用户名: 密码: 验证码:
可见光下Bi_2WO_6光催化降解亚甲基蓝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1972年Fujishima和Honda报道了TiO_2电极光分解水以来,因半导体光催化剂转换太阳能净化环境方面有广泛的应用,大多数研究都集中在这方面。在众多的光催化剂中,Bi_WO_6已被证实具有合适的价带和良好的物理性能,如铁电性、热电性、非线性传导磁化性、催化活性,被认为是能有效光解水和降解有机污染物的可见光型催化剂。
     实验分别采用共沉淀法和固相法合成催化剂Bi_2WO_6,并利用浸渍法对合成的Bi_2WO_6催化剂进行改性,形成金属(Ag,Cu等)掺杂型光催化剂。并以亚甲基蓝(Methylene Blue,MB)为模型化合物,在可见光条件下研究Bi_2WO_6催化剂用量、pH值、光照强度、空气流量、光照时间、初始浓度等因素对亚甲基蓝降解率的影响,并初步探讨了可见光下Bi_2WO_6光催化降解亚甲基蓝的动力学特征。实验结果表明:共沉淀法合成的催化剂在可见光照射下光催化降解亚甲基蓝的效果远远好于固相法合成的催化剂。当共沉淀法合成的催化剂用量为0.2g/L,pH值为9.30,亚甲基蓝的初始浓度为10 mg/L时,对亚甲基蓝降解的效果最佳,4 h后亚甲基蓝的降解率达到80%。同时还研究了光催化降解亚甲基蓝的动力学特征,发现该降解反应符合一级反应动力学特征。
     实验还研究了采用共沉淀法合成的Bi_2WO_6光催化剂对亚甲基蓝的吸附性能。结果表明:Bi_2WO_6对亚甲基蓝的最大吸附量达16.46 mg/g,其吸附规律较好的符合Langmuir吸附等温式;Bi_2WO_6对亚甲基蓝吸附速率较快,在25℃条件下0.02 g Bi_2WO_6对100.0 ml含10.0 mg/L的亚甲基蓝溶液吸附时间为30 min时,亚甲基蓝的吸附达到平衡;Bi_2WO_6对亚甲基蓝的吸附率随着温度和Bi_2WO_6用量增加而增大。
     研究表明,金属掺杂型Bi_2WO_6催化剂的光催化活性有所降低,这可能是因为金属离子的介入导致了催化剂晶体结构的变化。其中Ag离子的掺杂效果较好,同时,还考察了Ag掺杂量对催化剂活性的影响,发现在3wt.%时降解效果最佳。实验中通过XRD、SEM、TG-DSC等表征分析发现:在600℃热处理条件下,XRD谱图中Bi_2WO_6的衍射峰出现;热分析表明当温度升高到450℃左右,催化剂中所含的硝酸盐等大部分杂质被去除,800℃以上Bi_2WO_6处于热稳定状态。
In recent years, a large number of investigations have focused on the semiconductor photocatalyst for its wide applications in solar energy conversion and environmental purification since Fujishima and Honda discovered the photocatalytic splitting of water on the TiO_2 electrodes in 1972.Among various oxide photocatalyst, Bi_2WO_6 was reported that it had a suitable valence band and possessed interesting physical properties, such as ferroelectric piezoelectricity, pyroelectricity, a nonlinear dielectric susceptibility and catalytic behavior. It has been recognized as a photocatalst for water splitting and pollutant degradation under visible light irradiation.
     The Bi_2WO_6 photocatalyst were prepared by simple co-precipiation process and solid-state reaction method, metal particles were loaded on the Bi_2WO_6 catalyst by deposition method. The photocatalytic activity of Bi_2WO_6 was evaluated by methylene blue under visible light irradiation (λ>400 nm).The MB degradation was examined to assess the pH value, initial concentration of MB , illumination intension, air flux, illumination times, the dosage of catalyst and metal particles loaded. The results demonstrated that the activity of catalyst which were prepared by co-precipiation process much better than prepared by solid-state reaction method. In the former MB/Bi_2WO_6 system, MB was effectively degraded by about 80% within 4 h, when the dosage of catalyst was 0.2 g/L, the initial concentration of MB was 10 mg /L and pH was 9.30.Results of kinetic study show that the degradation of MB using Bi_2WO_6 followed the first-order reaction kinetic model.
     In the present study the adsorptive properties of Bi_2WO_6 to MB were studied. The results include the following: the maximum MB adsorption capacity was 16.46 mg/g and the adsorption accord with Langmuir adsorption isotherm preferable; the adsorption velocity of menthylene blue executed by B_2WO_6 is comparable high. The adsorption rate could reach adsorption balance within 30 min at 25℃when we added 0.02 g Bi_2WO_6 to 100 mL 10 mg/L menthylene blue solution. To sum up, Bi_2WO_6 could rapidly and effectively adsorb menthylene blue in solution; the adsorption of menthylene blue increases alongside the rise of temperature and augment of the Bi_2WO_6 usage.
     But the activity of catalyst was decreased when Bi_2WO_6 catalyst loaded metal particles. It maybe because of the variation of crystal structure after metal ions entered. Among the metal-Bi_2WO_6, Ag-loaded photocatalyst had a better effect, and also found that when the content of Ag was 3 wt.%, the best photocatalytic degradation efficiency of MB was obtained. The samples were characterized with XRD, SEM, TG-DSC. It was found that the diffraction peaks of Bi_2WO_6 catalyst appeared at 600℃. TG-DSC analysis indicated that NO_3 had been removed at 450℃, and Bi_2WO_6 had been in steady state after 800℃.
引文
[1] 张林生,蒋岚岚.染料废水的脱色方法[J].化工环保,2000,20(1):14~18.
    [2] 李庄,曾光明,高兴斋.偶氮染料废水处理研究现状及其发展方向[J].湖南化工,2000,30(6):12~15.
    [3] 谢磊,胡勇有,杨润昌等.高浓度甲基橙湿式氧化氢氧化机理初探[J].环境工程,2002,20(2):72~74.
    [4] 范洪波,孙晓娟,王晋等.难降解染料废水处理方法的研究进展[J].江苏石油化工学院学报,2002,14(1):61~64.
    [5] 王晓明,李凤仙 阴浩.偶氮染料废水处理技术[J].山东环境,2000,100:28~29.
    [6] 方世杰,徐明霞,黄卫友等.纳米TiO_2光催化降解甲基橙[J].硅酸盐学报,2001,29(5):439~442.
    [7] 王怡中,符雁,汤鸿霄.甲基橙溶液多相光催化降解研究[J].环境科学,1998,19(1):1~4.
    [8] 张颖,王桂茹,李朝晖.光催化氧化处理活性染料水溶液[J].精细化工,2000,17(2):79~81.
    [9] 崔高峰,王伯勇,王清等.负载型TiO_2光催化降解甲基橙研究[J].山东科学,2000,13(4):25~28.
    [10] 王怡中,符雁,汤鸿霄.二氧化钛悬浆体系太阳光催化降解甲基橙研究[J].环境科学学报,1999,19(1):63~67.
    [11] 王蔚君,刘云.ZiO_2光催化氧化有机污染物的研究进展[J].化学试剂,2002,24(2):80~85.
    [12] 黄惠莉,黄妙良,陈建新等.二氧化钛光催化降解处理染料废水[J].化工环保,2002,22(2):84~87.
    [13] 华彬,陆永生,胡龙兴等.超声技术降解酸性红B废水[J].环境科学,2000,21(2):88~90.
    [14] Cyr P.J, Paraskewich M. R, Suri R. P. Sonochemical destruction of trichloroethylene in water.[J]. Water Sci.Tech, 1999, 40(4-5): 131~136.
    [15] FujishimaA, HondaK. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 238:37-38
    [16] Dhananjeyan M R, Avelu V, Renganathen R. A Study on the Photocatalytic reactions of TiO_2 with certain pynmidine bases: effects of dopants(Fe~(3+)and calcinations[J], Journal of Molecualr Catalytic A: Chemical. 2000.151: 217~223.
    [17] 水森,岳林海,徐铸德.几种制备方法的掺铁二氧化钛光催化活性[J].物理化学学报,2001,17(3):282~285.
    [18] Wilke K, Breuer H. D. The influence of transition metal doping on the physical and photocatalytic properties of titama[J]. Journal of Photochenemistry and photobiology A: chemistry, 1992,121: 49~53.
    [19] 水森,岳林海,徐铸德.稀土镧掺杂二氧化钛的光催化特性[J].物理化学学报,2000,16(5):459~463.
    [20] 王艳芹,张莉,程虎民等.掺杂过渡金属离子的TiO_2复合纳米粒子光催化剂—罗丹明B的光催化降解[J].高等化学学报,2000,21(6):958~960.
    [21] 潘海波,林德娟,刘隆兴等.掺矾TiO_2纳米粉体的制备及性能,材料研究学报[J].2001,15(5):535~539.
    [22] Moser J, Gratzel M, Sharma D. K. Halophilic Reactions of a Stable Silylene with Chloro and Bromocarbons[J]. Helv. Chim. Acta, 1995, 68: 1686.
    [23] Kamat P. V, Fox M. A, Fatiadi A. J. Photoinduced Electron Storage and Surface Plasmon Modulation in Ag@TiO_2 Clusters[J]. J. Am. Chem. Soc., 1994, 106: 1191.
    [24] Willner I, Eichen Y. Acetylcholine Esterase-Labeled CdS Nanoparticles on Electrodes: Photoelectrochemical Sensing of the Enzyme Inhibitors [J]. J.Am. Chem. Soc., 1999, 111: 1884.
    [25] 张峰,李庆霖,杨建军等.TiO_2光催化剂的可见光敏化研究[J].催化学报(Zhang F, Li Q L,Yang JJ,et.al.Chin J catal),1999,20(3):329.
    [26] 岳林海等.稀土元素掺杂二氧化钛催化剂光降解久效磷的研究[J].上海环境科学,1998,17(9):17.
    [27] 于向阳,程继健,杜永娟.稀土元素掺杂对TiO_2相组成和光催化性能的影响[J].玻璃与陶瓷 2000,28(2):15.
    [28] Hung K, Tichy R, Goodenough J. B. Superior perovskite oxide-ion conductor, strontium and magnesium-doped LaGaO_3 [J]. J. Am. Ceram. Soc., 1998, 81(10): 2565-2581.
    [29] Ishihara T, Matsuda H, Takita Y. Doped LaGaO_3 perovskite type oxide as a new oxide ionic conductor [J]. J. Am. Chem. Soc., 1994, 116:3801-3806.
    [30] 古凤才,王金明,刘荫藩等.钛酸钙与钛酸铅及其掺杂物的光催化性能[J].催化学报, 1997,18(3):247~249.
    [31] 蒋正静,戴洁,卞国庆等.钛酸铅的共沉淀制备及其光催化活性的研究[J].化学世界,2002,(10):522~524.
    [32] 桑丽霞,傅希贤,杨秋华等.LaFeO_3和SrFeO_(3-λ)对水溶性染料的光催化降解[J].环境科学与技术,2002,25(2):4~6.
    [33] 傅希贤,杨秋华,桑丽霞等.钙钛矿型LaFe_(1-x)Cu_xO_3的光催化活性的研究[J].高等学校化学学报,2002,23(2):283~286.
    [34] 杨秋华,傅希贤,桑丽霞等.纳米LaCoO_3的光催化氧化还原活性[J].燃料化学学报,2002,30(4):368~371.
    [35] 李新勇(Li X Y),李树本(Li S B).纳米半导体研究进展[J].化学进展(Progress.in Chemistry),1996,8(3):231~239.
    [36] Zang L, Lange C, Maier W F, Kisch H. Visible-light detoxification and charge generation by transition metal chloride modified titania[J]. Chem.B, 2000, 6(2): 379~384.
    [37] Nusbaumer H, Moser J. E, Zakeeruddin S. M, Nazeeruddin M. K, Gratzel M. CoⅡ(dbbip)~(22+) Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells[J]. J. Phys. Chem. B. 2001; 105(43); 10461~10464.
    [38] 张彭义(Zhang P Y),余刚(Yu G),蒋展鹏(Jiang Z P).半导体光催化剂及其改性技术进展[J].环境污染治理技术与设备,1997,5(3):1~10.
    [39] Li W, Osora H, Otero L, Duncan D. C. Photoelectrochemistry of a Substituted-Ru(bpy)~(3+) -Labeled Polyimide and Nanocrystalline SnO_2 Composite Formulated as a Thin-Film Electrode[J]. J. Phys. Chem. A.; (Article); 1998; 102(28): 5333~5340.
    [40] Bandara J, Tennakone K, Kiwi J. Surface Mechanism of Molecular Recognition between Aminophenols and Iron Oxide Surfaces[J]. Applied Catalysis A: General. 2001, 208: 335~341.
    [41] Bensalah N, Gadri A, Canizares P. Electrochemical Oxidation of Hydroquinone, Resorcinol, and Catechol on Boron-Doped Diamond Anodes[J]. Sci. Technol.; (Article); 2005; 39(18); 7234~7239.
    [42] 李卫华(Li W H),郝彦忠(Hao Y Z),王艳芹(Wang Y Q)等.PbS/Ru(Ⅱ)配合物敏化Cd(Ⅱ) 掺杂TiO_2纳米品电极的光电化学[J].应用化学(chinese Journal of Applied Chemistry),1999, 16(1):6~10.
    [43] 李卫华(Li W H),郝彦忠(Hao Y Z),王艳芹(Wang Y Q)等.硫化镉/Ru(Ⅱ)配合物复合敏化ZnO纳米晶多孔膜电极的光电化学[J].北京大学学报,自然科学版(Acta Scientiarum Naturalium Universitatis Pekinensis),1999,35(4):446~452.
    [44] Abe T, Suzuki E, Nagoshi K. Reply to the Comment on Electron Source in Photoinduced Hydrogen Production on Pt-Supported TiO_2 Particles[J]. J. Phys. Chem. B. 2001, 105(2); 597~597.
    [45] Iwasaki M, M.Hara H, Kawada H. Ion-Doped TiO_2 Photocatalyst Response to Visible Light[J]. J. Colloid Interface Sci. 2000, 224:202~204
    [46] XU X H. Preparation and characterization of Bi-doped TiO_2 photocatalyst. J. Mater. Sci. Lett[J]. 2002, 21: 1655~1656.
    [47] Yamashita H, Harada M, Misaka J. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts: Fe ion-implanted TiO_2[J]. Catalysis Today. 2003, 84: 191~196.
    [48] Venkata K, Rao S, Boule P. Influence of metallic species on TiO_2 for the photocatalytic degradation of dyes and dye intermediates[J]. J. Photochem. Photobiol.A, 2003, 154: 189~193.
    [49] Gupta A. K, Pal A, Sahoo C. Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag~+doped TiO_2[J]. Dyes and Pigments. 2006, 69: 224~232.
    [50] Arabatzis I. M, Stergiopoulos T, Bernard M. C. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange[J]. Appl. Catal. B: Environ. 2003, 42:187~201
    [51] Jing D. W, Zhang Y. J, Guo L. J. Study on the synthesis of Ni doped mesoporous TiO_2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution[J]. Chem. Phys. Lett. 2005, 415: 74~78.
    [52] Ankova H. M, Krysa J, Jirkovsky J, Mailhot G, Bolte M. The influence of Fe(Ⅲ) speciation on supported TiO_2 efficiency: example of monuron photocatalytic degradation[J]. Appl. Catal. B: Environ. 2005, 58: 185~191.
    [53] Zhang X. W, Zhou M. H, Lei L. C. Co-deposition of photocatalytic Fe doped TiO_2 coatings by MOCVD[J]. Catal. Commun. 2006, 7: 427—431.
    [54] Fresno F, Guillard C, J. Coronado J. M, Chovelon J. M, Tudela D, Sofia J, Herrmann J. M. Photocatalytic degradation of a sulfonylurea herbicide over pure and tin-doped TiO_2 photocatalysts[J]. J. Photochem. Photobiol.A, 2005,173:13—20.
    [55] Yang Y, Li X. J, Chen J. T, Wang L. Y. Effect of doping mode on the photocatalytic activities of Mo/TiO_2[J]. J. Photochem. Photobiol.A, 2004,163: 517-522.
    [56] Belver C, Bellod R, Stewart S. J. Nitrogen-containing TiO_2 photocatalysts Part 2: Photocatalytic behavior under sunlight excitation[J]. Appl. Catal. B: Environ. 2006,65: 309-314. [57] Yang M. C, Yang T. S, Wong M. S. Nitrogen-doped titanium oxide films as visible light photocatalyst byvapor deposition[J]. Thin Solid Films. 2004, 469:1-5.
    [58] Sathish M, Viswanathan B, Viswanath R. P, Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO_2 Nanocatalyst[J]. Chem. Mater. 2005, 17: 6349-6353.
    [59] Kumar A, Mathur N. Photocatalytic degradation of aniline at the interface of TiO_2 suspensions containing carbonate ions[J]. J. Colloid Interface Sci. 2006, 300: 244—252. [60] Xu C. K, Killmeyer R, M. Gray M. L, Khan U. M. Photocatalytic effect of carbon-modified n-TiO_2 nanoparticles under visible light illumination[J]. Appl. Catal. B: Environ. 2006, 64: 312— 317.
    [61] Hattori T, Sakurai K, Koike N, Miyano S. Is the CD Exciton Chirality Method Applicable to Chiral l,l'-Biphenanthryl Compounds[J]. J. Am. Chem. Soc. (Communication). 1998, 120(35): 9086-9087.
    [62] Kawaguchi Y, Harada A. An Electric Trap: A New Method for Entrapping Cyclodextrin in a Rotaxane Structure. [J]. J. Am. Chem. Soc. 2000,122(15): 3797-3798.
    [63] Zang L, Lange C, Abraham I, Storck S, Maier W. F, Kisch H. Amorphous Microporous Titania Modified with Platinum(IV) Chloride-A New Type of Hybrid Photocatalyst for Visible Light Detoxification[J]. J. Phys. Chem. B.; (Article); 1998; 102(52): 10765-10771. [64] Radhakrishnan C, Lo M. K. F, Warrier M. V, Garcia-Garibay M. A. Photocatalytic Reduction of an Azide-Terminated Self-Assembled Monolayer Using CdS Quantum Dots[J]. J. Phys. Chem. B. (Article) 2005,109(46): 21602-21607.
    [65] Guo Y, Zhang H, Wang Y, Liao Z.L, Li G. D, Chen J. S. Controlled Growth and Photocatalytic Properties of CdS Nanocrystals Implanted in Layered Metal Hydroxide Matrixes. [J]. J. Phys. Chem. B. (Article) 2005,109(46): 21602—21607.
    [66] Cesar I, Kay A, Martinez J. A, Gratzel M. Translucent Thin Film Fe_2O_3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-Directing Effect of Si-Doping[J]. J. Am. Chem. Soc. 2006, 128(14): 4582-4583.
    [67] Xu H, Wang W, Zhu W. Shape Evolution and Size-Controllable Synthesis of Cu_2O Octahedra and Their Morphology-Dependent Photocatalytie Properties[J]. J. Phys. Chem. B. (Article). 2006, 110(28): 13829~13834.
    [68] Gopidas K. R, Whitesell J. K, Fox M. A. Nanoparticle-Cored Dendrimers: Synthesis and Characterization[J]. J. Am. Chem. Soc (Article). 2003, 125(21): 6491~6502.
    [69] 徐悦华(Xu Y H),古国榜(Gu G B),陈小泉(Chen X Q).复合纳米Fe_2O_3/TiO_2的制备、表征及光催化活性[J].华南理工大学学报自然科学版,2001,29(11):76~80.
    [70] 白树林(Bai S L),付希贤(Fu X X),王俊珍(Wang J Z)等.LaFeO_3的光催化性[J].应用化学(chinese Journal of Applied Chemistry),2000,17(3):343~345.
    [71] Luan J. F, Zou Z.G, Lu M. H, Zheng S. R, Chen Y. F. Growth, structural and photophysicalproperties of Bi_2GaTaO_7[J]. J. Cryst. Growth. 2004, 273: 241~247.
    [72] Zou Z. G, Ye J. H, Arakawa H. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi_2MNbO_7 (M=Al~(3+),Ga~(3+) and In~(3+))[J]. Chem. Phys. Lett. 2001, 333: 57~62.
    [73] Wang J. H, Zou Z. G, Ye J. H. Surface modification and photocatalytic activity of distorted pyrochlore-type Bi_2M(M=In, Ga and Fe)TaO_7 photocatalysts[J]. J. Phys. Chem. Solids. 2005, 66: 349~355.
    [74] Ye J, Zou Z.G, Arakawa H, Oshikir M, Shimoda M, Matsushita A, Shishido T. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO_4(M=V~(5+), Nb~(5+), Ta~(5+))[J]. J. Photochem. Photobiol. A. 2002, 148: 79~83.
    [75] Zou Z. G, Ye J. H, Arakawa H. Photophysical and photocatalytic properties of InMO4 (M = Nb~(5+), Ta~(5+)) under visible light irradiation[J]. Mater. Res. Bull. 2001, 36: 1185~1193.
    [76] Zou Z. G, Ye J. H, Sayama K, Arakawa H. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO_4 (M = Mn, Fe, Co, Ni and Cu) photocatalysts[J]. J. Photochem. Photobiol. A. 2002, 148: 65~69.
    [77] Zou Z. G,Ye J. H, Arakawa H .Substitution Effects of In~(3+) by Al~(3+) and Ga~(3+) on the Photocatalytic and Structural Properties of the Bi_2InNbO_7 Photocatalyst[J]. Solid State Communication. 2001, 119: 471~475.
    [78]. Zou Z G, Ye J H, Sayama. Photocatalytic Water Splitting into H_2 and O_2 over R_3TaO_7 and R_3NbO_7 (R = Y, Yb, Gd, La): Effect of Crystal Structure on Photocatalytic Activity[J]. Chem. Phys. Lett. 2001,343: 303~308.
    [79] Zou Z. G, Ye J, Arakawa H. Surface Characterization of Nanoparticles of NiOx/In_(0.9)Ni_(0.1)TaO_4: Effects on Photocatalytic Activity[J]. J. Phys. Chem. B. 2002, 106(51): 13098~13101.
    [80] Sayama K, Nomura A, Arai T, Sugita T. Photoelectrochemical Decomposition of Water into H_2 and O_2 on Porous BiVO_4 Thin-Film Electrodes under Visible Light and Significant Effect of Ag Ion Treatment [J]. J. Phys. Chem. B. 2006, 110: 11352~11360.
    [81] Galembeck A, Alves O. L. BiVO_4 thin film preparation by metalorganic decomposition[J]. Thin Solid Films. 2000, 365: 90~93.
    [82] Shigeru Kohtani, Masaya Koshiko, Akihiko Kudo. Photodegradation of 4-alkylphenols using BiVO_4 photocatalyst under irradiation with visible light from a solar simulator[J]. Appl. Catal., B. 2003, 46: 573~586.
    [83] Kohtani S, Makino S, Kudo A. Photocatalytic Degradation of 4-n-Nonylphenol under Irradiation from Solar Simulator: Comparison between BiVO_4 and TiO_2 Photocatalysts[J]. Chem. Lett. 2002, 6: 660~661.
    [84] Zhou L, Wang W. Z, Liu S. W, Zhang L. S, Xu H. L, Zhu W. A sonochemical route to visible-light-driven high-activity BiVO_4photocatalyst[J]. J. Mol. Catal. 2006, 252: 120~124.
    [85] Haimei L, Ryuhei N, Yoshihiro N. Promoted photo-oxidation reactivity of particulate BiVO_4 photocatalyst prepared by a photoassisted sol-gel method[J]. J. Electrochem. Soc. 2005, 152: 856~861.
    [86] Zhang L, Wang W, Yang J, Chen Z. G, Zhang W. Sonochemical synthesis of nanocrystallite Bi_2O_3 as a visible-light-driven photocatalyst[J]. Appl. Catal. A: Gen. 2006, 308: 105~110.
    [87] Shimodaira Y, Kato H, Kobayashi H, Kudo A. Photophysical Properties and Photocatalytic Activities of Bismuth Molybdates under Visible Light Irradiation[J]. J. Phys. Chem. B. 2006, 110: 17790~17797.
    [88] He C. H, Gu M. Y. Photocatalytic activity of bismuth germanate Bi_(12)GeO_(20) powders. Scripta Mater. 2006, 54: 1221~1225.
    [89] He C. H, Gu M. Y. Preparation, characterization and photocatalytic properties of Bi_(12)SiO_(20) powders[J]. Scripta Mater. 2006, 55: 481~484.
    [90] Lin X. P, Huang F.Q, Wang W. D, Zhang K. L. A novel photocatalyst BiSbO_4 for degradation of methylene blue[J]. Appl. Catal. A: Gen. 2006, 307: 257~262.
    [91] Liu H. M, Nakamura R, Nakato Y. A visible-light responsive photocatalyst, BiZn_2VO_6, for efficient oxygen photoevolution from aqueous particulate suspensions. Electrochem[J]. Solid-State Lett. 2006, 9: 187~190.
    [92] Zhang C, Zhu Y. F. Synthesis of Square Bi_2WO_6 Nanoplates as High-ActivityVisible-Light-Driven Photocatalysts[J]. Chem. Mater. 2005, 17: 3537~3545.
    [93] Fu H. B, Pan C. S, W. Q, Yao W. Q. Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi_2WO_6[J]. J.Solid State Chem. B. 2005,109: 22432~22439.
    [94] Tang J. W, Zou Z. G, Ye J. H. Photocatalytic decomposition of organic contaminants by Bi_2WO_6 under visible light irradiation[J]. Catal.Lett. 2004, 92: 1~2.
    [95] Yu J. G, Xiong J. F, Cheng B.Co-precipiation prepare and visible-light photocatalytic activity of Bi_2WO_6 powders[J]. J.Solid State Chem. 2005, 178: 1968~1972
    [96] Nosaka Y, Fox M. A. Kinetics for Electron Transfer form Laser-Pulse-Irradiated Colloidal Semiconductors to Adsorbed Methylviologen Dependence of the Quantum Yield on Incident Pulse Width[J]. J. Phy. Chem. 1988, 92(7): 1893~1897
    [97] 吴月顺,张延昌,许青等.锐钛矿结构TiO_2/glass膜光催化作用的研究.紫外灯照射下水中苯酚的光催化降解[J].化学世界,2002,(6):287~292.
    [98] 张新荣,杨平,赵梦月.载型复合光催化剂TiO_2/Al_2O_3 beads降解有机磷农药[J].环境科学研究,2001,14(2):35~40.
    [99] 陈士夫,陶跃武,赵梦月.太阳光TiO_2薄层光催化降解有机磷农药的研究[J].太阳能学报,1995,16(3):234~239.
    [100] 李芳柏,古国榜,陈伟彬等.絮凝-光催化处理实际染料废水的研究[J].土壤与环境,1999,8(3):189~192.
    [101] 赵玉光,王宝贞,李湘中等.生物-光催化反应器系统处理印染废水的研究[J].环境科学学报,1998,8(4):373~379.
    [102] 蒋伟川,俞传明,王琪全.半导体光催化降解实际印染废水的研究[J].工业水处理, 1994,14(2):25~28.
    [103] 崔玉民,朱亦仁,王克中.用复相光催化剂 WO_3/CdS/W 深度处理印染废水的研究[J]. 工业水处理,2001,21(2):9~13.
    [104] 田春荣,王怡中,胡春.染料化合物光催化氧化降解中氮元素行为分析[J].环境化学,2001(1):117~122.
    [105] 孙尚梅,康振晋,魏志仿.TiO_2膜太阳光催化氧化法处理毛纺染整废水[J].化工环保,2000(1):57~62.
    [106] Zhang Y, Crittendef J C, Hand D W. Fixed-Bed photocatalystsfor solar decontamination of water[J]. Environ Sci Technol,1994, 28: 435~442.
    [107] Goswami D. Y. J. A review of engineering development of aqueousphase solar photo-catalytic detoxification and disirffection processes[J]. Solar Energy Engineering, 1997, 119(5): 101~107.
    [108] 赵小蓉,杜冬云,陆晓华.累托石对亚甲基蓝吸附性能的研究[J].离子交换与吸附,2003,19(4):337~342.
    [109] 赵兵,王国清.膨润土对对亚甲基蓝的吸附性能研究[J].离子交换与吸附.2002,18(2):156~160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700