME, Birnbaum DE, Hacker R. First clinical experience with a mechanical valve with silver coating[J]. Journal of heart valve disease 9 (1) 2000,123-129
    [57]Kreth J. Kim D. Nguyen M., Hsiao G, Mito R, Kang MK, Chugal N, Shi W. The antimicrobial effect of silver ion impregnation into endodontic sealer against streptococcus mutans. Open Dent J.2008; 2:18-23
    [58]Kajimoto T, Tanabe T, Yamamoto K. Application of silver ion for dental implant[J]. Jouranl of dental research 78(5) 1999,1134-1134
    [59]董滢,尹路.纳米银应用于软衬材料的抗菌性实验研究[J].山西医科大学学报,2006,37(8)860-861
    [60]中国标准出版社总编室.中国国家标准汇编[S].1985年版.北京:中国标准出版社,1985:73~74
    [61]张倩,尹蓉莉,王金鹏.药物缓控释敷料海藻酸钠的研究概况[J]中国药房2008(19)13:1016-1018
    [62]钱风云,傅得贤,欧阳藩.中国海洋药物[M].2003,91(1):55-59
    [63]Stgaard K, Knutsen S H, Kyrset N.Production and characterization of guluronate lyase from Klebsiella pneumoniae for applications in seaweed biotechnology[J]. Enzyme Microb.Technol,1993,15(9):756-763
    [64]许岩,王为.海藻酸钠凝胶微球软组织填充材料的制备与体内吸收性的考察[J].中国生物医学学 报,2004,38(10):448-452
    [65]Tonnesen HH, Karlsen J. Alginate in drug delivery systems[J]. Drug Dev Ind Phann,2002, 28(6):621-630.
    [66]Machluf M, Orsola A, Atala A. Contiolled release of the rapeutic agents:slow delivery and cell encapsulation[J]. World Jurol,2000,18(1):80
    [67]Romeo T, Preton JF. Purification and structural properies of an extracellular (1-4)-D-mannuronan-specific alginate lyase from a marine bacterium[J]. Biochemistry,1986,25:8385-8391
    [68]邱晓琳,李国明.低分子肝素/壳聚糖/海藻酸钠的复合微囊的制备及释药功能[J]应用化学,2005,6(4):361-366
    [69]陈玺,朱桂贞,唐在明.海藻酸钠在临床上的应用[J].中国医院药学杂志,2000,20(9):560-561
    [70]秦益民.甲壳胺和海藻纤维在易用辅料中的应用.针织工业.2004(5):60
    [71]许岩,王为.海藻酸钠凝胶微球软组织填充材料的制备与体内吸收性的考察[J].中国生物医学学报,2004,38(10):448-452
    [72]Efentakis M, Buckton G. The effect of erosion and swelling on the dissolution of theophylline from low and high viscosity sodium alginate matrices[J]. Pharm Dev Tech,2002,7(1):69-77
    [73]Peppas NA. Analysis of fickian and nonfickian drug release from polymers[J]. Pharm Acta Helv, 1985,60(4):110-111
    [74]Jeffrey BH, Scott D, Ram J. Alginase enzyme production by Bacillus circulans[J]. Appl Envi Microb, 1984,47(4):704-709
    [75]许越.化学反应动力学[M].化学工业出版社.2005
    [76]沈钟,赵振国,王果庭.胶体与表面化学[M].化学工业出版社.2004,112
    [77]李小兵,刘莹.材料表面润湿性的控制与制备技术[J].材料工程,2008,4 74~80.
    [78]廖乾初,蓝芬兰.扫描电镜分析技术与应用.北京:机械工业出版社,1990
    [79]翟中和,王喜中,丁明孝.《细胞生物学》.北京:高等教育出版社,2000.81-82
    [80]麦克斯韦.电磁通论[M].戈革译.武汉出版社.1992.488~492
    [81]史芹.不同浓度的纳米银对血管内皮及平滑肌细胞增殖性能的影响研究
    [82]Oberdorster E. Manufactured nanomat erials(fullerenes,C60)induce oxidative stress in the brain of juvenile largemouth bass[J]. Environ Health Perspect,2004,112(10)1058
    [83]Shvedova AA, Cast ranova V, Kisin ER, et al. Exposure to carbon nanotube material:assessment of nanotube cytoto xicity using human keratinocyte cells[J]. Toxicol Environ Health A. 2003,66(20):1909]
    [84]翟中和,王喜中,丁明孝.《细胞生物学》.北京:高等教育出版社,2000.81-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700