用户名: 密码: 验证码:
面向主动健康监测的高速无线传感器节点的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构健康监测和无线传感网络都是当前国内外工程领域的研究热点。近年来,无线传感网络被广泛用于结构健康监测领域的研究,将其应用于主动健康监测系统,要求无线传感器节点具有小型化、低功耗、采样速度快等特点,并且自身能够实现主动激励的功能。国外虽然对此有了相关的研究,但价格昂贵且尺寸偏大,并不完全适合结构健康监测的需要。因此,开发专门用于结构健康监测的高速无线传感器节点是十分必要的。据此,本文面向主动健康监测,设计开发了具有主动激励功能的高速无线传感器节点。
     本文在阐述了无线传感器节点的一般框架的基础上,结合主动健康监测需要,着重进行了高速无线传感器节点的软硬件设计。首先,采用模块化设计的思想分别对高速节点的激励模块、数据采集与处理模块、无线通信模块以及电源模块进行了硬件开发,完成了节点的电路板调试和功能测试;然后详细介绍了无线传感网络专用的开放源代码软件操作系统TinyOS和DSP专用的软件开发集成环境CCS,设计编写了节点各模块的软件程序;最后运用该高速节点建立了基于高速无线传感器节点的结构健康监测系统,实现了铝板材料螺钉松动的实时监测,完成了高速节点的功能验证实验。实验结果表明本文开发的高速无线传感节点各软硬件模块功能完整,可以实时的完成结构的主动激励、响应信号采样和处理,能够准确判别航空试件的紧锢件松动判别。
Structural health monitoring (SHM) and wireless sensor networks (WSNs) are both hotspot researches of current industrial technology. In recent years, wireless sensor network has been widely researched in structural health monitoring area. To be applied in active health monitoring system, the wireless sensor node must has features, such as small size, low power consumption, high sampling rate and the function of active excitation. Although there are some related researches abord, the prices of the nodes developed are expensive and the size of the node is big, which make them not entirely suite for the requirement of structural health monitoring. Therefore, it is necessary to develop specially a kind of wireless sensor node for active structural health monitoring. Hereby, a wireless sensor node with the function of active excitation and high sampling rate is developed in this thesis. Based on the general framework of wireless sensor node, combined with the requirement of active health monitoring, much attention are paid to the design of hardware and software of the high sampling rate wireless sensor node in this thesis. Firstly, modularity ideologic is adopted to design the excitation module, data acquisition and processing module, wireless communication module and power module of the node. Based on the design, a wireless sensor node is developed and tested.
     Regarding the software system, the open-source operating system named TinyOS and the DSP-specific integrated software development environment named CCS are described in detail, which are applied to design and compile software program of the node’s module. Finally, a composite structural health monitoring system based on the high sampling rate wireless sensor node is developed to implement the bolt loose monitoring on the aluminum plate and achieve the function verified experiment. The results demonstrate that the high-speed wireless sensor nodes can complete active excitation, sampling and processing of the response signal for the application of active structure monitoring with integrated software and hardware, which can distinguished the looseness of the aviation specimens accurately.
引文
[1]陶宝祺主编,智能材料结构,北京:国防工业出版社,1997.
    [2]袁慎芳,结构健康监控,北京:国防工业出版社,2007.
    [3]彭鸽,基于Lamb波的结构健康主动监测技术研究.南京:南京航空航天大学博士论文,2006.
    [4] Xiaoliang Zhao, Tao Qian, GangMe, etc. Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network:II.Wireless approaches[J]. Smart Mater. Struct. 2007,16:1218~1225.
    [5] D. Musiani, K. Lin, T. Simunic Rosing. Active Sensing Platform for Wireless Structural Health Monitoring[A], IPSN’07, April,25–27,2007,Cambridge, Massachusetts, USA.390~399.
    [6]孙利民,李建中,陈渝,朱红松,无线传感器网络,北京:清华大学出版社,2005.
    [7] http://www.hardwaretoday.com/info/2007-11-26/56280.html
    [8] Perrig, A., et al., SPINS: Security protocols for sensor networks. Proceedings of MOBICOM,2002.
    [9] The 29 Palms Experiment: Tracking vehicles with a UAV-delivered sensor network. http://tinyos.millennium.berkeley.edu/29Palms.htm
    [10] S. Roundy and P.K. Wright, "A piezoelectric vibration based generator for wireless electronics," Smart Materials and Structures, 2004, 13: 1131~1142.
    [11] Chipcon Corporation, CC2420 Datasheet: http://www.chipcon.com/files/CC2420_Data _Sheet_1_3.pdf
    [12]肖景和,555集成电路应用集萃,北京:人民邮电出版社,2007.
    [13] http://baike.baidu.com/view/1102178.htm
    [14] http://bbs.ednchina.com/ShowTopic.aspx?id=53711
    [15] http://www.dzsc.com/data/html/2007-9-25/43536.html
    [16]隋晓红,石磊.运算放大器官性负载驱动问题研究.煤矿机械,2003,3:37~39.
    [17]刘会星,谭本武.运算放大器在容性负载作用下稳定性研究.毕节师范高等专科,2004, 22(4):61~64.
    [18]庞佑兵,梁伟.电压反馈和电流反馈运算放大器的比较.微电子学,2003,33(2):132~135,139.
    [19] http://www.eetchina.com/SEARCH/ART/%C8%DD%D0%D4%B8%BA%D4%D8.HTM
    [20] http://www.avrw.com/article/art_101_3763.htm
    [21] TLV5618A,2.7-V TO 5.5-V LOW-POWER DUAL 12-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN.pdf
    [22] http://focus.ti.com.cn/cn/docs/prod/folders/print/tlv5618a.html?lpos=See_Also _Container&lid=Alternative_Devices
    [23] http://www.b2b99.com/hyzs/dz/1348.htm
    [24]叶克松,冯涛,武自芳.基于DSP芯片外围接口技术应用.嵌入式应用,2004,20(5):41~42,102.
    [25]闫海珠,黄富长,施群,王小椿.基于DSP和高速串行DAC的多轴位置控制卡设计.机床与液压,2004,5:73~75,49.
    [26] http://info.ec.hc360.com/2005/04/11135159508.shtml
    [27] http://www.maxim-ic.com.cn/quick_view2.cfm?qv_pk=3072
    [28]施自胜.低功耗满幅输出12位串行数模转换器DAC7512及其应用.国外电子元器件,2004,6:69~70.
    [29] http://zhidao.baidu.com/question/35170096.html
    [30] http://blog.fwwwd.com/fwwmanic/BlogIndex/5.aspx?l=zh-CN
    [31] F2810,F2811,and F2812 ADC Calibration,TI Company,2004.11
    [32]张卫宁. TMS320C29x系列DSP的CPU与外设(上),北京:清华大学出版社,2005.
    [33]张卫宁. TMS320C29x系列DSP的CPU与外设(下),北京:清华大学出版社,2005.
    [34] http://baike.baidu.com/view/215522.htm
    [35] http://www.ourzigbee.com/
    [36] http://blog.21ic.com/user1/999/archives/2006/13848.html
    [37] Chipcon Corporation, CC2420 Datasheet: http://www.chipcon.com/files/CC2420_Data _Sheet_1_3.pdf
    [38] http://www.pcbbbs.com/Archive_view.asp?boardID=92&ID=141208
    [39] http://blog.ccidnet.com/blog-htm-do-showone-uid-235256-itemid-464788-type -blog.html
    [40] http://www.ic37.com/htm_news/2008-1/3145_228922.htm
    [41]郭惠,解书钢. Protel 99SE常用功能与应用,北京:电子工业出版社,2008.
    [42]姜沫岐,许涵,俞鹏,段国强,DSP原理与应用从入门到提高,北京:机械工业出版社,2007.
    [43] Attila Dogan-Kinali,Porting TinyOS on to Btnodes, Eldgenossische TechnischeHechschule Zurich, 2005:1~35.
    [44] Stankovic, J.A., Ramamritham, K. Tutorial on hard real-time systems. Washington, D. C., IEEE Computer Society Press, 1988.
    [45] http://hi.baidu.com/kblost/blog/item/55652f2a55c3113b5343c1bc.html
    [46] http://www.elecn.net/images/5510/20075101949919504.PDF
    [47] http://www.ic37.com/htm_bbs_dic/2006-8/139071_567695.htm
    [48] http://www.ic37.com/htm_tech/2008-1/9478_314879.htm
    [49]段广云.基于DSP的数据采集系统的设计.青海大学学报,2005,23(5):82~85.
    [50]张萍.基于MATLAB与DSP的FIR数字滤波器的设计.中国科技信息,2007,23:79,81.
    [51]梅志红,赵莉.基于CCS环境和MATLAB仿真的FIR数字滤波器实现.电器电子教学学报,2005,27(3):44~47.
    [52]许春梅,孙江峰.基于TMS320F2812的FlR数字滤波器设计.大众科技,2007,96:87~89.
    [53] D. Economou,C. Mavroidis,I. Antoniadis. Robust Vibration Suppression in Flexible Systems Using Infinite Impulse Response Digital Filters. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS, Vol. 27, No. 1, pp.107-117,2004.
    [54] F. Landis Markley,Joseph E. Sedlak. Kalman Filter for Spinning Spacecraft Attitude Estimation. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS, Vol.31, No.6, pp.1750-1760, 2008.
    [55] Avishy Carmi and Yaakov Oshman. Fast Particle Filtering for Attitude and Angular-Rate Estimation from Vector Observations. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS, Vol.32, No.1, pp.70-78, 2009.
    [56] Taehyoun Kim, Moeljo Hong, Kumar G. Bhatia, and Gautam SenGupta. Aeroelastic Model Reduction for Affordable Computational Fluid Dynamics–Based Flutter Analysis.theAIAA/ASME/ASCE/AHS/ASC45th Structures, Structural Dynamics, and Materials Conference,Vol.43, No.12, pp.2487-2495,2005.
    [57] Ronald N. Kostoff,Kenneth A. Green,Darrell Ray Toothman. Database Tomography Applied to anAircraft Science and Technology Investment Strategy. J. AIRCRAFT,VOL.37, NO.4,pp.727-730,2000.
    [58] Taehyoun Kim,Efficient Reduced-Order System Identification for Linear Systems with Multiple Inputs. The AIAA/ASME/ASCE/AHS/ASC45th Structures, Structural Dynamics, and Materials Conference,Vol.43, No.7, pp.1455-1464,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700