用户名: 密码: 验证码:
磷酸铁锂的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石晶型的LiFePO4正极材料已逐渐成为国内外新的研究热点。研究表明,该新型正极材料理论容量大(170mAh/g),平台特性好,电压极平稳,高温性能和热稳定性明显优于已知的其它正极材料,无毒,为真正的绿色材料。
     固、液结合法合成LiFePO4/C材料,用Li2CO3、H3PO4、Fe2O3、葡萄糖、柠檬酸、蒸馏水为原料。将原料充分研磨均匀、烘干、球磨、焙烧,制得LiFePO4/C材料。用XRD对合成的LiFePO4/C材料进行结构测定,用激光粒度分析仪测定材料粒径。用恒流充放电、循环伏安扫描技术测试材料电化学性能。
     实验研究发现,高温固液结合法合成LiFePO4时,加入碳能有效阻止材料颗粒长大,得到粒径细小均匀的材料。加入碳的作用有:①作为还原剂将Fe3+还原为Fe2+;②包覆在LiFePO4颗粒表面提高材料导电性;③控制高温固相合成LiFePO4材料的颗粒粒径。分别加入了葡萄糖、蔗糖、乳糖、乙炔黑作为碳添加剂合成LiFePO4/C材料,结果显示加入葡萄糖、乳糖效果较好,室温0.2C恒流放电比容量都在139.8mAh/g以上,乙炔黑效果较差,只有93.44mAh/g。
     高温固相法合成LiFePO4/C材料,实验考察了焙烧温度、焙烧时间对材料性能的影响。分别在500℃、550℃、600℃、650℃、700℃、750℃、800℃下焙烧8小时制得材料,测试结果显示:室温、0.2C恒流放电,500℃、550℃制备的材料没有容量,600℃制备的材料比容量为20mAh/g,650℃、700℃制备的材料比容量为140mAh/g左右,750℃、800℃制备的材料比容量分别为120mAh/g、80mAh/g。实验表明,700℃合成的LiFePO4/C材料电化学性能最好。700℃分别焙烧2、4、6、8、12、16小时合成LiFePO4/C材料。实验表明,焙烧8h合成的LiFePO4/C材料电化学性能最好。
     高温固相法合成LiFePO4/C材料,实验考察了掺杂1%MgCO3、CrO3、(NH4)6Mo7O24·4H2O对合成的LiFePO4/C材料电化学性能的影响。实验表明,掺杂1%CrO3合成的LiFePO4/C材料电化学性能最好,0.2C恒流放电比容量是145 mAh/g,同时提高了材料高倍率充放电性能和循环稳定性。
The crystal structure of LiFePO4 is Olivine. This type of cathode material has gradually become a new research focus in the world. Studies show that theoretical capacity of the new cathode material is 170mAh/g. The material's platform is very stable which can be compared with stable electrical source. The material has good cycle performance and the material's thermal stability is better than any other known cathode material. The material has medium voltage (3.4V) and is non-toxic and real green.
     In this study, we synthesized carbon-coated lithium iron phosphate using a combination of solid phase synthesis with liquid phase ones. The raw materials are lithium carbonate, phosphoric acid, ferric oxide, glucose, citric acid and proper amount of distilled water. The procedures of synthesizing carbon coated lithium iron phosphate have raw material mixing, drying, ball milling and sintering. We determined carbon-coated lithium iron phosphate crystal structure using XRD technology and measured lithium iron phosphate particle size using laser particle size analyzer. We tested its electrochemical properties using charge-discharge instrument and cyclic voltammeter.
     We found that lithium iron phosphate using a combination of solid phase synthesis with liquid phase ones followed by heat treatment, the addition of carbon can be effective against lithium iron phosphate particles growing up, to get a small uniform particle size material in the experiment. The role of carbon added are:①As a reducing agent to reduce trivalent iron to ferrous iron;②coated lithium iron phosphate particles in the surface to improve electrical conductivity of materials;③controlling of high temperature solid state synthesizing lithium iron phosphate material particle size. In synthesizing lithium iron phosphate material process, we added glucose, sucrose, lactose, acetylene black separately. Lithium iron phosphate materials synthesizing with adding glucose, lactose show better electrochemical properties that specific capacity are all 139.8mAh/g or more at room temperature, while lithium iron phosphate materials synthesizing with adding acetylene black has only 93.44mAh/g . Constant charge and discharge rate was 0.2C.
     We synthesized lithium iron phosphate with the solid state method. In the process of preparing composite materials, the sintering temperature and sintering time have great effects on the material's properties. We synthesized lithium iron phosphate at 500℃, 550℃, 600℃, 650℃, 700℃, 750℃, 800℃sintering temperature with 8 hours. Laboratory test results show: at room temperature, the constant charge and discharge rate was 0.2C, the material synthesized at 500℃, 550℃sintering temperature have no capacity. The material's specific capacity synthesized at 600℃sintering temperature is 20mAh/g. The material's specific capacity synthesized at 650℃, 700℃sintering temperature are all 140mAh/g around. The material's specific capacity synthesized at750℃, 800℃sintering temperature are 120mAh/g, 80mAh/g separately. The results show that the carbon-coated lithium iron phosphate synthesized at 700℃sintering temperature has the best chemical properties. We synthesized carbon-coated lithium iron phosphate at 700℃sintered 2, 4, 6, 8, 12, 16 hours separately. The results showed that carbon-coated lithium iron phosphate sintered 8 hours has the best electrochemical properties.
     We synthesized lithium iron phosphate with the solid state method. In the experiment, we studied the effects that doping 1%MgCO3, CrO3, (NH4)6Mo7O24·4H2O in synthesizing carbon-coated lithium iron phosphate on its' electrochemical properties. The experimental result showed that carbon-coated lithium iron phosphate doped 1%CrO3 has the best electrochemical properties. Constant charge and discharge rate was 0.2C.Specific capacity of carbon-coated lithium iron phosphate doped 1%CrO3 is 145mAh/g, while enhancing the material's high rate discharge specific capacity and cycle stability.
引文
[1]王继强,陈立泉.新能源材料[M].天津:天津大学出版社,2000.
    [2] J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, Vol. 414, 359-367.
    [3]倪江峰,苏光耀,周恒辉等.锂离子电池正极材料LiMPO4的究进展[J].化学,2004, Vol. 16,(4):556-557.
    [4]吴宇平,万春荣,姜长印等编著.锂离子二次电池[M].北京:化学土业出版社,2002.
    [5]黄可龙,王兆翔,刘素琴著.2007.锂离子电池原理与关键技术[M].北京:化学工业出版社.
    [6] M. Armand. Materials for Advanced Batteries [M], edited by Murphy D. W.,Brodhead J. and Steele. B. C.H. Plenum Press, 1980.
    [7] T. Nagaura, K. Tazawa. Lithium ion rechargeable battery. Prog. Battery Sol.Cells, 1990, Vol. 9(3):209~210.
    [8]杨林.中、日、韩三国锂离子电池发展概况[J].电池工业,2003, Vol. 8(3):137-139.
    [9]吴宇平,戴晓兵,马军旗,程预江.锂离子电池—应用与实践[M].北京:化学工业出版社,2004,3-5.
    [10]郭炳昆,李新海,杨青松.化学电源[M].长沙:中南大学出版社,2000.
    [11] M. M. Thackeray. Structural considerations of layered and spinet oxides for lithium ion Battery [J]. J. Eiectrochem.Soc., 1995, Vol.142(8):2558-2563.
    [12] A. Rougier, P. Gravereau, C. Delmas. Optimization of composition of the Li1-zNi1+zO2 electrode material: Structural magnetic and electrochemical studies [J]. J. Electrochem Soc.1996, Vol.143(4):1168-1175.
    [13] T. O. hzuku, M. Kitagawa, T. Hiral. Electrochemistry of manganese dioxide in lithium nonaqueous cell [J]. J. Electrochem Soc, 1990, Vol.137(3):769-775.
    [14] T. A. Chirayil, P. Y. Zavalij, M. S. Whitetingham. A new vanadium dioxide cathode. [J].J. Electrochem Soc, 1996, Vol.143(9):LI93-L195.
    [15] R. Naejus, R. Coudert, P. Willmann, Ion salvation in carbonate-based lithium batter electrolyte solutions. [J] Electrochimical Acta, 1998, Vol.43(34):275-284.
    [16] G. Y. Gu, S. Bouvier, C.Wu. 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries. [J] Electrochimica Acta, 2000, Vol.45(19):3127-3139.
    [17] Ying Wang, Guozhong Cao. Developments in nanostrcutured cathode materials for high performance lithium-ion batteries[J].. Adv.Mater, 2008, Vol.20:2251-2269.
    [18] Dragana Jugovic, Dragan Uskokovic. A review of recent developments in the synthesisprocedures of lithium iron phosphate powders[J]. Power sources 2009, Vol.190:538-544.
    [19] Yo,shio, Ni,shi. The development of lithium ion secondary batteries[J]..The Chemical Record, 2001, Vol.1:406-413.
    [20] Y. Lin, M. X.Gao, D. Zhu, Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C[J]. Power Sources, 2008, Vol.184:444-448.
    [21] M .Endo, Y. Nishimura, T. Takash. Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery [J] Phys.Chem.Solids,1996, Vol.57:725-728.
    [22] A .Mabuchi, K .Tokumitsu, H .Fujimoto.. Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures [J]. Electrochem.Soc.,1995, Vol.142: 1041-1046.
    [23] J.R. Dahn, T. Zheng, Y. H .Liu. Mechanisms for lithium insertion in carbonaceous materials. [J] .Science, 1995, Vol.270:590-593.
    [24]张成,龚克成.锂离子电池用碳负极材料[J].电池,1997, Vol. 27(3):132-136.
    [25]刘业翔,胡国荣等.锂离子电池研究与开发的进展--11届国际锂电池会议述评[J].电池
    [26] C. S. Feng, B. Shi, G. M .Li, Y. L. Wu. [J] Journal of Membrane Science, 2004, Vol.237:15~24.
    [27]杨书廷,杨金鑫,尹艳红天然橡胶/丁苯橡胶基隔膜材料的制备与性能[J]高分子学报2007, Vol.2:130 -135.
    [28]吴辉煌.电化学[M].北京:化工出版社,2004.
    [29]周恒辉,慈云航,刘昌炎.锂离子电池电极材料研究进展[J].化学进展,1998, Vol. 14(1):85-94.
    [30] Sung-Kyun Chang, Ho-Jin Kweon. Synthesis of LiCoO2 for cathode materials of secondary batteries from reflux reactions at 130-200℃[J].Journal of Power Sources,2002, Vol. 104:125-131.
    [31] Y. Gao,. J. R. Dahn. Synthesis and Characterization of Li1+xMn2-xO4 for lithium ion battery applications. [J].Electrochem.Soc.1996, Vol.143(1):100~144.
    [32] J. H. Lee, J. K. Hong, D. H. Jang ,Degradation mechanisms in doped spinels of LiMn0.05Mn1.95O4 (M=Li, B, Al, Co and Ni) for Li Secondary Batteries. [J] Power Sources.2000, Vol.89(1):7~14.
    [33] Y. Makimura. Systematic research on insertion materials based on superlattice models in a phase triangle of LiCoO2-LiNiO2-LiMnO2 [J].J. Electrochem.Soc.,2004, Vol.150, 9:1499-1506.
    [34] Y .Koyama. Crystal and electronic structure of superstructural Li1-xNi1/3Co1/3Mn1/3O2(0≤x≤1)[J].J Power sources,2003:644—648.
    [35] A.K. Padhi, K.S. Nanjundaswamy, J. B. Goodenough. Phospho olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries [J] Electrochem Soc, 1997, Vol.144:1188-1194.
    [36] Xiaofang Ouyang, Molin Lei, Siqi Shi. First-principles studies on surface electronic structure and stability of LiFePO4[J]. Alloys and compounds 2009, Vol.476:462-465
    [37] C.V.Ramana, A.Mauger, F.Gendron. Study of the Li-insertion/extraction process in LiFePO4/FePO4 [J] Power Sources, 2009, Vol.187:555–564.
    [38] H. S. Kim, B. W. Cho, Cho. W. Cycling performance of LiFeP04 cathode material for lithium secondary batteries. [J]. Power Sources, 2004, Vol.132: 235-239.
    [39] Xiaoke Zhi, Guangchuan Liang, Li Wang. The cycling performance of LiFePO4/C cathode materials[J]. Power Sources, 2009, Vol.189:779–782.
    [40] Masaya Takahashi, Shinichi Tobishima, Koji Takei, Yoji Sakurai. Characterization of LiFePO4 as the Cathode material for rechargeable lithium batteries [J] Power Sources 2002, Vol. 97:508-511.
    [41] Yang Yang, Xiaozhen Liao, Zifeng Ma, Superior high-rate cycling performance of LiFePO4/C-PPy composite at 55℃[J]. Electrochem Commun. 2009,doi:10.1016/j.elecom. 2009.04.021.
    [42]朱炳权,李新海,王志兴.磷酸铁锂性能改性的研究[J]电源技术2006, Vol. 5:376-379.
    [43] Xuguang Gao, Guorong Hu, Zhongdong Peng, Ke Du. LiFePO4 cathode power with high energy density synthesized by water quenching treatment[J]. Electrochemica Acta, 2009, Vol.54:4777-4782.
    [44] Z. P. Cai, Y. Liang, W.S. Li, Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder[J]. Power Sources,2009, Vol.189:547–551.
    [45] Wenli Yu, Yaping Zhao, Qunli Rao. Rapid and continuous production of LiFePO4/C nanoparticles in Super heated water[J]. Chemical Engineering, 2009, Vol.17(1): 171- 174.
    [46] George. Ting-KuoFey, Tung-lin. Lu. Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route[J]. Power sources, 2008, Vol.178:807-814.
    [47] Dragana Jugovic ,Dragan Uskokovic. A review of recent developments in the synthesis procedures of lithium iron phosphate powders[J]. Power sources 2009, Vol.190:538-544.
    [48] Sabina. Beninati, Libero. Damen, Marina. Mastragostino. MW-assisted synthesis of LiFePO4 for high power applications[J]., Power Sources.2008, Vol.180:875-879.
    [49] T. H. Cho, H. Chung, Synthesis of olivine-type LiFeP04 by emulsion - drying method [J]. Power Sources, 2004, Vol.133(2): 272-276.
    [50] EnMei Jin, Bo Jin, Dae-Kyoo Jun. A study on the electrochemical characteristics of LiFePO4cathode for lithium polymer batteries by hydrothermal method[J]., Power Sources, 2008, Vol.178:801–806.
    [51] J. Barker, M. Y. Saidi, J. L. Sowyer, Lithium iron (Ⅱ) phospho-olivines prepared by a novel carbothermal reduction method[J]. Electrochemical and Solid State Letters.2003, Vol. 6 (3):A53-A55.
    [52] Yanbin Xu, Yingjun Lu, Lan Yan. Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C materials[J]. Power sources 2006, Vol.160:570-576.
    [53] Bing Zhao, Yong Jiang, Haijiao Zhang. Morphology and electrical properties of carbon coated LiFePO4 cathode materials[J]. Power Sources 2009, Vol.189:462–466.
    [54] Xinlu Li, Feiyu Kang, Xinde Bai. A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries,[J] Electrochemistry Communications 2007, Vol. 9:663–666.
    [55] Y. Lin, M. X. Gao, D. Zhu, Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C[J]. Power Sources, 2008, Vol.184:444-448.
    [56] Yung-Da. Cho, George Ting-Kuo Fey, Hsien-Ming Kao. The effect of carbon coating thickness on the capacity of LiFePO4/ C composite cathodes[J]. Power Sources 2008, doi: 10.1016.
    [57] M.S. Bhuvaneswari, N.N.Bramnik, D. Ensling. Synthesis and characterization of Carbon nano Fiber/LiFePO4 composites for Li-ion batteries[J]. Power Sources 2008, Vol. 180:553-560.
    [58] Akira Kuwahara, Shinya Suzuki, Masaru Miyayama. High-rate properties of LiFePO4/ carbon composites as cathode materials for lithium-ion batteries[J]. Ceramics international 2008, Vol. 34:863-866.
    [59] Yanbin Xu, Yingjun Lu, Lan Yan. Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C materials, J] Power sources 2006, Vol. 160:570-576.
    [60] Kyung Tae Lee, Kyung Sub Lee, Electrochemical properties of LiFe0.9Mn0.1PO4/Fe2P cathode material by mechanical alloying[J]. Power sources 2009, Vol.189:435-439.
    [61] L. Q. Sun, R. H. Cui, A. F. Jalbout. LiFePO4 as an optimum power cell material[J]. 2009, Vol. 189:522-526.
    [62] Yan Liu, Changhuan Mi, Changzhou Yuan. Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2 [J] Electroanalytical Chemistry 2009, Vol.628:73-80.
    [63]许芳伟,薛卫东,苏荣. LiFePO4掺杂Mg前后导电性能的理论研究.[J]四川师范大学学报2008, Vol. 31(2):224-228.
    [64] Xiuqin Ou, Guangchuan Liang, Li Wang. Effects of magnesium doping on electronic conductivity and electrochemical properties of LiFePO4 prepared via hydrothermal route[J]. power Sources, 2009, Vol.184:514-522
    [65] Hui Liu, Jingying Xie. Synthesis and characterization of LiFe0.9Mg0.1PO4/nano-carbon webs composite cathode[J]. materials processing technology, 2009, Vol.209:477–481.
    [66] S.Y. Chung, J. T. Blocking, Y.M. Chiang. Electronically conductive Phospho-olivinnes as lithium storage electrodes [J].Nature Mater, 2002, Vol. 2:123-128.
    [67] Feng Yu, Jingjie Zhang, Yanfeng Yang. Preparation and characterization of mesoporous LiFePO4/C microsphere[J]. Power Sources 2009, Vol.189:794–797.
    [68] A. Ait. Salah, A. Mauger, C. M. Julien, Nano-sized impurity phases in relation to the mode of preparation of LiFePO4[J]. Materials Science and Engineering 2006, Vol. 129:232-244.
    [69] Zhihui Xu, Liang Xu, Qiongyu Lai. Microemulsion synthesis of LiFePO4/C and its electrochemical properties as cathode materials for lithium-ion cells[J]. Materials chemistry and physics 2007, Vol. 105:80-85.
    [70] L. Q. Sun, R. H. Cui, A. F. Jalbout. LiFePO4 as an optimum power cell material[J]. 2009, Vol. 189:522-526.
    [71]章明,焦丽芳,袁华堂.MoO3氧化物掺杂改善LiFePO4/乙炔黑电化学性能研究[J].无机化学学报2006, Vol. 5(22):839-844.
    [72] C. H. Mi, X.G. ZHANG, X. B.Zhao, H. L. Li. Synthesis and performance of LiMn0.6Fe0.4 /nano-carbon webs composite cathode[J]..Materials Science & Engineering, 2006, Vol. 129: 8-13.
    [73] M. Armand, J. M. Tarascon. Building better batteries. [J]. Nature, 2008:652-657.
    [74] Jianxin. Zhou, Xiangqian. Shen, Maoxiang.Jing. Synthesis and electrochemical performances of spherical LiFePO4 cathode materials for Li-ion batteries[J]. Rare metals, 2006, Vol. 25:19-24.
    [75] Byoungwoo Kang, Gerbrand Ceder. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, Vol. 458:790-793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700