用户名: 密码: 验证码:
供锌方式对不同锌效率小麦基因型生长和锌营养品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌是动植物生长所必需的微量元素,通过植物进入食物链,直接或间接进入人类的膳食中,进而影响人体的营养平衡及身体健康。小麦是世界上播种面积最大和总产量最多的粮食作物,同时也是对锌比较敏感的作物之一。而缺锌人群主要分布在动物性食物摄入量较低,以小麦或水稻等禾谷类作物为主食的发展中国家。因此,小麦籽粒中锌含量水平高低直接影响着人类健康状态,而解决此问题最有效的办法是锌高效基因型小麦和籽粒富锌小麦的筛选及施用锌肥。本研究通过2个水培试验,比较了不同小麦品种的锌效率,探讨了锌供应方式对小麦生长及锌等养分吸收利用的影响,以期为提高小麦营养品质提供理论和实践依据。本研究主要得到以下结论:
     (1)为了比较不同小麦品种的Zn效率,采用螯合-缓冲营养液培养方法,以9种面包型小麦(渭丰151,陕715,郑麦9023,中育6号,小偃22,武农148,小偃216,西农889,远丰175)为供试材料,以黑麦(Secale cereale)为对照,设不供锌(-Zn)和供锌(+Zn,3μmol/L)2种处理,进行为期35 d的水培试验。培养2周后,缺Zn条件下9个小麦品种植株均出现典型的缺Zn症状,并且缺Zn症状随着培养时间的延长而更加严重。缺Zn导致小麦地上部干质量大幅度下降,而根系所受的影响相对较小;6个小麦品种(渭丰151,郑麦9023,远丰175,小偃22,西农889,中育6号)在供Zn时其地上部干质量接近,但在缺Zn时差异很大。9个小麦品种的Zn效率为23.6 %~46.3 %,远低于黑麦的Zn效率(81.4 %)。供Zn后,小麦植株地上部Zn含量和Zn吸收量均显著提高,但黑麦地上部Zn含量变化不大。缺Zn时小麦Zn效率与植株地上部Zn吸收量之间存在显著正相关关系,但与植株地上部Zn含量无明显相关性;Zn效率与种子Zn含量和Zn总量之间均不存在显著相关性。
     (2)为了揭示根部供Zn(营养液供Zn)和不同生育期地上部喷Zn对小麦生长及籽粒Zn含量的影响,对2种Zn效率不同的冬小麦种子进行人工春化后发芽,并在完全营养液中培养25 d后进行不同方式供Zn处理,进行了全生育期水培试验。结果表明,分别与营养液不供Zn和地上部不喷Zn相比,营养液供Zn和不同生育期地上部喷Zn均显著促进了小麦生长,而小偃22生物量显著高于郑麦9023。营养液供Zn和不同生育期喷Zn均增加了小麦的冠根比。营养液不供Zn条件下,郑麦9023的冠根比显著大于小偃22,是后者的1.28倍,说明小偃22对缺Zn的反应更敏感,而郑麦9023的Zn效率更高。营养液供Zn显著提高了2种基因型小麦各器官Zn含量和吸收量。与营养液不供Zn相比,营养液供Zn使根、茎、叶、籽粒Zn含量分别增加了568.7%、355.2%、138.0%、83.8%;Zn吸收量依次增加了607.3%、366.9%、122.5%、113.2%,可见,营养液供Zn时根部Zn含量和吸收量增加幅度最大。喷Zn显著降低了小麦根部Zn含量和吸收量,而显著增加了地上部Zn含量和吸收量,抽穗期喷Zn小麦地上部Zn吸收量最大。与营养液不供Zn相比,营养液供Zn时小麦地上部和籽粒Zn累积率较低。对于小偃22,与地上部不喷Zn相比,地上部喷Zn时其地上部Zn累积率较高。对于郑麦9023,与地上部不喷Zn相比,地上部喷Zn时其籽粒Zn累积率较高。分别与营养液不供Zn和地上部不喷Zn相比,营养液供Zn和地上部喷Zn时小麦Zn利用率均较高。
     (3)不同供Zn方式对小麦生长及籽粒Zn含量的试验结果还表明:营养液供Zn条件下,2种基因型小麦植株体内的Fe含量略有下降,吸收量却有所增加;Cu含量和吸收量均显著下降;根系Mn含量和吸收量显著上升,地上部刚好相反;N含量显著下降,吸收量却有所增加;根系P含量和吸收量显著上升,地上部P含量有所下降,地上部P吸收量却有所增加;植株K含量有所下降,吸收量却有所增加。地上部喷Zn条件下,促进了植株对Fe的吸收,转运率变化不大;植株体内Cu含量下降,促进了对Cu的吸收,但茎部吸Cu量却有所下降;明显抑制了叶片对Mn的吸收,但促进了其它器官对Mn的吸收,转运率略有下降;各器官N含量下降,但植株对N的吸收显著增加;明显促进了对P的吸收,P转运率大幅度上升;促进了对K的吸收,K在叶部大量累积。
     综上所述,面包型小麦对缺Zn的耐性存在较大的基因型差异,螯合-缓冲营养液培养方法下的Zn效率可以作为筛选面包型小麦对缺Zn耐性的一个可靠指标。与营养液供Zn的结果相反,地上部喷Zn可以同时提高小麦地上部和籽粒Zn累积率。营养液供Zn时,Fe、Cu在根部大量累积,Mn在叶部大量累积;地上部喷Zn对小麦养分吸收影响显著,尤其是抽穗期和扬花期。
Zinc is an essential micronutrient for plant and animal growth, it enters into the food chain through plant, then it enters the diets of human being directly or indirectly, thereby it affects the balance of nutrition and the health of buman being. Wheat is the food crop with the largest planting area and total yield, while it is more sensitive to Zn. The Zn-deficienct people manily live on cereal crops sucn as wheat or rice as their staple food and have less animal food injestion and most of them live in developing countries. So Zn concentration of wheat directly affects the health of buman beings, and the most effective approach to solve this problem is screening the wheat genotypes with high Zn-efficiency or high seed Zn or fertising Zn at present. In this study two solution culture experiments were conduted to compare Zn efficiency of different wheat genotypes and discuss the effect of different applying methods of Zn fertilization on wheat growth and nutrient uptake especially Zn accumulation in the aboveground parts and grain. This research will provide theoretical and practical value for improving nutritional quality of wheat. The main results of this study were as follow:
     (1) In order to compare Zn efficiency of different wheat cultivars, chelator-buffered nutrient solution culture was conducted, nine bread wheat (WF151, S715, ZM9023, ZY6, XY22, WN148, XY216, XN889, YF175) cultivars and one rye cultivar (Secale cereale, control) were grown in the solution for 35 d with (+Zn, 3μmol/L) and without (-Zn)Zn supply. All of the wheat cultivars showed visual symptoms of Zn deficiency under no Zn supply after two weeks of culture, and the symptoms became more serious with time. Zn deficiency resulted in a marked decrease in shoot dry weight , but it had relatively slighter influence on root. Six cultivars (WF151, ZM9023, YF175, XY22, XN889, ZY6) were similar in shoot dry weight under Zn supply; however, they showed great variation under Zn deficiency. The Zn efficiency of the nine wheat cultivars ranged between 23.6 % to 46.3%, which were greatly lower than that of rye (81.4%). Under adequate Zn supply, shoot Zn concentration and Zn content of wheat cultivars were significantly increased, but shoot Zn concentration of rye did not change much. There was a very significant positive correlation between shoot Zn content and Zn efficiency of wheat cultivars under no Zn supply, but shoot Zn concentration was not significantly correlated with Zn efficiency, at the same time, there was not a significant correlation between Zn efficiency and seed Zn concentration or Zn content.
     (2) In order to disclose the effect of supplying Zn in root (supplying Zn in nutrient solution) and spraying Zn in shoot in different growth stage on wheat growth and grain Zn concentration, two winter wheat with different Zn efficiency germinated after they were vernalizated, then they grew in the complete nutrient solution for 25 d, at last they were treated in different methods of Zn supply. This was a whole growth period experiment. The obtained results showed that, compared to no Zn in the nutrient solution and no spray Zn in shoot separately, supplying Zn the in nutrient solution and spraying Zn in shoot both significantly enhanced wheat growth, and the biomass of Xiaoyan22 significantly higher than that of Zhengmai9023. Supplying Zn in the nutrient solution and spraying Zn in shoot both significantly enhanced the shoot to root ratios. Under the condition of no Zn in the nutrient solution, the shoot to root ratio of Zhengmai9023 significantly higher than that of Xiaoyan22, which showed that the response of Xiaoyan22 to no Zn supply was more sensitive, and the Zn efficiency of Zhengmai9023 was higher. Supplying Zn in the nutrient solution significantly enhanced the Zn concentration and content of various organs of two cultivars of wheat. Compared to no Zn in the nutrient solution, Zn concentration of root, stem, leaf, grain separately increased by 568.7%, 355.2%, 138.0%, 83.8%, and Zn content of them separately increased by 607.3%, 366.9%, 122.5%, 113.2% when supplying Zn in the nutrient solution, which showed that the increase extent of root Zn concentration and content was the largest under the condion of supplying Zn in the nutrient solution. Spraying Zn in shoot significantly decreased root Zn concentration and content, while significantly increased shoot Zn concentration and content and shoot Zn content was the highest when spraying Zn on the heading stage. Compared to no Zn in the nutrient solution, the Zn accumulation ratio of shoot was lower when supplying Zn in the nutrient solution. The Zn accumulation ratio of shoot of Xiaoyan22 was higher under the condition of spraying Zn in shoot than that of no spraying Zn. The Zn accumulation ratio of grain of Zhengmai9023 was higher under the condition of spraying Zn in shoot than that of no spraying Zn. Compared to no Zn supply in the nutrient solution and no spray Zn to shoot separately, the Zn utilisation of wheat was higher when supplying Zn the in nutrient solution and spraying Zn to shoot.
     (3) The experiment of effect of different Zn supplying methods on wheat growth and grain Zn concentration also showed that, under the condition of supplying Zn in the nutrient solution, Fe concentration slightly decreased, but Fe content slightly increased, both Cu concentration and content slightly decreased, Mn concentration and content of root significantly enhanced, but shoot Mn concentration and content significantly decreased. N concentration significantly decreased, but N content slightly increased, root P concentration and content significantly increased, shoot P concentration slightly decreased, shoot P content slightly increased, K concentration slightly decreased, but K content slightly enhanced. Under the condition of spraying Zn in shoot, Fe uptake increased, but its translocation ratio did not change much, Cu concentration of wheat decreased and Cu uptake increased, but Cu content of stem slightly decreased. Spraying Zn significantly restrained the Mn uptake of leaves, but stimulate the Mn uptake of other organs, Mn translocation ratio slightly decreased, at the same time, it declined N concentration, but significantly enhanced N, K, and P uptake, a great deal of K accumulated in leaves.
     In a word, the results of the present study showed existence of a large variation in tolerance to Zn deficiency among the different cultivars of bread wheat, suggesting that Zn efficiency can be used as a reliable plant parameter for screening the bread wheat genotypes for their tolerance to Zn deficiency. In opposition to supplying Zn in nutrient solutin, spraying Zn in shoot could both enhance Zn cumulation ratio of shoot and grain. Under the condition of supplying Zn in nutrient solution, a great deal of Fe and Cu accumulated in root and a great lot of Mn accumulated in leaves. Spraying Zn in shoot also had a significant influence on the nutrient uptake, especially spraying Zn on the heading and flowering stage.
引文
[1]胥江河.生命元素及其在生物体内的作用[J].渝州大学学报. 2000, 17 (1): 90-93.
    [2] HA施罗德(Schroder) (美).微量元素与人[M].北京:科学出版社, 1979.
    [3]陈清,卢国呈.微量元素与健康[M].北京:北京大学出版社, 1989.
    [4] E E Ziegler, L J Filer, J R (美) .闻芝梅,陈君石主译.现代营养学[M].北京:人民卫生出版社, 1998.
    [5]王飞,黄荫薇,黄鸿梯.锌与人体健康的探讨[J].基础社会医学, 1994, 1(50): 40-41.
    [6]侯振江.微量元素与男性健康[J].微量元素与健康研究, 2004, 21(1): 53.
    [7]张浪千.缺锌与儿童健康[J].微量元素与健康研究, 2004, 21(5): 25.
    [8]陈万东,孙文.微量元素铁、锌与人体健康[J].济宁师专学报, 1995, 3(59): 52-53.
    [9]常世科.微量元素锌与人体健康[J].巢湖师专学报, 2001, 3(52): 106-107.
    [10]王清霞,张忠诚,郑蕾.微量元素与冠心病[J].微量元素与健康研究, 2004, 21(5): 56.
    [11]黄荣宁,周祖文.微量元素与肝硬化关系的研究概况[J].微量元素与健康研究, 2004, 21(6): 55.
    [12]杨惠君.微量元素平衡对糖尿病的影响[J].微量元素与健康研究, 2005, 22 (5): 53.
    [13]陈文强.微量元素锌与人体健康[J].微量元素与健康研究, 2006, 23(4): 62-65.
    [14]石兰.锌与人体健康[J].太原城市职业技术学院学报, 2005, 65(6): 142-143.
    [15]廖金风.海南岛土壤中的锌[J].热带亚热带土壤学报,1997,6(4): 255-259.
    [16]韩凤祥,胡霭堂,秦怀英等.我国某些旱地土壤中锌的形态及其有效性[J].土壤, 1990, 22(6): 302-308.重复1
    [17]蒋廷惠,胡霭堂,秦怀英.锌在不同土壤中的形态分配[J].土壤肥料, 1990, (6): 30-32.
    [18]魏世强,陈荣,刘东.四川主要土壤锌形态和含量的研究[J].西南农业大学学报,1990, 12(6): 600-603.
    [19]马义兵,夏荣基.土壤微量元素研究Ⅰ石灰性中锌的分组方法研究[J].北京农业大学学报, 1988, 14(2): 149-155.
    [20]莫争,王春霞,陈琴等.重金属Cu, Pb, Zn, Cr, Cd在土壤中的形态分布和转化[J].农业环境保护, 2002, 21(1): 10-17.
    [21]邵煜庭,甄清香,刘世铎.甘肃主要农业土壤中Cu、Zn、Mn、Fe的形态及有效性研究[J].土壤学报, 1995, 32(4): 423-429.
    [22] Curtin D, Smillie G W. Soil solution composition as affected by liming and incubation [J]. Soil Sci Soc Am J, 1983, 47(4): 701-707.
    [23] Lindsay W L. Chemical equilibria in soils [M]. New York: JohnWiley, Sons, 1979: 211-220.
    [24]刘世全,张世熔,伍钧等.土壤pH与碳酸钙含量的关系[J].土壤, 2002, (5): 279-288.
    [25]张继宏,郭学成,张伯泉.覆膜与裸地条件下不同施肥处理土壤有效锌含量的变化[J].沈阳农业大学学报, 1994, 5(4): 308-310
    [26]丁疆华,温琰茂,舒强.土壤环境中镉锌形态转化的探讨[J].城市环境与城市生态, 2001, 4(2): 47-49.
    [27]李学坦,王启发,徐风琳.稻草还田对土壤K、P、Zn的吸附一解吸及其有效性的影响[J].华中农大学报, 2000, 19(3): 227-232.
    [28]高明.长期施用有机肥对紫色水稻土锰铁铜锌形态的影响[J].植物营养与肥料学报, 2000, 6(1): 11-17.
    [29]李捷,龚桂友,王胜军,刘振刚.锌对作物生长发育的影响[J].吉林农业大学学报, 1997, 19(增刊): 85-88.
    [30]董爱平,周建民,俞林祥.施锌对玉米产量和品质的影响[J].土壤肥料, 1995(5):封3.
    [31] Harmens H. Physiology of zinc tolerancein? silene vulgaris[J]. Febodruk, Enschede, amsterdam. 1993: 61-76.
    [32] Wang J, Evangelou B P. Nielsen M T and wagner G J Computer-simulated evaluation of possible mechanisms for sequestering metal ion activity in plant vacuoles II[J]. Plant physiology, 1992, 99: 621-626.
    [33] Wang J, Evangelou B P. Nielsen M T and wagner G J Computer-simulated evaluation of possible mechanisms for sequestering metal ion activity in plant vacuoles I[J]. Cadmium. Plant physiology, 1991, 97: 1154-116.
    [34]陆景陵.植物营养学(上册) [M].北京农业大学出版社, 1994.
    [35]张福锁.植物营养生态学和遗传学[M].北京:中国科学技术出版社, 1993, 114-137.
    [36]韩冰,郑可宽.镁、锌、硼、锰元素对烤烟产量及质量影响的研究[J].内蒙古农牧学院学报, 1999, 20(1): 72.
    [37]李延.锌对水稻生理代谢的影响及潜在性的缺锌诊[J].福建农业大学学报, 1999, 28(1): 66-70.
    [38] Kabata A P, Pendlasm H. Trace elements in soil and plants[M]. CRC Press inc., 1992, 85-86.
    [39]张福锁.锌在植物细胞原生质膜稳定性方面的作用[J].土壤学报, 1993, 30(增刊): 104-110.
    [40]汪邓民,周冀衡,朱显灵.磷钙锌对烟草生长、抗逆性、保护酶及渗调物的影响[J].土壤, 2000, 32(1): 34-37.
    [41]周国庆.几种微量元素配施对杂交早稻秧苗的效应[J].作物研究, 2000, 14(1): 12-14.
    [42]张玉琼,张鹤英.锌营养对淹水玉米抗性的影响[J].安徽农学通报,1999,5(3):19-21.
    [43]吴志辉.微肥对作物产量和品质的影响[J].湖南农业科学, 1999(2): 43.
    [44]董爱平,周建民,俞林祥.施锌对玉米产量和品质的影响[J].土壤肥料, 1995(5):封3.
    [45]王景安.玉米幼苗对短暂供锌的反应及缺锌后再供锌的恢复[J].土壤肥料, 2000, 9(3): 25-27.
    [46]张福锁.土壤与植物营养研究新动态(第1卷)[M].北京农业大学出版社, I992.
    [47] Cakmak I, Marschner H. Zinc dependent changes in ESR signals., NADPH oxidase and plasma membrane permeability in cotton roots[J]. Plant physiology, 1988, 73: 182-186.
    [48]陈丹,李志洪.缺锌对玉米吸收锌的动力学及氨基酸分泌的影响[J].吉林农业大学学报, 1998, 20(4): 58-60.
    [49] Cakmak I, Marschner H. Pecrease in nitrate uptake and increase in proten release in zinc deftcient cotton,sunflowar and buckwheat plant[J]. Plant Soil, 1991, 129: 261-268.
    [50]褚天锋,刘新保.锌素营养对作物叶片解剖结构的影响[J].植物营养与肥料学报, 1995, 1(1): 24-29.
    [51]李赢英,陈素英.铜、锌对土壤-植物系统的生态效应及临界含量[J].农村生态环境, 1994, 10(2): 22-24.
    [52] Rauser W E, Glover J. Cadmium-binding protein in roots of maize[J]. Can. J. Bot, 1984, 82: 1645-1650.
    [53]杨志敏,郑绍建,胡霭堂.植物体内磷与重金属元素锌、镉交互作用的研究进展[J].植物营养与肥料学报, 19995(4): 366-376.
    [54]张崇玉,李生秀.氮锌相互作用的初步研究[M].李生秀主编,土壤-植物营养研究文集,西安:陕西科学技术出版社, 1999, 305-310.
    [55] Ozanne P G. The effect of nitrogen on Zinc deficiency in subteranean clover. Aust[J]. Biol Sci, 1955, 8: 47-55.
    [56] Valle B L, Galdes A. The melallo-biochemistry of Zinc enzymes[J]. Adv Enzymol, 1984, 56: 284-430.
    [57] Kumer V, Ahlawat V S, Antil R S. Interactions of nitrogen and Zinc in peart millet: 1. Effect of nitrogen and Zinc levels on dry matter yield and concentration and uptake of introgen and zinc in peart millet[J]. Soil Sci, 1985, 139(4): 351-356.
    [58]慕晓茹,劳家柽,祁明楣.大豆氮锌营养研究[J].土壤通报, 1990, 21(1): 30-32.
    [59]张水旺.氮锌配施及锌肥不同用量对夏大豆产量及品质的影响[J].土壤肥料, 1996, 3: 37-39.
    [60] Satinder D, Shukla V C. Nitrogen-Zinc content in maize as affected by their different sources[J]. Indian Soci Soi Sci, 1980, 28: 336-341.
    [61] Kumur V, Ahlawat V S, Antil R S, Yadav D S. Interactions of nitrogen and Zinc in pearl millet: 2. Effect on concentration and uptake of phosphorus, potassium, iron, manganese and copper[J]. Soil Sci, 1986, 142(6): 340-345.
    [62] Mahendra S, Singh S P, Singh M. Effect of Zinc and phosphorus on absorption of iron and nitrogen by submerged paddy[J]. Soil Sci, 1983, 135(2): 71-78.
    [63] Kakuzo K, Httoshi O. Effects of Zinc deficiency on the nitrogen metabolisn of meristematic tissues of cauliflower with reference to protein synthesis[J]. Soil Sci Plant Nutri, 1986, 32(3): 397-405.
    [64]刘新保.玉米施锌研究[J].土壤学报, 1993, 30(增刊): 153-163.
    [65] Patel P C, Patel J C. Growth response, content and uptake of nutrients by different forage sorghum[J]. Gujarat Agricultural University Research, 1994, 19: 9-14.
    [66] Cakmark I, Marschner H. Mechanism of phosphorus induced zinc deficiency in cottonⅢ[J]. Changes in physiological availibility of zinc in plants, 1987, 70: 13-20.
    [67] Cogliatti D H, Alcocer N, Mariag E S. Effect of P concentration on 65Zn uptake in Gaudia f ragilis[J]. Plant Nutrition, 1991, 14: 443-452.
    [68] Cakmark I, Marschner H. Mechanism of phosphorus induced zinc deficiency in cottonⅢ[J]. Changes in physiological availibility of zinc in plants, 1987, 70: 13-20.
    [69] Parker D R, Aguilera J J, Thomson D N. Zinc-phosphorus interactions in two cultivars of tomato ( L ycopersicon scu2lont um L. ) grown in chelator-buffered nutrient solutions[J]. Plant and Soil, 1992, 143: 163-177.
    [70] Loneragan J F, Grove T S, Robson A D, Snowball K. Phosphorus toxicity as a factor in the zinc-phosphorus interactions in plants[J]. Soil Sci. Soc. Am, 1979, 43: 966-972.
    [71] Olsen S R. Micronutrient interactions[A]. In: Mortvedt J J , Giordano P M and Lindsay W L (eds. ). Micronutrients in Agriculture[J]. Soil Society of America, Madison, 1972, 243-264.
    [72] Youngdahl L J et al. Change in the 65Zn distribution in corn root tissue with a phosphorus variable[J]. Crop Sci, 1977, 17: 66-69.
    [73] Warnock R E. Micronutrient uptake and mobility within corn plants in relation to phosphorus induced zinc deficiency[J]. Soil Sci. Soc. Am, 1970, 34: 765-769.
    [74] Loneragan J F, Grunes D L, Welch R M, Aduayi E A, Tengh A, Lazar V A and Caty E E.Phosphorus accumulation and toxicity in leaves in relation to zinc supply[J]. Soil Sci. Soc. Am, 1982, 46: 345-352.
    [75] Marscher H, Cakrak I. Mechanism of phophorus induced zinc deficiency in cotton II. Evidence for impaired shoot control of phosphorus uptake and translocation under zinc deficiency[J]. Physiol. Plant, 1986, 68: 491-496
    [76] Welch R M, Webb M I, Loneragan J F. Zinc in membrane function and its role in phosphorus toxicity[A]. In: Scaife A (ed. ). Proc. 9th Int. Plant Nutr. Coll [C]. Agric. Bur. Famham Royal Bucks. U K. 1982, 710-715.
    [77]王家玉.植物营养元素交互作用研究[J].土壤学进展, 1992, 20: 1-10.
    [78]陶红群,李晓林,张福锁.锌污染条件下VA菌根对三叶草生长和元素吸收的影响[J].应用与环境生物学报, 1997, 3: 263-267.
    [79] Choudhary M, Bailey L D, Grant CA, et al. Effect of Zn on the concentration of Cd and Zn in plant tissue of two durum wheat lines[J]. Plant Science, 1995, 75: 445-448.
    [80] Oliver D P, Hannam R, Tiller K G, et al. The effects of zinc fertilization on cadmium concentration in wheat grain[J]. Envi ron. Qual, 1994, 23: 705-711.
    [81] Welch R M, Hart J J, Norvell W A, et al. Effects of nutrient solution zinc activity on net uptake, translocation, and root export of cadmium and zinc by separated sections of intact durum wheat ( Triticum t urgidum L. var. durum) seedling roots[J]. Plant and Soil, 1999, 208: 243-250.
    [82] McKenna I M, Chaney R L, Williams F M. The effect of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach[J]. Environ. Pollut, 1993, 79: 113-120.
    [83] Cakmak I, Welch RM, Erenoglu B, et al. Influence of varied zinc supply on retranslocation of cadmium ( 109Cd) and rubidium ( 86Rb) applied on mature leaf of durum wheat seedlings[J]. Plant and Soil, 2000, 219: 279-284.
    [84]付宝荣,李法云,臧树良,宋丽.锌营养条件下镉污染对小麦生理特性的影响[J].辽宁大学学报, 2000, 27(4): 366-370.
    [85]郭秀璞,孔祥生,张妙霞,等.锌对小麦镉毒害的缓解效应[J].河南农业大学学报, 1999, 33(2): 211-214.
    [86]华珞,白铃玉,韦东普.有机肥镉-锌交互作用对土壤镉锌形态和小麦生长的影响[J].中国环境科学, 2002, 22(4); 346-350.
    [87]傅桂平,衣纯真,张福锁.潮土中锌对油菜吸收镉的影响[J].中国农业大学学报, 1996, 1(5): 85-88.
    [88] Cakmak I, Kalayci M, Ekiz H, Braun H J, Kilinc Y, Yilmaz A. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project[J]. Field Crops Research, 1999, 60: 175-188.
    [89] Cakmark I, Yilmaz A, Kalayci M, et al. Zinc deficiency as a critical problem in wheat production in central anatolia[J]. Plant and Soil, 1996, 180: 165-172.
    [90] Takkar P N, Chibba I M, Mehta S K. Twenty years of coordinated research of micronutrients in soil and plants[J]. Bhopal IISS, Bull.I: Indian Institute of Soil Science, 1989: 1967-1987
    [91] Graham R D, Ascherj S, Hyness C. Selecting zinc efficient cereal genotypes for soils of low zinc status[J]. Plant and Soil, 1992, 146: 241-250.
    [92] Marschner H. Zinc uptake from soilsM//Robsona D. Zinc in soils and plants[M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1993: 59-77.
    [93] Cakmak I, Sari N, Marschner H, et al. Dry matter production and distribution of zinc in bread and durum wheat genotypes differing in zinc efficiency[J]. Plant and Soil, 1996, 180: 173-181.
    [94] Genc Y, Mcdonald G K. The potential of synthetic hexaploid wheats to improve zinc efficiency in modern bread wheat[J]. Plant and Soil , 2004, 262: 23-32.
    [95] Cakmak I, Tolay I, Ozdemir A, et al. Differences in zinc efficiency among and within diploid, tetraploid, hexaploid wheats[J]. Annals of Botany, 1999, 84: 163-171.
    [96] Graham R D. Breeding for nutritional characteristics in cereals[J]. Adv. Plant Nutr, 1984, 1: 57-102.
    [97] Graham R D, Ascherj S, Hyness C. Selecting zinc efficient cereal genotypes for soils of low zinc status[J]. Plant and Soil, 1992, 146: 241-250.
    [98] Takkar P N, Chibba I M, Mehta S K. Twenty years of coordinated research of micronutrients in soil and plants M.Bhopal IISS, Bull[J]. Indian Institute of Soil Science, 1989: 1967-1987.
    [99] Viets F J, Boawn L C, Crawford C L. Zinc contents and deficiency Symptoms of 26 crops grown on a zinc-deficient soil[J]. Soil Sci, 1954, 78: 305-316.
    [100] H, Bagci S A, Kiral A S, et al. Effects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in Zn-deficient calcareous soils[J]. Plant Nutrition, 1998, 21: 2245-2256.
    [101] Erenoglu B, Nikolic M, Rmheld V, et al. Uptake and transport of foliar applied zinc (65Zn) in bread and durum wheat cultivars differing in zinc efficiency[J]. Plant and Soil, 2002, 241: 251-257.
    [102] Cakmak I, Sari N, Marschner H, et al. Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency[J]. Plant and Soil, 1996, 180: 183-189.
    [103] Rengel Z, Hawkesford M. Biosynthesis of a 34-kDa polypeptide in the root cell plasma membrane of a Zn-efficient wheat genotype increase upon Zn deficiency[J]. Plant Physiol, 1997, 24: 307-315.
    [104] Rengel Z, Matthew S and Robin M. Chlorsulfuron Reduces Extension of Wheat Root Tips in Low-zinc Solution Culture[J]. Annals of Botany, 1998, 81(3): 385-389.
    [105] Erenoglu B, Cakmak I, Romheld V and Derici R. Durum wheat cultivars differing in zinc efficiency[J]. Plant and Soil, 1999, 209: 245-252..
    [106] Rengel Z, Wheal M S. Kinetic parameters of zinc uptake by wheat are affected by the herbicide chlorsulfurm[J]. Exp.Bot, 1997, 48: 935-941.
    [107] Cakmak I, Ekiz H, Yilmaz A and Torun B, et al. Differential responses of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils[J]. Plant and Soil, 1997, 188: 1-10.
    [108] Jonathan J, Wendell A, Norvell and Ross M, et al. Characterization of zinc uptake, binding and translocation in intanct seedlings of bread and durum wheat cultivars[J]. Plant physiology, 1998, 118: 219-226.
    [109] Haslett B S, Reid R J and Rengel Z. Zinc mobility in whear: uptake and distribution of zinc applied to leaves or roots[J]. Annals of Botany, 2001, 87: 379-386.
    [110] Frossard E, Bucher M, Machler F, et al. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition[J]. Science of Food and Agriculture, 2000, 80: 861-879.
    [111] Grahan R D, Welch R M, Bouis H E. Addressing micronutrient malnutrition through enhancing thenutritional quality of staple foods: principles, perspectives and knowledge gaps[J]. Advances in Agronomy, 2001, 70: 77-42.
    [112] Bouis H E. Plant breeding: A new tool for fighting micronutrient malnutrition[J]. Nutrition, 2002, 132: 491-494.
    [113] Cakmak I, Torun B, Erenoglu B, et al. Morphological and physiological differences in the response of cereals to zinc deficiency [J]. Euphytica, 1998, 100: 349-357.
    [114] Cakmak I, Kalayci M, Ekiz H, et al. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project[J]. Field Crops Research, 1999, 60: 175-188.
    [115] Alloway B J. Zinc in soils and crop nutrition[M]. Brussel: International zinc association communications IZA publications, 2004.
    [116] Hotz C, Brown K H. Assessment of the risk of zinc deficiency in populations and options for its control[J]. Food Nutr Bull, 2004, 25: 94-204.
    [117] Welch R M, Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective[J]. Experimental Biology, 2004, 55: 353-364.
    [118] Bouis H E. The potential of genetically modified food crops to improve human nutrition in developing countries[J]. Dev Stud, 2007, 43: 79-96.
    [119] Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?[J]. Plant Soil, 2008, 302: 1-17.
    [120] Graham R D, Ascher J S, Hymes S C. Selecting zinc efficient cereal genotypes for soils of low zinc status[J]. Plant and Soil, 1992, 146: 241-250.
    [121] Cakmak I, Derici R, Torun B, et al. Role rye chromosomes in improvement of zinc efficiency in wheat and triticale[J]. Plant and Soil, 1997, 196: 249-253.
    [122] Torun B, Bozbay G, Gültekin I, et al. Differences in shoot growth and zinc concentration of 164 bread wheat genotypes in a zinc-deficient calcareous soil[J]. Plant Nutrition, 2000, 23: 1251-1265.
    [123] Schlege l, Cakmak I, Torun B, et al. Screening for zinc efficiency among wheat relatives and their utilization for alien gene transfer[J]. Euphytica, 1998, 100: 281-286.
    [124] Genc Y, MoDonald G K, Graham R D. Contribution of different mechanisms to zinc efficiency in bread wheat during early vegetative stage[J]. Plant and Soil, 2006, 281: 353-367.
    [125] Yang X, R?mheld V, Marschner H. Application of chelator-buffered nutrient solution technique in studies on zinc nutrition in rice plant (Oryza sativa L.)[J]. Plant and Soil, 1994, 163: 85-94.
    [126] Rengel Z, Graham R D. Wheat genotypes differ in Zn efficiency when grown in chelator-buffered nutrient solution I. growth[J]. Plant and Soil, 1995, 176: 307-316.
    [127] Bell P F, Chaney R L, Angle J S. Free metal activity and total metal concentrations as indices of micronutrient availability to barley (Hordeum rulgure(L)‘Klages’)[J]. Plant and Soil, 1991, 130: 51-62.
    [128] Norvell W A, Welch R M.. Growth and nutrient uptake by barley (Hordeum vulgare L. cv Herta): Studies using an N-(2-Hydroxyethyl) ethylenedinitrilotriacetic acid-buffered nutrient solution technique I. Zinc ion requirements[J]. Plant Physiol, 1993, 101: 619-625.
    [129] Rengel Z. Physiological responses of wheat genotypes grown in chelator-buffered nutrient solutions with increasing concentrations of excess HEDTA[J]. Plant Soil, 1999, 215: 193-202.
    [130] Lombnaes P, Singh B R. Varietal tolerance to Zinc deficiency in wheat and barley grown in chelator-buffered nutrient solution and its effect on uptake of Cu, Fe, and Mn[J]. Soil Science and Plant Nutrition, 2003, 166: 76-83.
    [131] Rengel Z. Zinc deficiency in wheat genotypes grown in conventional and chelator-buffered nutrient solutions[J]. Plant Science, 1999, 143: 221-230.
    [132] Rengel Z. Physiological mechanisms underlying differential nutrient efficiency of crop genotypes[M]. In Mineral Nutrition of Crops-Fundamental Mechanisms and Implications. New York: Food Products Press, 1999, 227-265.
    [133]蒿宝珍,姜丽娜,李春喜,等.小麦锌营养效率的研究进展[J].安徽农业科学, 2007, 35(25): 7756-7758.
    [134]高俊凤.植物生理学实验技术[M].西安:世界图书出版社, 2000: 198-199.
    [135]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 1999: 279-281.
    [136] Grewal H S, Graham R D. Seed zinc content influences early vegetative growth and zinc uptake in oilseed rape (Brassica napus and Brassica juncea) genotypes on zinc-deficient soil [J]. Plant and Soil, 1997, 192: 191-197.
    [137] Ozturk L , Yazici M A, Yucel C, et al. Concentration and localization of zinc during seed development and germination in wheat[J]. Plant Physiology, 2006, 128: 144-152.
    [138]王人民,杨肖娥.不同锌离子活度对水稻养分吸收的影响及其基因型差异[J].作物学报, 2001, 27(5): 566-574.
    [139]刘铮.我国土壤中锌含量的分布规律[J].中国农业科学, 1994, 27 (1): 30-37.
    [140] Cakmak I, Ozturk L, Karanlik S, et al. Tolerance of 65 durum wheat genotypes to zinc deficiency in a calcareous soil[J]. Plant Nutrition, 2001, 24(11): 1831-1847.
    [141] Cakmak I, Derici R, Torun B, et al. Role rye chromosomes in improvement of zinc efficiency in wheat and triticale[J]. Plant Soil, 1997, 196: 249-253.
    [142] Ekiz H, Bagci S A, Kiral A S, et al. Effects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc-deficient calcareous soils[J]. Plant Nutrition, 1998, 21: 2245-2256.
    [143] Yilmaz A, Ekiz H, Gultekin I, et al. Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils[J]. Plant Nutrition, 1998, 21: 2257-2264.
    [144] Genc Y M, Donald G K. Domesticated emmer wheat (T. turgidum L. subsp. dicoccon (Schrank) Thell.) as a source for improvement of zinc efficiency in durum wheat[J]. Plant Soil, 2008, 310: 67-75.
    [145] Cakmak I, Gulut K Y, Marschner H, et al. Effect of zinc and iron deficiency on phytosiderophore release in wheat genotype differing in zinc efficiency[J]. Plant Nutrition, 1994, 17: 1-17.
    [146] Rengel Z, Romheld V. Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency[J]. Plant Soil, 2000, 222: 25-34.
    [147] Hacisalihoglu G, Hart J J, Kochian L V. High and low affinity zinc transport systems and their possible role in zinc efficiency in bread wheat[J]. Plant Physiology, 2001, 125: 456-463.
    [148] Cakmak I, Sari N, Marschner H, et al. Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency[J]. Plant Soil, 1996, 180: 183-189.
    [149] Hajiboland R, Yang X E, R?mheld V. Effects of bicarbonate and high pH on growth of Zn-efficiency and Zn-inefficient genotypes of rice, wheat and rye[J]. Plant and Soil, 2003, 250: 349-357.
    [150] Hacisalihoglu G, Hart J J, Wang Y H, et al. Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat[J]. Plant Physiology, 2003, 131: 595-602.
    [151]徐晓燕,杨肖娥,杨玉爱.锌在植物中的形态及生理作用机理研究进展[J].广东微量元素科学, 1999, 6(11): 1-6.
    [152]金志涓,赵明利.锌与人体健康[J].宁夏医学院学报, 1999, 21(4): 308-309.
    [153] Shah D, Sachdevhp S. Zinc deficiency in pregnancy and fetal outcome[J]. Nutrition Reviews, 2006, 64(1): 15-30.
    [154] WHO. The World Health Report 2002: Reducing Risks, Promoting Healthy Life. World Health Organization 2002.
    [155] Alloway B J. Zinc in soils and Crop Nutrition[M]. International Zinc Association Communications. IZA Publications, Brussel, 2004.
    [156] Hotz C, Brown K H. Assessment of the risk of zinc deficiency in populations and options for its control[J]. Food Nutr Bull, 2004, 25: 94-204.
    [157]兰晓霞.锌缺乏与婴幼儿健康[J].国外医学:妇幼保健分册, 2003, 14(1): 49-51.
    [158] Ho E. Zinc deficiency, DNA damage and cancer risk[J]. Nutr. Biochem, 2004, 15: 572-578.
    [159] Cunningham-Rundles S, McNeeley D F, Moon A. Mechanisms of nutrient modulation of the immune response[J]. Allergy Clin. Immun, 2005, 115: 1119-1128.
    [160] Cakmak et al., 1999; Erdal et al., 2002 1. Cakmak I, Kalayc? M, Ekiz H, Braun H J, Y?lmaz A. Zinc deficiency as an actual problem in plant and human nutrition in Turkey: A NATO-Science for Stability Project[J]. Field Crops Res, 1999, 60: 175-188.
    [161] Erdal I., Yilmaz A, Taban S., Eker S, Cakmak I. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization[J]. Plant Nutrition, 2002, 25: 113-127.
    [162] Rengel et al.,1999; Cakmak et al., 2004 1. Rengel Z., Batten G.D, Crowley D E. Agronomic approaches for improving the micronutrient density in edible portions of field crops[J]. Field Crops Res, 1999, 60: 27-40.
    [163] Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol A, Nevo E, Braun H J, Ozkan H. Triticum dicoccoides: An Important genetic resource for increasing zinc and iron concentration in modern cultivated wheat[J]. Plant Nutr. Soil Sci, 2004, 50: 1047-1054.
    [164] Cakmak I, Graham R D, Welch R M. 2002: Agricultural and Molecular Genetic Approaches to Improving Nutrition and Preventing Micronutrient Malnutrition Globally[M]. Encyclopedia of Life Support Systems, 2002.
    [165] Welch R M. and Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective[J]. Exp. Bot, 2004, 55: 353-364.
    [166] White P J, Broadley M R. Biofortifying crops with essential mineral elements[J]. Trends Plant Sci, 2005, 12: 586-593.
    [167] Bouis E H, Graham R D, Welch R M. The Consultative Group on International Agricultural Research (CGIAR) Micronutrients Project: Justifications and objectives[J]. Food Nutr. Bull, 2002, 21: 374-381.
    [168] Bouis H E. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost[J]? Proceedings of the Nutrition Society, 2003, 62: 403-411.
    [169] Bouis, 2003; Welch and Graham, 2004 1.Bouis H E. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost[J]? Proceedings of the Nutrition Society, 2003, 62: 403-411.
    [170] Welch R M, Graham R D.: Breeding for micronutrients in staple food crops from a human nutrition perspective[J]. Exp. Bot, 2004, 55: 353-364.
    [171] Yilmaz A, Ekiz H, Torun B, et al. Different zinc application methods on grain yield, and zincconcentrations in wheat grown on zinc-deficient calcareous soils in Central Anatolia[J]. Plant Nutrition, 1997, 2: 461-471.
    [172]白厚义,肖俊璋主编.试验研究与统计分析[M].世界图书出版公司, 1998, 46-47.
    [173] Cakmak I, Sari N, Marschner H, Kalayci M, Yilmaz A, Eker S, Gülüt K Y. Dry matter production and distribution of zinc in bread and durum wheat genotypes differing in zinc efficiency[J]. Plant Soil, 1996, 180: 173-181.
    [174]李强.锌对小麦生长及产量的影响[J].土壤肥料,2004(1): 16-18.
    [175]郝明德,魏孝荣,党廷辉.旱地长期施用锌肥对小麦吸锌及产量的影响[J].生态环境, 2003, 12(1): 46-48.
    [176]张文凯.叶面喷施锌肥对小麦产量和效益的影响[J].河北农业科学, 2008, 12 (3): 89-90.
    [177]李允国,宋金锋,周海涛,张秀平,李献斌.黄潮土小麦施锌效果及应用技术研究[J].河南农业科学, 2006, 5: 70-71.
    [178]徐立新,赵会杰,郭占玲,薛延丰,毛凤梧.灌浆期喷施钼、锌、镁肥对小麦品质的影响[J].河南农业大学学报, 2003, 37(3): 217-219.
    [179]王立河,王喜枝,刘松涛,韩燕来,孙斌,王立秋.砂壤质潮土钾肥施用方式及与锌、硼配施对强筋小麦产量及品质的影响[J]河南农业科学, 2007, 9: 21-23.
    [180]杨建堂,王文亮,王岩,王素芳,霍晓婷,闫国正,刘东菊.高产冬小麦锌素吸收分配特点的研究[J].土壤通报, 1997, 28(3): 124-126.
    [181] Haslett B S, Reid R J, Rengel Z. Zinc Mobility in Wheat: Uptake and Distribution of Zinc Applied to Leaves or Roots[J]. Annals of Botany, 2001, 87: 379-386.
    [182] Pearson J N, Rengel Z. Uptake and distribution of 65Zn and 54Mn in wheat grown at suffcient and deficient levels of Zn and Mn. II. During grain development[J]. Experimental Botany, 1995, 46: 841-845.
    [183] Rodrigues LA, Souza A P D, Martinez H E P, Pereira P R G, Fontes P C R. Uptake and translocation of zinc applied on leaves of common bean[J]. Revista Brasileira de Fisiologia Vegetal, 1997, 9: 111-115.
    [184] Santa-María G E, Cogliatti D H. The regulation of zinc uptake in wheat plants[J]. Plant Science, 1998, 137: 1-12.
    [185] Lasat M M, Baker A J M, Kochian L V. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi[J]. Plant Physiology, 1996, 112: 1715-1722.
    [186]王衍安,董佃朋,李坤,李新会,刘娣,李德全,束怀瑞.铁锌互作对苹果锌、铁吸收分配的影响[J].中国农业科学, 2007, 40(7): 1469-1478.
    [187] Genc Y, Mo. Donald G K. Domesticated emmer wheat [T. turgidum L. subsp. dicoccon (Schrank) Thell.] as a source for improvement of zinc efficiency in durum wheat[J]. Plant Soil, 2008, 310: 67-75.
    [188] Yilmaz A, Ekiz H, Torun B, Gültekin I, Karanlik S, Bagci S A, Cakmak I. Effect of different zinc application methods on grain yield and zinc concentration in wheat grown on zinc-deficient calcareous soils in Central Anatolia[J]. Plant Nutr, 1997, 20: 461-471.
    [189]吴茂江.锌与人体健康[J].固原师专学报, 2006, 27(3): 106-108.
    [190] Harmens H. Physiology of zinc tolerance in silence v ulgaris[M]. Febodruk, Enschede, Amsterdam,1993, 61-76.
    [191]孙桂芳,杨光穗.土壤一植物系统中锌的研究进展[J].华南热带农业大学学报, 2002, 8(2): 22-30.
    [192]张建军,樊廷录.小麦锌营养研究进展[J].作物杂志, 2008, 4: 19-23.
    [193]陈铭,尹崇仁.施用锌锰肥对冬小麦体内营养元素浓度的效应[J].中国农业科学, 1992, 25(4): 60-69.
    [194]刘新保,褚天铎,杨清.不同施锌水平对冬小麦含锌量及其他营养元素影响研究:硫、镁和微量元素在作物营养平衡中的作用[J].国际学术会议论文集.成都:成都科技大学出版社, 1993: 300-304.
    [195]张勇,王德森,张艳,何中虎.北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析[J].中国农业科学, 2007, 40(9): 1871-1876.
    [196]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 1999.
    [197]郑振华,周培疆,吴振斌.复合污染研究新进展[J].应用生态学报, 2001, 12(3): 469-473.
    [198] Kargin F, Cogun H Y. Metal interactions during accumulation and elimination of zinc and cadmium in tissues of the freshwater fish Tilapia nilotical[J]. Bull Environ Contamination Toxicity, 1999, 63(5): 511-519.
    [199]王海啸,武丕武. P、Zn使用量对玉米苗期吸收Zn、Cu、Mn的影响[J].农业环境保护, 1996, 15(6): 257-260.
    [200]徐照丽,吴玉萍,杨宇虹,邓建华.烤烟中Cu、Zn、Mn交互作用研究[J].农业环境科学学报, 2006, 25(5): 1162-1166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700