用户名: 密码: 验证码:
西北地区日光温室土质墙体厚度优化及其保温性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西北地区光热资源丰富、土地资源广阔、能耗等热量资源充足等为发展设施农业提供诸多有利条件,使日光温室得到快速发展。当前,西北地区95%以上日光温室的维护结构为土墙。经济条件相对滞后使在今后十几年甚至几十年温室建造中,成本低廉的土质墙体日光温室依然是农户温室建造中的主流。由于大量研究工作集中于墙体材料选择及组合方式上,对于土质墙体最佳厚度研究较少,至今尚未制定出关于西北地区运用面积最大日光温室土质墙体的厚度标准。为此,优化西北不同地区日光温室土质墙体厚度,研究其保温性和传热机理,对西北地区日光温室标准化建设以及指导温室建造有重要的现实意义。
     本论文选择西北地区新疆维吾尔族自治区塔城市、陕西省杨凌区、甘肃省白银市和宁夏回族自治区银川市等四省区应用面积最广土质墙体厚度不同节能日光温室进行环境温度测试,通过环境温度和墙体传热保温性能比较分析确定各地区日光温室墙体的最佳厚度。在确定当地最佳厚度后,再以杨凌地区为代表进行日光温室土质墙体内部节点温度动态变化规律和热量得失方面的分析研究。研究结果表明:
     1.日光温室墙体越厚储热保温效果越好,当达到当地的最佳厚度时,再通过增加墙体厚度来增加保温效果不明显。西北地区四省区各观测点的日光温室土质墙体最佳厚度分别为陕西杨凌地区1.0 m,甘肃白银地区1.3 m,宁银川地区1.5 m,新疆塔城地区1.4 m。
     2.对于杨凌地区1.0 m厚墙体,墙体内距内外表面越近温度变化越剧烈,根据室内外气温周期性变化作用对墙体内部温度的影响,墙体可以分为随室内气温变化的内层,厚度为50 cm,中间15 cm厚稳定层,和随室外气温周期性变化的厚度为35 cm外层。随着室温低—高—低周期性变化,墙体内部与室温的等温点相应的进行着外移—内移—外移的周期性变化,移动最大距离距内表面50 cm。50 cm厚墙体内层是对温室环境贡献最大储热和放热层。
     3.晴天墙体内表面放热量小于吸热量,占24.52%,外表面放热量大于吸热量,吸热占放热的60.12%,总吸热量是放热量的51.07%,阴天墙体内外表面吸热量均小于放热量,吸热量分别占放热量的43.51%,74.86%,总吸热量是放热量的69.51%,30.49%的放热量来源于墙体温度降低,内能转化。内表面的吸热和放热对维持室内温度起着关键性作用。同时,墙体外表面的吸热时段较长,约8 h,对阻止热量的向外散失有一定的作用。
Sorlar greenhouse was developed rapidly because there were lots of advantages such as abundant light-heat resources, wide land resources and energy-heat resources, which were beneficial to develop facility agriculture in Northwest China. Nowadays, earth-wall was used as cladding structure of greenhouse especially in Northwest China and accounted for more than 95%. It was supposed to be the mainstream for farmers to build greenhouse with low-cost earth-wall because of relative backward economy in the future decade years. More work had been concentrated in selecting wall-materials and its integration mode, less research was done on the optimum earth-wall thickness of the greenhouse, therefore, there has not been standard in this field until now. To find out the optimum earth-wall thickness, research on its thermal-insulation performance and heat-transfer mechanism, which were significant to establish a standard for greenhouse and guide building greenhouse in Northwest China.
     The experiment tested the surrounding temperature of earth-wall greenhouse with different thickness but wide application, which located in the Tacheng city of Xinjiang Uyghur autonomous region, Yangling of Shaanxi province, Baiyin of Gansu province and Yinchuan city of Ningxia hui autonomous. The optimum thickness of the greenhouse in each region was determined by comparative analysis, and then took Yangling region as an example to study dynamic changes of temperature and heat gain-loss internal the greenhouse. The results showed as follows:
     (1) It showed that the greenhouse had better thermal insulation performance with thicker earth-wall, and when the thickness reached the optimum of the region, there was no significance for the performance reinforcement by adding the wall thickness. The optimum earth-wall thickness of the greenhouse were 1.0 m in Yangling region, 1.3 m in Baiyin region, 1.5 m in Yinchuan region and 1.4 m in Tacheng region.
     (2) The study in Yangling region showed that, the nearer from the wall surface, the more violently the temperature fluctuated internal the greenhouse. Based on the influence of the inner and outer temperature cyclical change to the internal temperature of wall, it was divided into three parts, internal layer, middle layer, external layer. The internal layer temperature varyed with the interior air temperature, which thickness was 50 cm, The steady middle layer was 15 cm, and the external layer was 35 cm, which temperature varyed with the outer air temperature.As the greenhouse temperature showed low-high-low periodic change, isothermal points in the wall and greenhouse correspondingly showed outward-inward-outward periodic change, and the maximum distance from the inner wall surface was 50 cm. The inner layer of the wall contributed most to the thermal storage and release of the greenhouse.
     (3) In clear days, released thermal energy of the wall inner surface was less than absorpted thermal energy, the released thermal energy of the wall inner surface occupied 24.5% of absorpted thermal energy. It was opposite for the outer surface of the wall, the released energy accounted for 60.12% of the absorpted energy. And the total released energy was 51.07% of the total absorpted energy. The absorpted energy were more than the released energy both inner and outer surface in overcast day, absorpted thermal energy of the wall inner surface occupy 43.51%, 74.86% of released thermal energy respectively, and the total absorpted energy was 69.50% of the total released energy, 30.49% of the released energy came from the temperature decrease or inner energy transferring of the wall. It played a role of thermal insulation by inner wall absorpted and released thermal. The endothermic period of the outer surface was longer than that of inner surface, and effectively prevented inner layer energy flowing out, it was about 8 hours.
引文
[1]陆大道.中国气候资源与可持续发展[M].北京:科学出版社,2007.
    [2]邹志荣,杨震超.西北荒漠化地带发展设施园艺的意义和作用[J].华中农业大学学报,2004(35):26-28.
    [3]贺志军,袁海生,郑太波,等.西北光照资源状况对日光温室蔬菜生产的影响[J].现代种业, 2003,(05):12-13.
    [4]于海业,马成林,陈晓光.发达国家温室设施自动化研究的现状[J]农业工程学报,1997,13 (增):253-257.
    [5] H.F.M. ten Berge; M.K. van Ittersum; W.A.H. Rossing, et al. Farming options for the Netherlands exploredby multi-objective modelling[J]. Eur J Agron, 2000, 13 (2-3): 263 -277.
    [6]张英,穆楠,张雪清.国外设施农业的发展现状与趋势[J].农业与技术,2008,28(2):123-125.
    [7] Engel R D. Using simulation to optimize solar greenhouse design. In: Proceedings of the 17th annual symposium on Simulation, NJ, USA, 1984: 119-139.
    [8] Tiwari G N, Dhiman N K. Design and optimization of a wintergreenhouse for the Len-Type climate. Energy Conversion andManagement, 1986, 26(1): 71-78.
    [9] Tiwari G N, Dubey A K, Goyal R K. Analytical study of an activewinter greenhouse. Energy, 1997, 22(4): 389-392.
    [10] Kendirli B. Structural analysis of greenhouses: A case study inTurkey. Building and Environment, 2006, 41: 864-871.
    [11]许锦峰,吴志敏,张海遐,等.自保温墙体技术在节能工程中的应用[J].建设科技,2008(18):12-16.
    [12]张乃明.设施农业理论与实践[M].北京:化学工业出版社,2006:1-17.
    [13]安国民,徐世艳,赵化春.国外设施农业现状与发展趋势[J] .现代化农业,2004 (12 ,tol305):34 -36.
    [14] Von Elsner B, Briassoulis D, Waaijenberg D, et al. Review ofStructural and Functional Characteristics of Greenhouses in European Union Countries: Part I, Design Requirements. Journal of Agricultural Engineering Research, 2000, 75(1): 1-16.
    [15]周长吉,杨振声.准确统一“日光温室”定义的商榷[J].农业工程学报,2002,18(6):200-202.
    [16]王耀林.设施园艺工程技术[M].河南:河南科学技术出版社,2000.
    [17]郦伟,董仁杰,汤楚宇,等.日光温室的热环境理论模型[J].农业工程学报,1997,13(2)160-163
    [18]杨培林,郭晶,马振明.国内外设施农业的现状[J].农机化研究,2003(1):30-31.
    [19]高志奎,武占会,任士福,等.经济型节能日光温室的设计与温光性能田[J].河北农业大学学报,2004 ( 9): 27-30.
    [20]张福墁.农业现代化与我国设施园艺工程[J].农业工程学报,2002(增):1-3.
    [21]农业部全国农业技术推广总站.日光温室高效节能蔬菜栽培[M].北京:农村读物出版社,1993.
    [22]张真和.高效节能型日光温室的开发进展及问题讨论[J].中国蔬菜,1992(9):1-3,13.
    [23]周长吉.日光温室结构优化设计及综合配套技术(四)日光温室围护结构—墙体的保温性能.农村实用工程技术,1999,(4):7.
    [24]刘建,周长吉.日光温室结构优化的研究进展与发展方向[J].内蒙古农业大学学报,2007,28 (3):264-268.
    [25]陈青云.日光温室的实践与理论[J].上海交通大学学报(农业科学版),2008,26(5):343-349.
    [26]孙全敏,袁万良.陕西省光照资源分区与日光温室产业化开发对策[J].陕西农业科学,1998(5):29-31.
    [27]白岗桂,等.安塞县大棚蔬菜生产现状与发展对策[J].水土保持研究,1996,3(2):143-144.
    [28]杜社妮,白岗栓,延安日光温室蔬菜生产现状与发展对策[J]水土保持研究. 2000,7 (2):147-149.
    [29]西北型日光温室研究初显成效(2003-4-16): http://www.vertinfo.com/agrionline/newsdetail. asp?id=3477.
    [30]左心平,冯志丽.谈谈我省高校日光温室的发展[J].甘肃农业,1996:(12)总125:30-32.
    [31]宋明军.甘肃省日光温室建设中存在的问题及对策浅析[J].甘肃科技, 2005,(01):14-16.
    [32]宋明军.日光温室新型外覆盖保温材料的研制及性能研究[D].甘肃:甘肃农业大学,2005.
    [33]高艳明.宁夏不同类型日光温室温光性能观测与评价[D].北进:中国农业大学,2006.
    [34]王岩平,吐鲁番市设施农业发展现状及对策.农业工程学报[J],2005,12 (增):227-228.
    [35]王宏丽,邹志荣,周长吉,等.西北地区发展设施园艺的现状与对策[J].上海交通大学学报农业科学版,2008,26 (5):377-381.
    [36]伊鸿平,赵永生,等.新疆设施园艺发展现状、问题及对策[J].农业工程学报,2005,21 (增):218-220.
    [37]周长吉.“西北型”日光温室的结构研究[J]新疆农机化,2005,(6):37-38.
    [38]白义奎,王铁良,李天来,等.缀铝箔聚苯板空心墙体保温性能理论研究[J].农业工程学报,2003:19(3)190-195.
    [39]宋明军,常涛.西北“XN-G1”集雨型日光温室设计[J].农村实用工程技术,2005(3):28-29.
    [40]吕国华,王洪札,史为民,等.新疆节能日光温室发展中的问题[J].石河子农学学报,1996,3(35):5-9.
    [41]王晓冬.新疆新型高效节能日光温室的研制和性能分析[D].北京:中国农业大学,2007.
    [42]秦家海,沈文田.河西走廊二代日光温室建造技术[J].农业科技开发,2006(1):10-11.
    [43] Bai yikuai, Liu wenhe, Wang tieliang, et al. Experimental research on environment and heat preservation effect of solar greenhouse: type LiaoshenⅠ[J].农业工程学报. 2003 ,19(5):191~196.
    [44]亢树华,房思强,戴雅东.节能型日光温室墙体材料及结构的研究[J].中国蔬菜,1992,(6):1-5.
    [45]潘锦泉.日光温室优化设计及综合配套技术(一).农村实用工程技术,1999,(1):7.
    [46] Wei Chen , Wei Liu . Numerical and experimental analysis of convection heat transfer in passive solar heating room with greenhouseand heat storage[J]. Solar Energy, 2004, 76: 623-633.
    [47]陈友根.大跨度节能型日光温室光热环境模型研究[D].新疆:石河子大学,2002.
    [48]安志信,张福墁,等.蔬菜节能日光温室的建造及栽培技术[M].天津:科学技术出版社,1994.
    [49]马占元.塑料温室生产实用技术大全[M].石家庄:河北科技出版社,1997.
    [50] Chen Duansheng .Theory and practice of energy-saving solar greenhouse in China [J] Transactions of the CSAE,2001,17(1),22 -25.
    [51]张真和,李建伟.我国设施蔬菜产业的发展态势及可持续发展对策探讨[J].沈阳农业大学学报,2000,31 (1):4-8.
    [52]张真和.高效节能日光温室园艺[M]北京:中国农业出版社,1996.
    [53]郭右弼.标准化节能日光温室的建造[J].西北园艺,1997(4):33.
    [54]徐刚毅.不同保温墙体日光温室的性能[J].中国蔬菜,2004,(06):64.
    [55]李亚敏,商庆芳,田丰存,等.我国设施农业的现状及发展趋势[J].河北农业科学,2007,11 (4):120 - 121, 124.
    [56]张立芸,新材料墙体日光温室的实验与研究[D].北进:中国农业大学,2007.
    [57]郭慧卿,李振海,崔引安,等.日光温室北墙构造与室内温度环境的关系[J].沈阳农业大学学报,1995 ,26 (2):193-199.
    [58]李振海,郭慧卿.日光温室几何参数与室内温度环境的关系[J]沈阳农业大学学报,1995,26(1): 58- 63.
    [59]宋俊果.日光温室热环境分析指标与建筑参数的研究[D].北京:论文中国农业大学,1997.
    [60]梁建龙.阿拉尔垦区日光温室墙体的保温设计[J].塔里木农垦大学学报,2002,14 (1):29-30.
    [61]陈秋全,杨光勇,刘及东.北方高寒地区高效节能型日光温室优化设计[J].内蒙古民族大学学报,2003,18(3):257-259.
    [62]陈端生.节能型日光温室建筑与环境研究进展[J].农业工程学报,1994(3):123-129.
    [63]陈端生,郑海山,刘步洲.日光温室气象环境综合研究Ⅰ墙体、覆盖物热效应研究初报[J].农业工程学报,1990(6):77-81.
    [64]陈端生.日光温室气象环境综合研究(三) [J].农业工程学报,1992,8(4):78-82.
    [65]李海涛,王明喜,林利龙,等.高寒丘陵地区机建厚墙体日光温室保温性能研究[J] .温室园艺,2007.
    [66]闫增峰.生土民居室内热湿环境研究[D].陕西:西安建筑科技大学比,2003.
    [67]康玉范.应适时大力推动自保温墙体技术[J].建设科技,2008(18):23-26,27.
    [68]佟国红,王铁良,孟少春,等.日光温室建筑参数的确定[J].新农业,2003,(5):54.
    [69]佟国红,王铁良,白义奎,等.日光温室墙体传热及节能分析[J].农业系统科学与综合研究,2003(19):101-105.
    [70]佟国红,王铁良,白义奎,等.日光温室节能墙体的选择日光温室节能墙体的选择,研究与试验,2003(4,总110):14-16.
    [71]佟国红,王铁良,白义奎,等.日光温室墙体传热特性的研究[J].农业工程学报,2003,19(3):186-189.
    [72]赵岽,王铁良,山口智冶,等.辽沈Ⅳ型日光温室墙体保温性能试验研究[J].节能技术,2005,23(总133,5):390-391,429.
    [73]柴立龙,马承伟,籍秀红,等.北京地区日光温室节能材料使用现状及性能分析[J].农机化研究,2007(8):17-21.
    [74]李小芳,陈青云.墙体材料及其组合对日光温室墙体保温性能影响[J].中国生态农业学报,2006,14(4): 185~189.
    [75]张立芸,徐刚毅,马承伟,等.日光温室新型墙体结构性能分析[J].沈阳农业大学学报,2006,37(3):459-462.
    [76]李振海,郭慧卿.日光温室几何参数与室内温度环境的关系[J].沈阳农业大学学报,1995,26(1): 58- 63.
    [77]孟少春,王铁良.工厂化高效农业示范工程—辽沈Ⅰ型节能日光温室(二)[J].新农业, 1998,(11):47-49.
    [78]白义奎,王铁良,姜传军,等.外墙聚苯板复合墙体在日光温室中的应用[J].房材与应用,2002,30(01):27-29.
    [79]白义奎,王铁良,李天来,等.缀铝箔聚苯板空心墙体保温性能理论研究[J].农业工程学报, 2003,19(03):190-194.
    [80]白义奎,王铁良,刘文合.缀铝箔聚苯板空心墙体热绝缘系数分析[J].新型建筑材料,2003(6):41-43.
    [81]金伟良,叶甲淳,严家,等.新型墙体材料节能建筑热工性能测试与分析[J].新型建筑材料,2002, (2):16-18.
    [82]白义奎,王铁良,佟国红,等。东北型节能日光温室——辽沈Ⅰ型日光温室节能设计试验研究[J],节能技术,2002,20,总111(1):21-23.
    [83]王宏丽,邹志荣,陈红武,等.温室中应用相变储热技术研究进展[J].农业工程学报,2008,24(6): 304-307.
    [84]王顺利.墙体节能中的相变材料蓄热储能技术[J].工程与技术,2008(12):11.
    [85]郭世荣.江苏省设施蔬菜发展现状及持续发展对策[J].内蒙古农业大学学报,2007,28(3):269-273.
    [86]张立明,邹志荣,陆国东,等.温室墙体复合相变材料的制备与有限元分析[J].农机化研究,2008(4):158-160.
    [87]张立明.温室墙体复合相变材料的制备与蓄热机理研究[D].陕西:西北农林科技大学,2008.
    [88]张力芸,徐刚毅,马承伟,等.日光温室新型墙体结构性能分析[J].沈阳农业大学学报,2006,37(3): 459-462.
    [89]马承伟,卜云龙,籍秀红,等.日光温室墙体夜间放热量计算与保温储热性评价方法的研究[J].上海交通大学学报(自然科学版). 2008,26(5):411-415.
    [90] Meng Shaochun, The Comparison and analysis of energy consumption in conserving energy sun - light greenhouse and ordinary sun-light greenhouse, NEAAD, 98, Liaoning Nationality Press, China , 1998 , 22-25.
    [91] Jolliet O, Horticern. an improved ststic model for predicting the energy consumption of a greenhouse [J].Agricultural and Forest Meteorology, 1991, 55: 265-294.
    [92] Garzoli KA.. Simple greenhouse climate model [J]. Act a Horticulture , 1989, 174, 393-401.
    [93] Von Eisner B,Briassoulis D,Waaijenberd D,et al. Review of structural and functional characteristics of greenhouses in European Union countries, Part I:design requirements, PartⅡ: typical design[J].J.agri.Engng Res. 2000, 75 :1-16and111-126 .
    [94] K C Ting. From greenhouse to CEPPS to Phyromarion. ACESYS III Forum, From.Protected Cultivation to Phytoma-tion[J]. New Jersey, USA. July23, 1999,19 :111-118 .
    [95] Fuller Rj, Meyer CP, Sale PJM. Validation of a dynamic model for predicting energy use in greenhouse [J]. agric. Energy Res, 1987, 38:1-14 .
    [96] Nijskens J. Deltour J, Coutisse s, et a1. Heat transfer through cover ing ,materials of greenhouses[J] .Agricultural and Forest Meteorology. 1984, 33,193-214.
    [97]杨艳超,苏亚欣.复合墙体传热温度分布的数值模拟[J].能源与环境,2005(4):21-24.
    [98]杨艳超.不同结构符合墙体的传热特性[J].能源与环境,2005(3):38-41.
    [99]李亚敏,商庆芳,田丰存,等.我国设施农业的现状及发展趋势[J].北方园艺,2008(3) :90-92.
    [100]杨志强,周士冲,陈磊.我国设施农业的发展分析[J].农机化研究,2006(12) :17-19.
    [101]彦世霞.我国设施农业现状分析[J].北方园艺,2001(6):4-5.
    [102]王丽艳,邱立春,郭树国.我国温室发展现状与对策[J].农机化研究,2008(10):207-209
    [103]尹鸿平,赵永生.新疆设施园艺发展现状、问题及对策[J].农业工程学报,2005,21(增):218-220.
    [104]李天雷.论我国日光温室生产发展的制约因素与战略性调整[J].农业工程学报,2003,19 (增):75-78.
    [105]何洁,张和广.固原市设施农业发展现状及对策[J].内蒙古农业科技,2009(1):17-18.
    [106]李天雷.我国日光温室产业发展现状与前景[J].沈阳农业大学学报,2005,36(2):131-138.
    [107]全国农业和农村经济发展第十一个五年规[J].山西农业,2006(19):4-18.
    [108]黄文华,夏文顶,林燕金.我国发展农业标准化的瓶颈与对策[J].发展研究,2007,(09):33-35.
    [109]杨发荣,秦春林.发展甘肃标准化农业的对策建议[J].甘肃科技,2005,(11):4-6.
    [110]朱利群,卞新民.我国农业标准化存在问题及改进建议[J].南京农业大学学报(社会科学版),2003,3(3):51-56.
    [111]周长吉.现代温室工程[M].北京:化学工业出版社2003.
    [112]周长吉.温室工程设计手册[M].北京:中国农业出版社,2007.
    [113]果海凤.相变蓄热技术应用于温室大棚中的传热和节能特性研究[D].北京:北京工业大学, 2008 .
    [114]严启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社,1996.
    [115]陈青云,吴毅明.计算机在建筑环境分析中的应用[M].北京:北京大学出版社,1994.
    [116] Kusuda T.NBSLD,The computer program for heating and cooling loads in buildings[J].NBS Building Science Series 69,U.S.Depertment of commerce, Washington, D.C.1979,69(7):152-154
    [117] Kusuda T.Thermal response factors for multi-layer structures of various heat conduction systems[J]. ASHRAE Transactions,1969,75(Ⅰ):264-270
    [118]刘金祥.反应系数法求解墙体不稳定传热的分析讨论[J].广西工学院学报,1999,10(1):14-19.
    [119]何嘉鹏,徐立明,王东芳.墙体传热反应系数的计算[J].东南大学学报,1998,28(1):136-140
    [120]贺嘉鹏,刘焕成,方贤德,等.墙体不稳定传热反应系数法中反应系数项的研究[J].应用科学学报,1999,17(1):92-96
    [121]陈友明,王盛卫.建筑维护结构非稳定传热分析新方法[M].北京:科学出版社,2004.
    [122]王沫然. MATLAB与科学(计算第二版) [M].北京:电子工业出版社,2005.
    [123]谭良斌.西部乡村生土民居再生设计研究[D].陕西:西安建筑科技大学,2007
    [124]董瑞.沙荒地日光温室墙体传热性能研究[D].山东:山东农业大学,2007
    [125]籍秀红.日光温室墙体材料保温蓄热性能的测试与研究[D].北京:中国农业大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700