用户名: 密码: 验证码:
绿针假单胞菌GP72中2-羟基吩嗪(2-OH-PHZ)生物合成分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿针假单胞菌GP72(Pseudomonas chlororaphis GP72),是从上海郊区甜椒根际土中分离筛选到的一株具有生物防治功能的假单胞菌属菌株,其分泌的吩嗪-1-羧酸(phenazine-1-carboxilic acid, PCA)和2-羟基吩嗪(2-hydroxyphenazine,2-OH-PHZ)等抗生素对植物病原真菌等具有有效抑制作用。本课题主要针对GP72中PCA的次级代谢产物2-OH-PHZ的合成机理,首次研究了它的生物合成途径中关键基因phzO的功能。PhzO蛋白酶是一种大小约55KDa的单脱氧酶,能够将PCA转化为2-OH-PHZ。同时,本课题还研究了phzE基因和PCA浓度对2-OH-PHZ生物合成的影响。
     首先,运用PCR技术从GP72菌株中克隆phzO基因,并通过重组和转化技术构建了该基因的过表达菌株。与野生菌株相比,phzO过表达菌株(GP72-pME6032-phzO)和对照组菌株(GP72-pME6032)生长稍次于野生型菌株。利用HPLC技术进一步监测phzO基因过表达对PCA和2-OH-PHZ合成的影响,发现phzO基因在GP72菌株中过表达未能显著提高2-OH-PHZ产量,而PCA产量较野生型菌株显著降低。论文进一步通过在DH5α中异源表达phzO,加入外源PCA分子作为反应底物,借助HPLC对反应产物进行检测,发现PhzO蛋白酶能够将底物PCA分子转化为2-OH-PHZ产物,从而证实了phzO的功能。
     其次,将克隆成功的phzO基因重组到假单胞菌M18菌株中,通过发酵实验验证M18菌株中phzE基因对2-OH-PHZ生物合成的影响。HPLC结果显示phzE基因对2-OH-PHZ的生物合成影响甚微。同时,实验证明了phzO基因跟PCA浓度对2-OH-PHZ的生物合成具有协同作用。
     本课题结果初步断定PCA转化为2-OH-PHZ的途径为一步反应,可由phzO单个基因完成。2-OH-PHZ的产量受前体PCA浓度及PhzO蛋白酶量协同影响。
Pseudomonas chlororaphis GP72, isolated from the rhizosphere of sweet melon, is an effective root-colonizing bio-control agent against soil-borne pathogenic fungi on crop plants. This capability is primarily depending on its ability to produce two different types of antibiotics, phenazine-1-carboxylic acid (PCA) and 2-hydroxyphenazine (2-OH-PHZ). The phenazine biosynthetic genes in strain GP72 differ from those in other known pseudomonads by the presence of phzO, encoding a 55-kDa aromatic monooxygenase responsible for the hydroxylation of PCA to produce 2-OH- PCA. In this study, we focused on elucidating the reaction mechanism of how PCA converted to 2-OH-PHZ in strain GP72. Meanwhile, we have also investigated the effect of phzE and PCA concentration on the 2-OH-PHZ production.
     Firstly, phzO gene was cloned from GP72 by PCR and phzO-over-expression strain was constructed by transformation. The phzO-over-expression strain (GP72-pME6032-phzO) and the controlled strain (GP72-pME6032) displayed worse cell growth as compared to the wild-type strain GP72. Thus, we continued to examine its influence on the PCA and 2-OH-PHZ production by HPLC. The results showed that over expression of phzO failed to remarkably increase 2-OH-PHZ amount. On the contratry, GP72-pME6032-phzO strain and GP72-pME6032 strain showed much lower PCA production than that of wild GP72 strain. In order to examine the function of converting PCA to 2-OH-PHZ of phzO, it was expressed in Escherichia coli DH5αand PCA was added to the culture. Results showed that expression of phzO in Escherichia coli DH5αcould convert free PCA to 2-OH-PHZ directly by HPLC analyses, though the conversion rate is relatively low.
     Secondly, we transformed the successfully-cloned phzO gene into Pseudomonas sp. M18, a PCA-producing strain. Based on the HPLC analysis, the fermentation results showed that phzE gene had little influence on the production of 2-OH-PHZ in strain GP72. It was also turned out that the PCA concentration and the amount of PhzO protein both have effect on the output of 2-OH-PHZ.
     Based on this study, we concluded that the conversion of PCA to 2-OH-PHZ was a one-step reaction, involved only one gene, phzO. Also, we found out that the output of 2-OH-PHZ was dermined both by PCA concentration and the amount of PhzO protein.
引文
[1]邹芳慧,陈志强,任卫东.面向二十一世纪的生物农药.化学工程师, 2003,99(6): 44-45.
    [2] Noel D. Uri. Development and Use of Biopesticides. Implications of Government Policy and Consumers’Preferences, Technological Forecasting and Social Change, 1998, (59): 291-304.
    [3]张兴,马志卿,李广译.农药管理与科学. 2002,23(1): 34-36.
    [4]顾宝根,姜辉.微生物农药及产业化.科学出版社,2000,13-18.
    [5]张锡贞,张红雨.生物农药的应用与研发现状.山东理工大学学报, 2004,18(1): 96-100.
    [6] Emilio M. Development registration and commercialization of microbial pesticides for plant protection. Int Microbiol, 2003, (6): 245-252.
    [7] Mannion A. M. Agriculture, environment and biotechnology. Agriculture, Ecosystems and Environments, 1995, (53):31-45.
    [8]陈忠孝,胡国文.印楝质杀虫剂的研究及前景.世界农业,1992,(7):30.
    [9]成为宁,李修炼.植物性杀虫剂防止小麦吸浆虫研究.西北农业学报,2000,9(2):41-44.
    [10]李小东,赵善欢.印楝对昆虫的毒理作用机制.华南农业大学学报,1996,17(1):118-122.
    [11] Kotkar H.M., Mendki P.S., Sadan S.V., Jha S.R., Upasani S.M., Maheshwari V.L. Antimicrobial and pesticidal activity of partially purified flavonoids of Annona squamosa. Pest Manag Sci. 2002, 58(1):33-39.
    [12] Karl J., Kramer, Subbaratnnam M., Molecular Biology and Potential Use as Biopesticides. Insect Biochem. Molec. Biol., 1997, 27(11): 887-900.
    [13]吴文君,高希武.生物农药及其应用.化学工业出版社,2004.
    [14] Leonard G., Copping, Julius J.M. Biopesticides. A review of their action, applications and efficacy. Pest Manag Sci, 2000, 56: 651-676.
    [15] Campbell R., Greaves M. P. Anatomy and community structure of the rhizosphere. The Rhizosphere, 1990: 11-34.
    [16] Haas D., Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol, 2005, 3: 307-319.
    [17] Turner J. M., Messenger A. J. Occurrence, biochemistry and physiology of phenazine pigment production. Advances in microbial physiology, 1986, 27: 211-275.
    [18] Mavrodi D. V., Ksenzenko V. N., Bonsall R. F., Cook R. J. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol, 1998, 180: 2541-2548.
    [19] Pierson Iii L. S., Keppenne V. D., Wood D. W. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. Journal of Bacteriology, 1994, 176: 3966-3974.
    [20] Pessi G., Williams F., Hindle Z., Heurlier K. The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol, 2001, 183: 6676-6683.
    [21] Whistler C. A., Pierson L. S. Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30-84 by RpeA. J Bacteriol, 2003, 185: 3718-3725.
    [22] Britigan B. E., Rasmussen G. T., Cox C. D. Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin. Infect Immun, 1997, 65: 1071-1076.
    [23] Dwivedi D., Johri B. N. Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Current Science, 2003, 85: 1693-1703.
    [24] Messenger A. J. M., Turner J. M. Phenazine-1,6-dicarboxylate and its dimethyl ester as precursors of other phenazines in bacteria. Fems Microbiology Letters, 1983, 18: 65-68.
    [25] Wood D. W., Pierson Iii L. S. The phzI gene of Pseudomonas aereofaciens 30-84 is responsible for a diffusible signal required for phenazine antibiotic production. Gene, 1996, 128: 81-86.
    [26]Wood D. W., Gong F., Daykin M. M., Williams P., Pierson Iii L. S. N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. Journal of Bacteriology, 1997, 179: 7663-7670.
    [27] Latifi A., Winson M. K., Foglino M., Bycroft B. W. Multiple homologues of LuxRand LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Molecular Microbiology, 1995, 17: 333-343.
    [28] Chin-A-Woeng T. F. C., Van den Broek D., De Voer G., Van der Drift K. M. G. M. Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Molecular Plant-Microbe Interactions, 2001, 14: 969-979.
    [29] Mavrodi D. V., Blankenfeldt W., Thomashow L. S. Phenazine Compounds in Fluorescent Pseudomonas Spp. Biosynthesis and Regulation. Annual Review of Phytopathology, 2006, 19:417-445.
    [30]许煜泉,林志新,钟仲贤.促进植物生长的根际自生细菌.上海农业学报, 1997, 13(4): 89-96.
    [31] KloepperJ., Leong J., Teintze M., Schroth M. Pseudomonas siderophores: A mechanism explaining disease-suppressive soils. Current Microbiology, 1980, 4: 317-320.
    [32] Preston G. M.Plant perceptions of plant growth-promoting Pseudomonas. Philosophical Transactions of the Royal Society. Biological Sciences, 2004, 359: 907-918.
    [33] Hamdan H., Weller D. M., Thomashow L. S. Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Applied and Environmental Microbiology, 1991, 57: 3270-3277
    [34] Thomashow L. S. Biological control of plant root pathogens. Current Opinion in Biotechnology, 1996, (7): 343-347
    [35] Laville J., Voisard C., Keel C. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci USA, 1992, 89: 1562-1566.
    [36] Corbell N.A., Loper J.E. A global regulator for secondary metabolite production in Pseudomonas fluorescens Pf-5. J. Bactoriol, 1995, 177: 6230-6236.
    [37] Weller D.M.,Raaijlllakers J.M.,GardenerB.B. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Ann Rev Phytopathol, 2002, 40:309-348.
    [38] HaasD D. G.Biological control of soil-borne pathogens by fluorescent Pseudomonas. Nat Rev Microbiol,2005, 3:307-319
    [39] Thomas F. C., Chin-A-Woeng, Guido V., Bloemberg and Ben J. J. Lugtenb. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytologist, 2003,157 : 503–523,
    [40] Jane B. L., and John N. Phenazine Natural Products: Biosynthesis, Synthetic Analogues, and Biological Activity. Chem. Rev., 2004, 104, 1663-1685.)
    [41] Ligon J.M., Hill D.S., Hammer P.E. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci, 2000, 56:688-695
    [42] Schnider U., Keel C., Blumer C. Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol, 1995,177 (18):5387-539
    [43] O’Sullivan D.J., O’Gara F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogen. Microbiol Rev, 1992, 56 (4):662-6761
    [44] Xavier L., Sandrine D., Pascal M. Identification of traits implicated in the rhizosphere competence of fluorescent pseudomonads: description of a strategy based on population and model strain studies. Agronomie, 2003, 23:397-405
    [45] Bano N., Musarrat J. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol, 2003, 6:324-328
    [46] Kumar R.S., Ayyadurai N., Pandiaraja P. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol, 2005, 98:145-154
    [47] Timothy P., Brian N.T., Pascale G. A novel antifungal furanone from Pseudomonas aureofaciens, a biological agent of fungal plant pathogens. J Chem Ecol, 2000, 26(6):1515-1524
    [48] PiersonⅢL.S., Pierson E.A. Phenazine antibiotic production in Pseudomonas aureofaciens:Role in rhizosphere ecology and pathogen suppression. FEMS Microbiol Lett, 1996, 136:101-108
    [49] Schmidt-Eisenlohr H., Rittig H.M., Baron C. Biomonitoring of pJP4-carrying Pseudomonas chlororaphis with Trb protein specific antisera. Environ Microbiol, 2001,3:720-730
    [50] Lennart J., Margareta H., Berndt G.. Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments. Euro J Plant Pathol, 1998, 104:701-711
    [51] Pierson E.A., Weller D.M.. Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology, 1994, 84:940-947
    [52] Bangera M.G., Thomashow L.S.. Identification and characterization of gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J. Bacteriol, 1999, 181: 3155–3163
    [53] Anzai. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol, 2000, 50 (Pt 4): 1563–89.
    [54] 3Bairoch A., Bucher P., and Hofman K.. 1995. The PROSITE database, its status in 1995. Nucleic Acids Res. 24:189–196.
    [55] Pierson Iii L. S., Keppenne V. D., Wood D. W.. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. Journal of Bacteriology, 1994, 176: 3966-3974.
    [56] Bergey D., John, G.H., Noel, R.K.. Bergey’s Manual of DeterminativeBacteriology.
    [57] Haiming Liu, Yanjing He, Hiaxia Jiang. Characterization of a Phenazine-Producing Strain Pseudomonas chlororaphis GP72 with Broad-Spectrum Antifungal Activity from Green Pepper Rhizosphere. Current Microbiology. 2007, (54):302-306.
    [58] Shannon M.D., Thomashow L.S.. phzO, a Gene for Biosynthesis of 2-Hydroxylated Phenazine Compounds in Pseudomonas aureofaciens 30-84. Journal of bacteriology , 2001, p.318-327.
    [59] Hari B., Krishnan, Beom R. K., Yong C. K. Rhizobium etli USDA9032 Engineered To Produce a Phenazine Antibiotic Inhibits the Growth of Fungal Pathogens but Is Impaired in Symbiotic Performance. Appl Environ Microbiol. 2007, 73(1):327-330.
    [60]Deepti D., Johri B.N. Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Current Science Association.
    [61] Maddula V.S.R.K., Pierson E.A., Pierson L.S.. Altering the ration of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation andpathogen inhibition. Journal of Bacteriology, 2008, 8(190):2759-2766.
    [62] Britigan B. E., Rasmussen G. T., Cox C. D.. Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin. Infect Immun, 1997, 65: 1071-1076.
    [63] Anderson T, Sontag N, Han S.H., Britt D.W., Anderson A.J. Pluronics' influence on pseudomonad biofilm and phenazine production. FEMS Microbiol Lett. 2009 Apr; 293(1):148-53.
    [64] Maddula V.S., Zhang Z., Pierson E.A.. Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84. Microb Ecol. 2006, 52(2):289-301.
    [65] Burgmann H., Stoiser B., Heinz G., Schenk P.. Likelihood of Inadequate Treatment: A Novel Approach to Evaluating Drug-Resistance Patterns. Infect Control Hosp Epidemiol.
    [66] He YJ, Liu HM, Hu HB, Xu YQ, Zhang XH. Isolation and characterization of a new Pseudomonas strain against Phytophthora capsici.Wei Sheng Wu Xue Bao, 2006, 46(4):516-21.
    [67] Yuan L.L., Li Y.Q., Y. Wang, X.H., and Xu Y.Q.. J. Biosci. Bioeng. 2008, 105 : 232–237.
    [68] Smirnov V.V., Kiprianova E.A.. Bacteria of Pseudomonas genus, Ukraine ,1990, p.100-111.
    [69]耿海峰,陈峰,许煜泉.诱变筛选荧光假单胞菌M18高产吩嗪212羧酸(PCA)菌株及发酵条件研究.工业微生物,2003, (33) No. 3.
    [70] Wei Li, Philip T. C., Rafael C. B., John J. L.. Significance of overexpression of alpha methylacyl-coenzyme A racemase in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 2008, 27:210-223.
    [71] Martine M., Thomas P., Min Liu, Glen J. and David J. P.. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance. BMC Developmental Biology, 2008, 8:59 doi:10.1186/1471-213X-8-59.
    [72]于春晓,刘闻闻,吴伟芳,陈蔚文. p53过表达抑制同源盒基因NKX311启动子活性.中国生物化学与分子生物学报,2007 ,23 (7) :560-565.
    [73] Chin-A-Woeng T.F.C., Bloemberg G.V., Schripsema J., Kroon B., Scheffer R.J., KeelC., Bakker P.A.H.M., Tichy H., Bruijn F.J.de, Thomas-Oates J.E.. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL 1391 of tomato root rot caused by Fusarium oxysporum f.spradicis-lycopersici. Mol. Plant-Microbe Interact, 1988, 11:1069-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700