用户名: 密码: 验证码:
不同矿物对氧化亚铁硫杆菌YN-3中磁小体形成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
趋磁细菌(Magnetotactic bacterium)是对体内含有磁性颗粒并表现出趋磁性的所有细菌的通称。在其体内含有的磁性颗粒被称为—磁小体。磁小体具有粒度小而均匀,不团聚,纯度高,结晶完美,磁性质独特,无细胞毒性等特点,是一种理想的生物纳米材料。
     本课题组发现在氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)等浸矿菌中含有生物控制矿化作用所产生的磁小体。本文主要研究不同矿物作用对浸矿细菌中磁小体形成的影响。
     本文以氧化亚铁硫杆菌菌株YN-3为材料,研究在黄铁矿、黄铜矿、磁黄铁矿和闪锌矿等矿物作用下,对YN-3的生长特性及趋磁性产生的影响。结果表明,在不同矿物的作用下,细菌的生长特性有很大不同。在以闪锌矿为能源时,菌体生长速率最快,在第11天,菌量达到最大值2.73X107。其次是磁黄铁矿和黄铜矿,而黄铁矿作用时菌体生长速率最慢。半固体滋泳表明,以黄铁矿和磁黄铁矿作为能源培养的细菌会表现出趋磁性,而利用黄铜矿与铁闪锌矿时无此现象。
     利用实时定量PCR技术研究YN-3中与磁小体形成相关的mpsA、magA、thy和mamB基因分别在黄铁矿、黄铜矿、磁黄铁矿和闪锌矿的作用下的表达差异。实时定量PCR结果表明,在以磁黄铁矿和黄铁矿为能源时,四个基因表达量均高于其它两种矿。但是以黄铁矿为能源时,由于矿体难以氧化,菌体生长极为缓慢,难以大量培养收集。综合趋磁性和细菌生长特性两方面因素可知,在磁黄铁矿作用下,YN-3形成磁小体的效果最好,磁黄铁矿为最佳矿物能源。
     本文利用不同浓度的磁黄铁矿作用于YN-3,研究不同浓度磁黄铁矿对YN-3的生长状况及对其形成磁小体的影响。实验中磁黄铁矿浓度分别1%、2%、3%、4%、5%。生长曲线结果表明,磁黄铁矿浓度为3%时,菌体生长速度最快。浓度为5%时,菌体生长极为缓慢。实时定量PCR结果表明mpsA, magA和mamB基因随着磁黄铁矿浓度的提高,表达量呈增大趋势。磁黄铁矿浓度为1%-3%时,表达量增加明显。超过3%时,增长趋于平缓。Thy基因在各浓度磁黄铁矿作用下,表达量均较低,没有明显变化。综合生长曲线和实时定量PCR结果两个因素表明,3%为磁黄铁矿对YN-3作用的最适浓度。
Magnetotactic bacteria(MTB) is the name of all kinds of prokaryotes with magnetotaxis, which containing Nano-particles--the magnetosomes. Magnetosomes is an ideal kind of bio-nano-magnetic material, because of its specific properties such as superior crystalline, well biocompatible, uniform nano-sized, non-agglomerated and specific magnetic characteristics.
     The researchers in this group discovered the fact that the Acidithiobacillus ferrooxidans could synthesize intracellular electron-dense magnetic particles and this study researched the effect of formation of magnetosomes in bioleaching bacteria under different minerals.
     Acidithiobacillus ferrooxidans strainYN-3 was used to reach the effect of physiological characteristics and the change of magnetotaxis under different minerals including pyrite, chalcopyrite, pyrrhotite and sphalerite. The results showed that the physiological characteristics of bacteria had become great difference because of the effect of different minerals.The growth rate of YN-3 was fastest when sphalerite was the source of energy, the next was pyrrhotite and chalcopyrite, YN-3 had the lowest growth rate under the effect of pyrite. Semi-solid flat-panel magnetophoresis indicated that the bacteria were able to orient and migrate to the magnet in artificial magnetic field when pyrite and pyrrhotite as the energy, but there was no such phenomenon when sphalerite and chalcopyrite were energy.
     Analyze the response of mpsA, magA, thy and mamB genes of YN-3 under pyrite, chalcopyrite, pyrrhotite and sphalerite by using Real-time PCR. The result of Realtime-PCR showed that these four genes had higher expression under the effect of pyrrhotite and pyrite. On the other hand, because of pyrite is hard to oxidize, the bacteria is difficult to use it as energy. As a result, the growth of YN-3 was slow, it was hard to cultivate on a large scale. According to the factors of physiological characteristics and magnetotaxis of bacteria, we can calculated that pyrrhotite was the best energy mineral for the formation of magnetosomes in YN-3.
     In this paper, different concentration of pyrrhotite was used to find the effect of concentration of pyrrhotite to YN-3 on the growth and the formation of magnetosomes. In the experiment, pyrrhotite concentration was 1%,2%,3%,4%,5%. The growth curve showed that YN-3 grew fastest when pyrrhotite concentration was 3%, it had the lowest growth rate with the concentration was 5%. Real-time PCR results showed that the expression of mpsA, magA, and mamB gene tended to increase with the increase of concentration of pyrrhotite. When concentration was 1% to 3%, the expression was increased significantly. While,4% to 5%, the increase tended to be gently. The expression of thy gene had no obvious change with the increase of concentration of pyrrhotite. The growth curve and the result of Real-time PCR showed that 3% was the optimum concentration of pyrrhotite for YN-3.
引文
[1]Frankel R B and Blakemore R P. Magnetite and magnetotaxis in microorganisms. Adv Exp Med Biol,1988,238:321~30
    [2]Ferreira J, et al. Comparative magnetic measurements on social insects. Journal of Magnetism and Magnetic Materials,2005,289:442~444
    [3]Lowenstam H A. Minerals Formed by Organisms. Science,1981,211(4487): 1126~1131
    [4]Mann S, et al. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka:implications for magnetoreception. Exp Biol,1988,140:35~49
    [5]Walcott C, Gould J L and Kirschvink J L. Pigeons Have Magnets. Science,1979, 205(4410):1027~1029
    [6]Kirschwink J L. Magnetoreception-Homing in on vertebrates. Nature,1997, 390(6658):339~340
    [7]Winklhofer M, et al. Clusters of superparamagnetic magnetite particles in the upper-beak skin of homing pigeons:evidence of a magnetoreceptor. European Journal of Mineralogy,2001,13(4):659~669
    [8]Liedvogel M, Feenders G., Wada K, et al. Lateralized activation of Cluster N in the brains of migratory songbirds. Eur J Neurosci,2007,25(4):1166~73
    [9]Kirschvink J L, Walker M M and Diebel C E. Magnetite-based magnetoreception. Current Opinion in Neurobiology,2001,11(4):462~467
    [10]Lohmann K J, et al. Regional magnetic fields as navigational markers for sea turtles. Science,2001,294(5541):364~366
    [11]Wiltschko W, et al. Magnetite-based magnetoreception in birds:the effect of a biasing field and a pulse on migratory behavior. Journal of Experimental Biology, 2002,205(19):3031~3037
    [12]Kirschvink J L, Kobayashikirschvink A and Woodford B J. Magnetite Biomineralization in the Human Brain.Proceedings of the National Academy of Sciences of the United States of America,1992,89(16):7683~7687
    [13]Dunn J R, et al. Magnetic Material in the Human Hippocampus. Brain Research Bulletin,1995,36(2):149~153
    [14]Kirschvink J L. Magnetoreception:Homing in on Vertebrates.Nature,1997, 90:339~340
    [15]Matsunaga T.TIBTECH-MARCH,1991,9:91~95
    [16]Frankel R B, Science,1981,212:1260~1270
    [17]姜伟,付刚,李颖.细菌内磁纳米粒研究一细菌内磁纳米粒的特性及应用.中国医学工程杂志,2003,11(6):59~62
    [18]Spring S, et al. Phylogenetic Analysis of Uncultured Magnetotactic Bacteria from the Alpha-Subclass of Proteobacteria. Systematic and Applied Microbiology,1995, 17(4):501~508
    [19]Petersen N, Vondobeneck T and Vali H. Fossil Bacterial Magnetite in Deep-Sea Sediments from the South-Atlantic Ocean. Nature,1986,320(6063):611~615
    [20]Stolz J F, Chang S B R and Kirschvink J L. Magnetotactic Bacteria and Single-Domain Magnetite in Hemipelagic Sediments. Nature,1986,321(6073): 849~851
    [21]Chang S B R and Kirschvink J L. Magnetofossils, the Magnetization of Sediments, and the Evolution of Magnetite Biomineralization. Annual Review of Earth and Planetary Sciences,1989,17:169~195
    [22]Peck J A and King J W. Magnetofossils in the sediment of Lake Baikal. Siberia. Earth and Planetary Science Letters,1996,140(1-4):159~172
    [23]Maher B A. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography Palaeoclimatology Palaeoecology,1998, 137(1-2):25~54
    [24]Paasche O, et al. Bacterial magnetite in lake sediments:late glacial to Holocene climate and sedimentary changes in northern Norway. Earth and Planetary Science Letters,2004,223(3-4):319~333
    [25]Chuler D. Formation of magnetosomes in magnetotactic bacteria. Mol Micro Biotechnol,1999,1:79~86
    [26]高峻,肖天,孙松等.新型海洋趋磁细菌YSC-1的分离及其特异性磁性纳米材料磁小体的研究.高技术通讯,2004,5:44~47
    [27]Schuler D and Frankel R B. Bacterial magnetosomes:microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology,1999,52(4):464~473
    [28]Blake R P, Wolfe R S. Journal of Bacteriology,1979,140:720~729
    [29]Schuler D and Kohler M. The Isolation of a New Magnetic Spirillum. Zentralblatt Fur Mikrobiologie,1992,147(1-2):150~151
    [30]Matsunaga T, Sakaguchi T. Magnetite formation by a magnetic bacterium capable of growing aerobically Appl. Microbiol. Biotechnol,1991,35:651~655
    [31]Bazylinski D A, Frankel R B and Jannasch H W. Anaerobic Magnetite Production by a Marine, Magnetotactic Bacterium. Nature,1988,334(6182):518~519
    [32]Meldrum F C, et al. Electron microscopy study of magnetosomes in two cultured vibrioid magnetotactic bacteria. Proceedings of the Royal Society of London Series B-Biological Science,1993,251:237~242
    [33]Meldrum F C, et al. Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proceedings of the Royal Society of London Series B-Biological Science,1993,251:p.231-236.
    [34]Sakaguchi T, Burgess J G and Matsunaga T. Magnetite Formation by a Sulfate-Reducing Bacterium. Nature,1993,365(6441):47~49
    [35]卫扬保.趋磁细菌的研究(1).武汉大学学报(自然科学版),1994,(6):115~120
    [36]范国昌,李荣森,李小刚.科学通报,1996,41(4):349~352
    [37]吴小玲,都有为.一株趋磁弧菌及其磁小体特性的研究.南京大学学报(自然科学),1999,35(6):745~749
    [38]Frankel R B, Blakemore R P and Wolfe R S. Magnetite in Freshwater Magnetotactic Bacteria. Science,1979,203(4387):1355~1356
    [39]Bazylinski D A, Frankle R B, Heywood B R, et al. Contralled biomineralization of magnetite(Fe3O4) and greigite(Fe3S4) in a magnetotacie bacterium.Appl Environ Microbiol,1995,61:3232~3239
    [40]Konhauser K O. Diversity of bacterial iron mineralization. Earth-Science Reviews,1998,43(3-4):91~121
    [41]Thornhill R H, et al. A Morphological Classification of Bacteria Containing Bullet-Shaped Magnetic Particles. Fems Microbiology Letters,1994,115(2-3): 169~176
    [42]Moskowitz B M. Biomineralization of Magnetic Minerals. Reviews of Geophysics,1995,33:123~128
    [43]Hanzlik M, Winklhofer M and Petersen N. Spatial arrangement of chains of magnetosomes in magnetotactic bacteria. Earth and Planetary Science Letters,1996, 145(1-4):125~134
    [44]Lins U and Farina M. Magnetosome chain arrangement and stability in magnetotactic cocci. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,2004,85(4):335~341
    [45]姜伟,付刚,李颖.细菌内磁纳米颗粒研究.中国医学工程杂志,2003,11(6):59~62
    [46]Tanaka T, Matsunaga T. Fully automated chemiluminescence immunoassay of Insulin using autibody-protein A-bacterial magnetic particle complexes. Anal Chem, 2000,72:3518~3522
    [47]Schuler Dand Frankel R B. Bacterial magnetosomes:microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology,1999,52(4):464~473
    [48]Schubbe S, Wurdemann C and Peplies J, et al. Transcriptional Organization and Regulation of Magnetosome Operons in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol,2006,72:5757~5765
    [49]Matsunaga T, Nakamura C and Burgess J G. Bacteriol,1992,174:2748
    [50]Schultheiss D, Kube M, Schuler, D. Inactivation of the Flagellin Gene flaA in Magnetospirillum gryphiswaldense Results in Nonmagnetotactic Mutants Lacking Flagellar Filaments. Appl. Environ. Microbiol,2004,70:3624-3631
    [51]Munkelt D, Grass G and Nies D H. The Chromosomally Encoded Cation Diffusion Facilitator Proteins DmeF and FieF from Wautersia metallidurans CH34 Are Transporters of Broad Metal Specificity. Bacteriol,2004,186:8036~8043
    [52]Richter M, Kube M and Bazylinski D A. Comparative Genome Analysis of Four Magnetotactic Bacteria Reveals a Complex Set of Group-Specific Genes Implicated in Magnetosome Biomineralization and Function. J.Bacteriol,2007,189:4899~4910
    [53]Arakaki A, Webb J, Matsunaga T. A Novel Protein Tightly Bound to Bacterial Magnetic Particles in Magnetospirillum magneticum Strain AMB-1. Biol. Chem, 2003,278:8745~8750
    [54]Ohuchi S, Schuler D. In Vivo Display of a Multisubunit Enzyme Complex on Biogenic Magnetic Nanoparticles. Appl. Environ. Microbiol,2009,75:7734~7738
    [55]Quatrini R, Lefimil C, Veloso F A, et al. Bioinformatic prediction and experime-ntal verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Res,2007,35:2153~2166
    [56]Ullrich S, Schuler D. Cre-lox-Based Method for Generation of Large Deletions within the Genomic Magnetosome Island of Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol,2010,76:2439~2444
    [57]Nakazawa H, Arakaki A, Narita-Yamada S, et al. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magneto- tactic bacteria. Genome Res,2009,19:1801~1808
    [58]Schubbe S, Williams T J, Xie G, et al. Complete Genome Sequence of the Chemolithoautotrophic Marine Magnetotactic Coccus Strain MC-1. Appl. Environ. Microbiol,2009,75:4835~4852
    [59]Fukuda Y, Okamura Y, Takeyama H, et al. Dynamic analysis of a genomic island in Magnetospirillum sp. Strain AMB-1 reveals how magnetosome synthesis developed. FEBS Letters,2006,580:801~812
    [60]Matsunaga T, Okamura Y. Genes and proteins involved in bacterial magnetic particles formation[J].Trends in Microbiology,2003,11(11):536~541
    [61]Komeili A, Vali H, Beveridge TJ, Newman DK. Magnetosome vesicles are present before magnetite formation and MamA is required for their activation. Cell Biol,2004,101(11):3839-3844
    [62]Okamura Y, Takeyama H, Matsunaga T. A magnetosome specific GTPase from the magnetic bacterium M agnetospirillum magneticum AMB-1. Biol Chem,2001, 276:48183-48188
    [63]Berson A E, Peters M R, Waleh N S. Cloning of a sequence of Aquaspirillum magnetotacticum that complements the AroD gene of Escherichia coli. Microbiol, 1991,5:2261~2264
    [64]Chikashi N, James GB, Koji S, et al. An iron-regulated gene, magA, encoding an iron transpor protein of Magnetospirillum sp. Strain AMB-1.Biol Chem,1995, 270(47):28392~28396
    [65]Arakaki A, Webb J, Matsunaga T. A novel protein tightly bound to bacterial magnetic particles in M agnetospirillum magneticum strain AMB-1.Biol Chem, 2003,278(10):8745~8750
    [66]Sakaguchi H, Hagimara H, Fukumori Y, et al. Oxygen concentration-dependent induction of a 140 ×103 protein in magnetic bacterium Magnetospirillum magnetotacticum MS-1. FEMS Microbiol Lett,1993,107:169~174
    [67]Grunberg K, Wawer C, Tebo BM, SchulerD. A large gene cluster encoding severalmagnetosome proteins is conserved in different species of magnetotactic bacteria.Appl Environ Microbilo,2001,67(10):4573~4582
    [68]Okuda Y, Fukumori Y. Expression and characterization of a magnetosome-associated protein, TPR-containing MAM22, in Escherichia coli. FEBS Lett,2001,491(3):169~173
    [69]Matsunaga T. Cloning and characterization of a gene, mpsA, encoding a protein associated with intracellularmagnetic particles from Magnetospirillum sp. strain AMB-1, Biochem Biophys Res Commun,2000,268(3):932~937
    [70]Grunberg K, Miiller Eva - Christina, Otto A, et al. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl & Environ Microbiol,2004,70(2):1040~1050
    [71]SchulerD. Molecular analysis of a subcellular compartment:the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch Microbiol,2004,181(1):1~7
    [72]Schubbe S, Kube M, Scheffel A, et al. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comp rising a putative magnetosome island.Bacteriol,2003,185:5779~5790
    [73]Hacker J, Blumcehler G, Muhldorfer I, Tschape H. Pathogenicity islands of virulent bacteria:structure, function and impact onmicrobial evolution. Mol Microbiol, 1997,23(6):1089~1097
    [74]Hsiao W, Wan I, Jones S J, Brinkman F S L. Island path:aiding detection of genomic islands in prokaryotes. Bioinform atics,2003,19:418~420
    [75]Matsuna G A T, Okamura Y. Genes and proteins involved in bacterial magAAnetic particle formation.Trends in Microbiology,2003,11(11):536~541
    [76]Abe M, Ishihara T, Kitamoto Y. MagAAnetite film growth at 30℃ on organic monomolecμlar layer, mimicking bacterial magAAnetosome synthesis. Journal of Applied Physics,1999,85(8):5705-5707
    [77]Matsunaga T, Kamiya S. Use ofmagnetic particles isolated from magnetotactic bacteria for enzyme mobilization. Appl Microbiol Biotechnol,1987,26:328~332
    [78]Matsunaga T, Kawasaki M, Xie Y, et al. Chemiluminescence Enzymeimmuno assay using bacterial magnetic particles. Anal Chem,1996,68(20):3551~3554
    [79]Nakamura N, Matsunaga T. Highly sensitive detection of allergen using bacterial magnetic particles. Anal Chim Acta,1993,281(3):585~589
    [80]解宇.使用磁性细菌粒子分离浓缩和检测癌胚抗原.中华微生物学和免疫学杂志,2003,23(2):159~160
    [81]Matsunaga T, Sato R, Kamiya S, et al. Chemiluminescence enzymeimmunoassay using Protein A-bacterial magnetite complex. J Magn Magn Mater,1999,194(1-3): 126~131
    [82]Takeyama H, Yamazawa A, Nakamura C, et al. Application of bacterial magnetic particles as novel DNA carriers for ballistic transformation of a marine cyanobacterium. BioTechniques,1995,9 (5):355~360
    [83]Bahaj A S, Croudace I W, Janes P A B, et al. Continuous radionuclide recovery fromwaste water usingmagnetotactic bacteria. J Magn Magn Mater,1998,184(2): 241-244
    [84]Arakaki A, Takeyama H, Tanaka T, et al. Cadmiumrecovery by a sulfate-reducing magnetotactic bacterium, desulfovibriomagneticus RS-1, using magnetic separation. Appl Biochem Biotechnol,2002,100(1-9):833~840
    [85]Matsunaga T, Kamura O. Molecular mechanism of bacterial magnetite formation and its application. Mater Res Soc Symp Proc,2002,724:11~24
    [86]张晓金,原续波,常津,等.具有靶向抗癌功能的O-CMC磁性纳米载体系统的制备.高分子通报,2004,22(3):89~92
    [87]Bahaj A S, James P A B. Characterization of magnetotactic bacteria using image processing techniques. IEEE Trans Magn,1993,29(6):3358~3360
    [88]潭晖,洪定玉,肖松文.趋磁性细菌载体磁分离技术.国外金属矿选矿,2000,37(2):2~5
    [89]S. Mann et al. J. Chem. Soc, Dalton Trans,1983,771.
    [90]韩俊英,曾瑞萍.荧光定量PCR技术及其应用.国外医学遗传学分册,2000,23(3):177
    [91]Wall S J, Edward D R. Quantitative reverse transcription-polymerase chain react ion (RT-PCR):a comparison of prime-dropping, competitive, and real-time RT-PCR. A nal Biochem,2002,300 (2):269~273
    [92]Schmittgen T D. Real-time quantitative PCR. Methods,2001,25 (4):383~385
    [93]Willard M F, Stephen JW, Ken T E V. Quantitative RT-PCR:pitfall and potential. Bio-Techniques,1999,26 (1):112~125
    [94]Nathalie D, Axelle D, Veronique S, et al. Quantification of Human immuno- defi ciency virus type proviral load by a TaqMan real-time PCR assay. J Clin Microbiol, 2001,39:1303~1310
    [95]赖永榕等.荧光定量逆转录—聚合酶链反应检测b地中海贫血b与g珠蛋白mRNA水平的研究.中华血液学杂志,2002,23(1):42~43
    [96]Tesson L, Heslan J M, Menoret S, et al. Rapid and accurate determination of zygosity in transgenic animals by real-time quantitative PCR Transgenic Res,2002, 11(1):43~48
    [97]苏学飞,左中越,蔡高涛,等.荧光定量PCR的临床应用.右江民族医学院学报,2000,22(2):277~278
    [98]Xiaoke Wang, Likun Liang. Effects of static magnetic field on magnetosome formation and expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-l.Bioelectromagnetics,2009,30(4):313~321
    [99]Milan Timkoa, Anezka Dzarovaa, Jozef Kovaca, et al. Magnetic properties and heating effect in bacterial magnetic nanoparticles. Journal of Magnetism and Magnetic Materials,2009,321(10):1521~1524
    [100]Takeyuki Suzukia, Yoshiko Okamuraa, Atsushi Arakaki, et al. Cytoplasmic ATPase involved in ferrous ion uptake from magnetotactic bacterium Magnetospirillum magneticum AMB-1. FEBS Letters,2007,581 (18):3443~3448
    [101]Jian-Bo Sun, Feng Zhao, Tao Tang, et al. High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air [J]. Applied Microbiology and Biotechnology,2008, 79:389~397
    [102]Wei Lina, Jinhua Lia, Dirk Schulerc, et al. Diversity analysis of magnetotactic bacteria in Lake Miyun, northern China, by restriction fragment length polymorphism. Systematic and Applied Microbiology,2009,32(5):342~350
    [103]Kundu S, Kale A A, Banpurkar A G, et al. On the change in bacterial size and magnetosome features for Magnetospirillum magnetotacticum (MS-1) under high concentrations of zinc and nickel.Biomaterials,2009,30(25):4211~4218
    [104]Amaro A M, et al. Effect of External Ph Perturbations on Invivo Protein-Synthesis by the Acidophilic Bacterium Thiobacillus-Ferrooxidans. Journal of Bacteriology,1991,173(2):910~915
    [105]Wen-bin LIU, Hai-yan WU, Xue-duan LIU, et al. Influence of different Fe sources and concentrations on formation of magnetosomes in Acidithiobacillus ferrooxidans. Transactions of Nonferrous Metals Society of China,2008,18(6): 1379~1385
    [106]Towe K M, Moench, T T. Electron-optical characterization of bacterial magnetite. Earth Planet. Sci. Lett,1981,52:213~220
    [107]Bazylinski D A, Garratt-Reed, A J. Abedi, A. Copper association with iron sulfide magnetosomes in a magnetotactic bacterium.Arch.Microbiol,1993,160:35~42
    [108]Keim C N, Farina M. Gold and silver trapping by uncultured mag- netotactic cocci. Geomicrobiol J,2005,22:55~63
    [109]Staniland S, Williams W, Telling N, et al. Controlled Cobalt Doping of Magnetosomes In Vivo. Nat. Nanotechnol,2008,3:158~162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700