用户名: 密码: 验证码:
日光温室后屋面优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室在现代中国得到迅速发展,然而中国北方高纬地区冬季的温室生产多依赖于加温,从而导致了生产成本的提高和能源的浪费,提高温室的保温性能以充分利用太阳辐射的能量可以很好的解决这个问题,温室结构和材料优化是提高保温性能的关键。本试验通过对日光温室后屋面不同仰角、保温材料类型及厚度的研究,为保温材料的优选和温室结构优化奠定基础,以便更好保温节能。试验观测分析了不同保温材料聚苯板、挤塑板、玻璃棉及常规材料干草帘等的热工性能、不同保温材料后屋面的热量散失规律差异,采用生命周期耗费法计算了不同材料后屋面的最优厚度,并通过环境参数和作物生长情况评价了不同仰角及不同材料后屋面温室应用保温性能,试验主要结果如下:
     (1)保温材料热性能
     挤塑板尺寸稳定性好,传热系数值低,吸水率低,压缩强度高。以挤塑板为保温层的后屋面热惰性指标D为2.59,比同类其他保温材料较高,技术经济特征量A最低,仅为29.26元·W·m-4·K-1,聚苯板比其大0.35元·W·m-4·K-1,玻璃棉由于附加抗压层应用成本提高。
     (2)后屋面不同保温材料应用性能
     以挤塑板作为后屋面保温层的日光温室内气温、土温均较高,后屋面内外温差达19.3℃,为最大,外表面夜间放热总量602.92 kJ·m-2,比其他温室要少,其温室内西葫芦定植后前期各生长指标与常规后屋面材料温室都存在显著差异,其产量达38847kg·ha -1。聚苯板保温性能次之,常规材料温室保温性最差。
     (3)保温层最优厚度
     建立了后屋面采暖总耗费的数学模型,得出最优保温层厚度计算公式。当燃料为煤时,关中地区几种保温材料的保温层最优厚度取值分别应为干草帘114mm,聚苯板为52mm,挤塑板为40mm,玻璃棉为70mm。其符合国标中关于后屋面低限热阻下的厚度要求。
     (4)不同后屋仰角下的环境性能
     关中地区不同仰角温室的保温性能顺序为45°> 40°> 35°> 50°,45°温室1月中下旬的最低气温平均为9.3℃,平均气温为11.3℃,气温日较差平均为11.4℃;45°温室土温及后屋内表面温度也高于同期其它温室。方差分析表明,45°温室气温日较差与35°、50°温室差异显著。50°温室日最低气温最低,并与外界最低气温间极显著正相关(r=0.708>r0.01),且作物绝收。
     综上所述,新型高效保温材料挤塑板因其良好的热工及保温性能,较适合用于日光温室后屋面保温层,有替代聚苯板的潜力;通过生命周期耗费法计算出的最优保温层厚度,符合国标中对后屋面最低厚度要求;在关中地区最优的后屋面仰角应该为45°。
The greenhouse has been developing rapidly in modern China, but its production were more depended on heating in winter in high-latitude area in north China, leading to the rising costs and a waste of energy. Improving the thermal insulation performance of greenhouse to take full advantage of solar radiation energy could well solve the problems. The optimization of greenhouse structure and material was the key factor of improving the thermal properties. The experiment could lay the foundations for thermal insulation materials selection and greenhouse structure optimization by researching on the back-roof elevation angles, thermal insulation materials and its thickness, in order to insulating heat and saving energy much better. During the periods of experiment, we analyzed the thermal properties of thermal insulation materials such as polystyrene compressed foam board, polystyrene board, glass wool and dry mat, and observed the difference of heat loss among the thermal insulation materials. We calculated the optimization thickness of different materials by using life cycle cost method. We also evaluated the thermal insulation performance relying on environmental parameter and crop growth at different back-roof elevation angles and various thermal insulation materials. The main results were as follows:
     (1) The thermal properties of thermal insulation materials
     All of thermal properties of polystyrene compressed foam board were the best, the greenhouse thermal inert index D was 2.59, it was higher than others’, the technical economic characteristic quantity A was 29.26 yuan·W·m-4·K-1, and the EPS’s was more than XPS’s, the difference was 0.35 yuan·W·m-4·K-1 between EPS’s and XPS’s, and the application cost of glass wool increased because of the additional compression resistance layer.
     (2) Application performance of greenhouse at various back-roof thermal insulation materials
     The greenhouse which back-roof thermoinsulating layer was composed by polystyrene compressed foam board, had higher air temperature and soil temperature in the greenhouse, temperature difference between internal and external back-roof in the greenhouse reached to 19.3℃, and it was the largest one. The released heat of outer surface of back-roof was 602.92 kJ·m-2, and less than other greenhouse, the pumpkin growth indexes were significant differences comparing with common greenhouse’s at early growth stage after planting, its yield reached 38847 kg·ha-1. The thermal insulation performance of polystyrene board was slightly lower than polystyrene compressed foam board’s, and the thermal insulation performance of common greenhouse was the worst.
     (3) The optimization thickness of thermal insulation layer
     The mathematical model of total heating cost was built on back-roof, and then we got the computing formula for optimization thickness. When the fuel was coal in greenhouse, the optimization thickness values of thermal insulation layer for thermal insulation materials were as follows: 114mm for dry mat, 52mm for polystyrene board, 40mm for polystyrene compressed foam board, and 70 mm for glass wool. It complied with the state standard,which was about back-roof material thickness at low limits of thermal resistance.
     (4) The environmental performance of greenhouse at various back-roof elevation angles
     The thermal insulation property of various elevation angle greenhouse from high to low following in order as 45°>40°>35°>50°in central Shaanxi plain, 45°was optimal, its’mean minimum air temperature was 9.3℃, mean air temperature was 11.3℃, the average of air temperature daily range was 11.4℃, the soil temperature and back-roof inner surface temperature of 45°were higher than other greenhouse. the result of analysis of variance indicated that the average of air temperature daily range, there were significant differences between 45°and 35°, as well as between 45°and 50°. Mean minimum air temperature of 50°was lower than others’, and it high significantly correlated with outside air temperature(r=0.708>r0.01), and the crop field in 50°lost.
     To sum up, the polystyrene compressed foam board was more suitable for application of solar greenhouse back-roof because of its excellent thermal insulation performance. It would be a substitute for polystyrene board. The optimization thickness of different materials which we calculated by using life cycle cost method could meet request of the lowest thickness. It was suggested that 45°is the optimum back-roof elevation angle in all back-roof elevation angles in central Shaanxi plain.
引文
[1]李式军.设施园艺学[M].北京:中国农业出版社, 2002.
    [2]邹志荣,杨振超.西北荒漠化地带发展设施园艺的意义与作用[J].华中农业大学学报(增刊), 2004, (35): 26-28.
    [3]李天来.论设施园艺在我国农业发展中的战略地位及发展方向[J].华中农业大学学报(增刊), 2004, (35): 1-4.
    [4]陈国辉,郭艳玲,宋文龙.温室发展现状及我国温室需要解决的主要问题[J].林业机械与木工设备, 2004, (2): 11-12.
    [5]朱德文,陈永生,程三六.我国设施农业发展存在的问题与对策研究[J].农业装备技术, 2007, 33(1): 5-7.
    [6]张英,徐晓红,田子玉.我国设施农业的现状、问题及发展对策[J].现代农业科技, 2008, (12): 83-86.
    [7]杨振超.日光温室内最佳风速指标与CFD模拟[D].杨凌:西北农林科技大学, 2006.
    [8]陈丽君,赵凤芹,王艳华,等.温室机械化生产的制约因素及其对策研究[J].沈阳农业大学学报(社会科学版), 2002, 4(2): 101-103.
    [9]刘敏.低谷已走出机遇须把握——农膜行业形势分析[N].中国化工报, 2007-01-19.
    [10]葛志军,傅理.国内外温室产业发展现状与研究进展[J].安徽农业科学, 2008, 36(35): 15751-15753.
    [11]孙秀兰,南国良.我国温室的现状、问题及发展思路[J].内蒙古农业科技, 2004, (3): 1-3.
    [12]陈国辉,郭艳玲,宋文龙.温室发展现状及我国温室需要解决的主要问题[J].林业机械与木工设备, 2004, (2) : 11-12.
    [13]张新光.论马克思小农经济理论的现实意义[J].现代经济探讨, 2008, (3): 40-44.
    [14]陈丽君,赵凤芹,王艳华.温室机械化生产的制约因素及其对策研究[J].沈阳农业大学学报(社会科学版) , 2002, 4(2): 101–103.
    [15]张晓文.设施农业的发展现状与展望[ J ].农机推广与安全, 2006, (11) : 6-8.
    [16]陶卫民,陈媛.国外设施农业发展趋势[ J ].新疆农业科技, 2001, (1) : 41- 42.
    [17]陈青云,李成华.农业设施学[M].北京:中国农业大学出版社, 2001.
    [18]李元哲.日光温室微气候的模拟与实验研究[J].农业工程学报, 1994, 10 (1): 130-134.
    [19]赵贺然.传热系数简单计算方法的探讨[J].中国建筑金属结构2007, (7): 23-27.
    [20]张立芸.新材料墙体日光温室的试验研究[D].北京:中国农业大学, 2006.
    [21]彦启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社, 1968.
    [22]陆耀庆.实用供暖空调设计手册[M].北京:中国建筑工业出版社, 1997.
    [23]魏玲,童艳,陈桂英,等.加气混凝土墙体非稳态传热的数值模拟[J].南京工业大学学报, 2003, 25(2): 53-56.
    [24]周长吉,周新群,桂金光.几种日光温室复合保温被保温性能分析[J].农业工程学报, 1999, 15(2): 168-171.
    [25]郭慧卿,李振海,张振武,等.日光温室北墙构造与室内温度环境的关系[J].沈阳农业大学学报, 1995, 26(2): 193-199.
    [26]白义奎,刘文合,王铁良,等.辽沈I型日光温室环境及保温性能试验研究[J].农业工程学报,2003, 19(5): 191-196.
    [27]柴立龙,马承伟,籍秀红,等.北京地区日光温室节能材料使用现状及性能分析[J].农机化研究, 2007, (8): 17-21.
    [28]金伟良,叶甲淳,严家,等.新型墙体材料节能建筑热工性能测试与分析[J].新型建筑材料, 2002, (2): 16-18.
    [29]律宝莹,张剑平,张双喜,等.真空绝热板热工性能的研究[J].真空, 2007, 44(6): 82-84.
    [30]杨江金,张朝辉,解文燕,等.几种围护结构热工性能试验分析[J].建筑节能2009, (1): 50-52.
    [31]李军,杨世宏.日光温室保温墙体的厚度确定和成本概算[J].宁夏农林科技, 2002, (4): 28-29.
    [32]王焱.围护结构与建筑热稳定性[J].工业建筑, 2003, 33(1): 51-52.
    [33]白义奎,王铁良.外墙聚苯板复合墙体在日光温室中的应用[J].房材与应用. 2002, 30(1): 27-29.
    [34]李小芳.日光温室的热环境数学模拟及其结构优化[D].北京:中国农业大学, 2005.
    [35]张武锁,李连旺,温祥珍,等.墙体填充材料对日光温室保温性的影响[J].内蒙古农业大学学报, 2007, 28(3): 1-4.
    [36]李小芳,陈青云.墙体材料及其组合对日光温室墙体保温性能的影响[J].中国生态农业学报, 2006, 14(4): 185-189.
    [37]张立芸,徐刚毅,马承伟,等.日光温室新型墙体结构性能分析[J].沈阳农业大学学报, 2006,37(3): 459-462.
    [38]王宏丽,任雷,党永华,等.关中地区日光温室北面复合保温墙体的传热研究[J].北方园艺, 2008, (7): 113-115.
    [39]佟国红,王铁良,白义奎,等.日光温室墙体传热特性的研究[J]. 2003, 19(3): 186-189.
    [40]佟国红,李宝筏.不同围护结构材料日光温室的多目标模糊优选[J].沈阳农业大学学报, 2005, 36(4): 475-478.
    [41]白义奎,刘文合,王铁良,等.缀铝箔聚苯板空心墙体保温性能的测试与分析[J].新型建筑材料, 2006, (1): 43-45.
    [42] Meng S C. The Comparison and Analysis of Energy Consumption in Conserving Energy Sun-light Greenhouse and Ordinary Sun-light Greenhouse [A]. NEAAD’98[C], Shenyang: Liaoning Nationality Press, 1998, 22-25.
    [43] Mi Y N. Development of Bake and Steam Free Brick with a Great Quality of Fly Ash[A].NEAAD’98[C], Shenyang: Liaoning Nationality Press, 1998, 29-32.
    [44]赵岽,王铁良,山口智冶,等.辽沈Ⅳ型日光温室墙体保温性能试验研究[J].节能技术, 2005, 23 (5 ):390-391.
    [45]陈端生,郑海山,刘步洲.日光温室光温室气象环境综合研究一墙体、覆盖物热效应研究初报[J].农业工程学报, 1990, 6(2): 77-81.
    [46]亢树华,戴雅东,房思强,等.日光温室优型结构的研究[[J].农业工程学报(增刊), 1996, 30-35.
    [47] Nijskens J, Deltour J, Coutisses, et a1. Heat transfer through covering materials of greenhouses [J]. Agricultural and Forest Meteorology, 1984, 33: 193-214.
    [48] Garzoli K A. Simple greenhouse climate model [J]. Acta Horticulture, 1989, 174: 393-401.
    [49] Jollieto. Horticern. An improved static model for predicting the energy consumption of a greenhouse [J]. Agricultural and Forest Meteorology, 1991, 55, 265-294.
    [50]须辉,李天来.辽沈I型日光温室环境特性的研究I一冬季散热规律的研究[A].国际农业生物环境与能源工程论坛论文集[C],北京:中国农业科学技术出版社, 2003.
    [51]须辉,李天来.辽沈I型日光温室环境特性的研究I一冬季散热规律的研究[J].农业工程学报(增刊), 2004, (8): 32-35.
    [52]车忠仕,佟国红,王铁良,等.典型天气下大跨度日光温室内的微气候特点[J].沈阳农业大学学报, 2005, 36(4): 462-465.
    [53] Litago J, Baptista F J, Meneses J F, et al. Statistical Modeling of the Microclimate in a Naturally Ventilated Greenhouse [J]. Biosystems Engineering, 2005, 92 (3): 365-381.
    [54] Critten D L, Bailey B J.. A review of greenhouse engineering developments during the 1990s [J]. Agricultural and Forest Meteorology, 2002, 112: 1-22.
    [55] Salgado P, Cunha J B. Greenhouse climate hierarchical fuzzy modeling [J]. Control Engineering Practice, 2005, 13: 613-628.
    [56]刘克长,任中兴,张继祥,等.山东日光温室温光性能的实验研究[J].中国农业气象, 1999, 20 (4): 34-37.
    [57]刘克长,张继祥,任宗兴,等.日光温室气象条件的观测研究[J].山东农业大学学报(自然科学版), 2001, 32(1): 50-54.
    [58]杨献光,赵宝存,齐志广.日光型温室内温度梯度变化的观察与分析[J].河北师范大学学报(自然科学版), 2005, 19(1): 80-84.
    [59]杨振超,邹志荣.不同结构类型节能日光温室内温、湿度比较研究[J].陕西农业科学, 2002, (2): 25-28.
    [60]邹志荣,李建明,王乃彪,等.日光温室温度变化与热量状态分析[J].西北农业学报, 1997, 6(1): 58-60.
    [61]高国训,靳力争,郭富常.等.节能日光温室温度分布及其变化[J].天津农业科学, 2001, 7(1): 33-36.
    [62]刘乃玉,王春娜,王绍辉,等.日光温室环境参数的测定及分析[J].北京农学院学报, 2001, 16(1): 74-79.
    [63]郜庆炉,薛香,段爱旺,等.日光温室内温度特点及其变化规律研究[J].灌溉排水学报, 2003, 22(6): 50-53.
    [64]赵云.强制通风温室中温度分布的试验研究[J].中国农机化, 2003, (4): 16-18.
    [65] Liu S Z, He Y, Zhang Y B, et al. Prediction and analysis model of temperature and its application to a natural ventilation multi-span plastic greenhouse equipped with insect-proof screen[J]. Journal Zhejiang University Science, 2005, 6(6): 523-529.
    [66] Sharma P K., Tiwari G N, Sorayan V P.S. Parametric studies of a greenhouse for summer conditions [J]. Energy, 1998, 23 (9): 733-740.
    [67]刘旭,李秀珍,薛晓萍.温室最低气温与气象因素相关分析[J].滨州学院学报, 2008, 24(6): 51-56.
    [68]张亚红.日光温室空气湿度环境及除湿技术研究—I.日光温室空气湿度环境[J].宁夏农学院报, 2000, 21(1): 31-36.
    [69] Li S, Kurata M K, Takakura T. Scale-model experiments on improving solar radiation transmission in a Chinese style lean-to greenhouse [J]. Journal of Agricultural Metrology, 1995, 51 (1): 47-51.
    [70] Critten D L. An improved theory for reflective losses from infinitely long greenhouses [J]. Journal Agriculture Engine Research, 1987, 38: 301-311.
    [71] Critten D L. The evaluation of a computer model to calculate the daily light integral andtransmissivity of a greenhouse [J]. Journal Agriculture Engine Research, 1983, 28(6): 545-563.
    [72] Karate, K. Role of reflection in light Transmissivity of greenhouse [J]. Agricultural and Forest Meteorology, 1990, 52: 319-33.
    [73]蒋燕,裴会敏.日光温室主要环境条件及其变化[J].洛阳农专学报, 1995, 15(10): 31-33.
    [74]彭致功,段爱旺,郜庆炉,等.节能日光温室光照强度的分布及其变化[J].干旱地区农业研究, 2003, 21(2): 37-41.
    [75]陈端生.日光温室小气候环境及其调节[J].中国花卉园艺, 2005, (8): 47-52.
    [76]陈青云,王鹏.连栋塑料温室环境性能比较研究[J].北京农业科学(增刊), 1999, 33-38.
    [77]王鹏,李卫欣,孙永涛,等.连栋塑料温室光温环境特征分析[J].北方园艺, 2005, (1): 18-19.
    [78]余纪柱,金海军.塑料三连栋温室的温、湿度变化规律初探及相应调控措施[J].上海农业学报, 2002, 18(4): 63-69.
    [79]齐志广.塑料温室内部环境因子的变化规律及分析[J].河北师范大学学报(自然科学版) , 1996 , 20 (4) : 86-91.
    [80]李永秀,魏猷刚,徐国彬,等. 1月份南方现代化温室内外气象要素特征及其调控[J].现代农业科技, 2008, (9): 12-14.
    [81] Fatnassi H, Boulard T, Bouirden L. Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens [J]. Agricultural and Forest Meteorology, 2003, 118: 97-111.
    [82] Kacira M, Short T H, Stowell R R. A CFD evaluation of naturally ventilated, multi-span, saw-tooth greenhouse [J]. Transactions of the ASME, 1998, 41(3): 833-836.
    [83] Boulard T, Wang S. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel [J]. Computers and Electronics in Agriculture, 2002, 34: 173-190.
    [84] Tang R, Meir I A, Etzion Y. Thermal behavior of building with curved roofs as compared with flat roofs [J]. Solar Energy, 2003, 74: 273-286.
    [85]李晓豁.日光温室环境参数控制系统的设计研究[J].黑龙江科技学院学报, 2004, 14(3): 186-188.
    [86]李敏,孟臣.温室大棚计算机测控系统的研制[J].计算机与农业, 2001, (6): 9-11.
    [87]刘璎瑛.日光温室保温性能的试验研究及小气候模拟[D].南京:南京农业大学, 2003.
    [88]王永宏,张得俭,刘满元.日光节能温室结构参数的选择与设计[J].机械研究与应用, 2003, 16(S1): 101-103.
    [89]许彦平,姚晓红,蒲永义,等.甘肃天水节能型日光温室建造指标量化估算研究[J].干旱地区农业研究. 2004, 22(4): 168-172.
    [90]胡波,张生田.西宁地区日光温室结构优化设计[J].农村实用工程技术, 2001, (9): 10.
    [91]林成,马萍,谢红桃,等.北疆长后坡型冬季不加火日光温室的技术分析[J].新疆农业科技, 1996, (04): 27-28.
    [92]马新立.鸟翼形无后墙长后坡组装式生态温室[J].山西农业, 2002,(2): 27.
    [93]陈端生.日光温室采光和保温设计要点[J].新疆农机化, 2004, (3): 51 - 53.
    [94]陈端生.日光温室采光和保温设计要点[J].农村实用工程技术, 2003, (7): 19-22.
    [95]林维申.一个好温室的结构[J].山东蔬菜, 1998, (3): 8-12.
    [96]云兴福,林维申.后屋面入射光对单屋面温室光温性能和蔬菜生长的影响——Ⅱ.散射光对单屋面温室黄瓜生长的影响.华北农学报, 1990, (1): 11.
    [97]韩秋萍,王本辉.黄土高原双层后坡日光温室设计建造技术研究[J].温室园艺, 2006, (4): 15-17.
    [98]舒占涛.赤峰市空心后屋面日光温室的建造[J].中国蔬菜, 2005, (2): 57.
    [99]佟国红,王铁良,白义奎,等.日光温室建筑参数对室内温度环境的影响[J].沈阳农业大学学报, 2003, 34(3): 203-206.
    [100] Mathala J., Gupta, Pitam C. Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control [J]. Energy, 2002, (27): 777-794.
    [101] Tiwari G N, Dhiman N K. Periodic theory of a greenhouse [J]. Energy Convers and Manage, 1985, 25(2): 17-33.
    [102] G.Papadakis. Experimental investigation and modeling of heat and mass transfer between a tomato crop and the greenhouse environment [J]. J·Agric Engng Res., 1994, 57: 217-27.
    [103] Seginer. Neural network models of the greenhouse climate [J]. J. Agric Engng Res., 1994, 59: 203-216.
    [104]房琳,曲德林,刘福祯.空调建筑外墙和屋顶经济绝热厚度的计算[J].太阳能学报, 2002, 23(6): 711-716.
    [105]张蔺.屋面保温层的适宜厚度[J].四川建筑, 2006, (4): 146.
    [106]俞力航,杨星虎.多层住宅坡屋面保温层设计[J].新型建筑材料, 2000, (1): 20-23.
    [107] Kemal C, Bedri Y. Optimum insulation thickness of external walls for energy saving [J]. Applied Thermal Engineering, 2003, 23(4): 473-479.
    [108] Soyleme M S, Unsal M. Optimizing insulation thickness for refrigeration applications [J]. Energy Conversation & Management, 1999, 40(6): 13-21.
    [109]黄春华,叶勇军.节能建筑外墙保温层厚度的经济性优化[J].建筑热能通风空调, 2005, 24(6): 73-76.
    [110]陈凡,谭大璐.节能建筑外墙最佳保温层厚度探讨及效益评估[J].新型建筑材料, 2007, (2): 48-49.
    [111]王飞,苏向辉.建筑围护结构保温层厚度的经济性优化[J].建筑节能, 2008,36(1): 40-43.
    [112]许建柳,何嘉鹏,孙伟民.南京建筑围护结构保温层经济厚度计算研究[J].暖通空调, 2008, 38(1): 49-51.
    [113]邹志荣.园艺设施学[M].北京:中国农业出版社, 2002.
    [114]张福墁.设施园艺学[M].北京:中国农业大学出版社, 2001.
    [115]唐俊昌,邹志荣,程智慧.高效设施园艺生产技术大全[M].西安:西安地图出版社, 2001.
    [116]周长吉.现代温室工程[M].北京:化学工业出版社, 2003.
    [117]张德信.建筑保温隔热材料[M].北京:化学工业出版社, 2006.
    [118]许云伟,贾珣,陈滨.墙体材料选择与最佳经济厚度的优化研究[J].节能与环保, 2006, (6): 20-23.
    [119]郭文忠,王静,李晓静.宁夏日光温室结构选型及区域布局[J].宁夏农林科技, 2008, (3): 51-52.
    [120]沈丽萍,于文越.温室增温的好材料——苯板[J].新农业. 2003, (10): 16.
    [121]包天忠,范红策,光辉.青海省日光节能温室新型保温材料引进研究和开发利用初探[J].青海农技推广, 2007, (1): 20-22.
    [122]毛丽萍,郭尚,程伯瑛,等.低温弱光对西葫芦幼苗生理指标的影响[J].山西农业科学, 2008, 36(9): 33-36.
    [123]周长吉,丁小明.温室采暖设计室外计算温度取值方法探讨[J].农业工程学报, 2008, 24, (10): 163-165.
    [124]宋明军,郭晓冬.甘肃省节能日光温室采光设计的分析与探讨[J].北方园艺, 2005, (5): 14-15.
    [125]王厚华,吴伟伟.居住建筑外墙外保温厚度的优化分析[J].重庆大学学报, 2008, 31(8): 937-941.
    [126]刘在民.节能日光温室温光性能优化及其应用效果研究[D].东北农业大学. 2007.
    [127]王宏丽,李凯,王剑,等.适于温室生产的无机盐复合相变材料热性能的测试[J].西北农林科技大学学报(自然科学版), 2008, 36(3): 141-144.
    [128]廖晓敏,张雄,张青.建筑围护结构用蓄热复合相变材料研究[J].墙材革新与建筑节能, 2007, (11): 36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700