用户名: 密码: 验证码:
高速磁浮列车推力波动及其抑制技术的仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速磁浮列车是人类解决交通问题的一大重要发明。在高速条件下磁浮列车稳态运行的稳定性和舒适性跟其驱动系统的推力波动有很大关系。论文介绍了高速磁浮列车推力波动抑制技术的研究现状,对直线电机电磁推力波动问题进行了广泛的调查研究,在深入分析引起高速磁浮列车推力波动各种因素的基础上,总结了目前对推力波动的各种抑制技术和方法。
     论文根据电机电磁场相关理论,利用麦克斯韦方程组对高速磁浮列车的电磁场分布进行了研究,说明了利用虚位移法可以对电机电磁力进行更精确的有限元计算。
     论文使用Maxwell 2D建立了高速磁浮列车悬浮电磁铁组合的等极距模型,对仿真计算出来的电磁场和推力波形进行了分析,气隙中央磁感应强度在X、Y方向上的分布都存在近似6次波动,并且推力也主要存在6倍频(基于定子电流频率)波动,波动大小约为43%,波动很大,必须对推力波动进行抑制。
     论文先基于结构优化进行抑制推力波动的仿真分析。根据电磁铁组合模型,建立了单个悬浮电磁铁模型,仿真结果证明等极距时单个电磁铁模型可以代替电磁铁组合模型来进行推力波动研究,并且可以有效减小计算量和时间;通过部分性能优化进行参数化仿真研究,分别分析了功率角、气隙、定子电流、动子电流、定子齿槽和动子齿槽对推力的影响,仿真结果发现这些参数与推力之间的关系,并且单纯改变槽宽、槽高及齿槽形状并不能抑制该模型推力波动,而定子闭口槽可以有效抑制推力波动,推力波动仅为5.34%,但它工艺实现复杂。
     论文基于结构优化仿真时还根据波动抑制理论建立了不等极距模型。通过对定子取不同极距时的悬浮电磁铁组合模型的仿真,结果证明不等极距可以有效抑制推力波动,并且定子极距为258mm、动子极距为266.5mm的模型推力波动最小,仅为3.36%。
     论文还基于定子电流谐波进行抑制推力波动的仿真分析。建立了给定子电流加载特定次谐波的模型,通过对比仿真结果,发现加载7次谐波时推力波动最小,仅为33.8%。
     因此,仿真分析结果表明结构优化时不等极距方法可以更有效抑制推力波动。
The electromagnetic high speed Maglev is an important invention. When it moves steadily in high speed, its stability and amenity can be affected by the thrust of driving system. The paper introduces the study actuality of restraining technology of thrust fluctuation, investigates sweepingly the problem of thrust fluctuation, and analyses deeply the factors of thrust fluctuation of high speed Maglev. Then this paper sums up the technology and methods which can restrain thrust fluctuation.
     The paper uses Maxwell Equations to study the electromagnetic field of the electromagnetic high speed Maglev based on the theory of the electromagnetic field in the motor. It explains that the void displecement method can use finite element method to calculate the motor force accurately.
     The paper uses Maxwell 2D to build an equality polar distance model of the combination of suspend electromagnetism steel, then analyses electromagnetic field and thrust.The results indicate that magnetic induction of air gap has almost six times fluctuation in the X and Y aspect, and the thrust has also six times frequency compared to stator current frequency. The thrust fluctuation is about 43%, which is too big so that we must restrain thrust fluctuation.
     The paper analyses how it can restrain thrust fluctuation based on optimum structure. The paper builds single suspend electromagnetism steel of high speed Maglev. The simulation results proves that single electromagnetism steel model can replace the combination model of selectromagnetism steel to study the thrust fluctuation, and minish the quantitative and time of calculate.It simulates on parameters by optimum part capability. It researches the influnce that how power angle, air gap, stator current, rotor current, stator slot, and rotor slot affect the thrust. The simulation results find that these parameters have the relationship with the thrust of the model. It only changes the wideth, altitude and shape can not restrain thrust fluctuation. Stator without slots can restrain thrust fluctuation availably, and thrust fluctuation is only 5.34%, but it has difficulty to come true.
     The paper also build a different polar distance model based on optimum structure. It analyses models with various stator distance The results prove that different polar distance can restrain thrust fluctuation. The model whose stator polar distance is 258mm, and rotor polar distance is 266.5mm, has the least thrust fluctuation, and it is only 3.36%.
     The paper analyses how it can restrain thrust fluctuation based on harmonic waves of stator current. It builds equality polar distance models of the combination of electromagnetism steel, whose stator current is loaded with especial times harmonic waves. Comparing these simulation results with each other, it can find that when loading current with seven times harmonic wave the model has least thrust fluctuation, and it is 33.8%.
     Therefore, simulation results prove that the method of different polar distance in optimum structure could restrain the thrust fluctuation efficiently.
引文
[1]严陆光.关于我国高速磁悬浮列车发展战略的思考[J].中国工程科学,2002,4(12):40~46
    [2]吴祥明,常文森,刘万明.上海高速磁浮列车及磁浮技术发展刍议[J].综合运输,2005,1:28~31
    [3]叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2000
    [4]何凌云.磁悬浮系统的自抗扰控制[D].长沙:国防科学技术大学硕士学位论文,2006
    [5]白木,子茵.磁悬浮列车开创轨道交通新时代[J].城市公共交通,2002,4:44~46
    [6]程建峰,苏晓峰.磁悬浮列车的发展及应用[J].铁道车辆,2003,41(11):13~17
    [7]张盛锋.永磁直线同步电动机关键技术的研究[D].沈阳:沈阳工业大学硕士学位论文,2007
    [8] Hendershot J J R,Miller.Design of brushless permagnent-magnet motors[M]. Oxford:Magna Physics Publishing & Clarerdon Press,1994
    [9]郭红,贾正春,詹琼华,马志云.永磁同步直线电机电磁推力的谐波分量[J].微电机,2003,36(3):14~17
    [10]程树康,葛新,高宏伟,王宗培.分数槽无刷直流电动机齿槽定位力矩的研究[J]:中国电机工程学报,2008,28(21):107~111
    [11]赵朝会,李遂亮,王新威.斜槽宽带及非均匀气隙对永磁同步发电机性能的影响[J].河南农业大学学报,2008,42(3):323~326
    [12]夏加宽,董婷,王贵子.抑制永磁直线电机推力波动的电流补偿控制策略[J].沈阳工业大学学报,2006,28(4):379~383
    [13]刘爱民,张锦辉,高君.直线电机的推力波动及抑制方法[J].沈阳工业大学学报,2003,25(6):482~485
    [14]汪旭东,郭欣欣,王飞,王艳.逆变器供电永磁直线同步电动机谐波分析[J].微电机.2007,40(7):10~12
    [15] In-Soung Jung,Sang-Baeck Yoon,Jang-Ho Shim,Dong-Seok Hyun.Analysis of Forces in a Short Primary Type and a Short Secondary Type Permanent Magnet Linear Synchronous Motor[C].IEEE Transactions on Energy Conversion,Vol.14, No.4,December 1999,1265~1270
    [16] Dong-Yeup Lee,Gyu-Tak Kim.Design of Thrust Ripple Minimization by Equivalent Magnetizing Current Considering Slot Effect[J].IEEE Transactions on Magnetics,Vol.42,No.4,April 2006,1367~1370
    [17]潘开林.永磁直线电机的驱动特性理论及推力波动优化设计研究[D].浙江:浙江大学博士学位论文,2003
    [18]卢琴芬,叶云岳.混合励磁直线同步电动机的磁场与推力[J]:中国电机工程学报,2005,25(10):128~130
    [19]蒋莉莉.永磁直线同步电动机动态性能研究[D].沈阳:沈阳工业大学硕士学位论文,2007
    [20]张晴.直线电机直接驱动技术在高速精密加工中的应用[J].机电工程技术,2006,35(6):45~46
    [21]张宏.直线感应电动机端部效应的研究[J].沈阳工程学院学报,2008,4(3):230~233
    [22]胡氢.永磁直线电机磁场研究现状及展望[J].煤矿机械,2008,29(9):16~18
    [23]王淑红,熊光熤.永磁直线同步电动机气隙磁场及磁阻力分析[J].煤炭学报,2006,31(6):824~828
    [24]杨玉波,王秀和,丁婷婷.一种削弱永磁同步电动机齿槽转矩的方法[J].电机与控制学报,2008,12(5):520~523
    [25]马西奎.电磁场理论及应用[M].西安:西安交通大学出版社,2000
    [26]胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社,1982
    [27]田武刚.高速磁浮列车电磁场分布的仿真与测量[D].长沙:国防科学技术大学硕士论文,2003
    [28]陈丕璋,严烈通,姚若萍.电机电磁场理论与计算[M].北京:科学出版社,1986
    [29]王秉中.计算电磁学[M].北京:科学出版社,2002
    [30]汤蕴.电机内的电磁场[M].北京:科学出版社,1981
    [31]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005
    [32] S.A.纳斯尔,I.波尔达.直线电机[M].北京:科学出版社,1982
    [33] J.Meins,L.Miller.The high speed MAGLEV transportion system transrapid[J].IEEE Trans on Magnetics,1988,24(2):808~811
    [34]陈宇明.高速磁悬浮列车用常导直线同步电机的研究[D].北京:中国科学院电工研究所硕士学位论文
    [35]吴祥明.磁浮列车[M].上海:上海科学技术出版社,2003
    [36]杨光,唐祯敏.高速磁浮列车运行控制系统体系结构研究[J].中国铁道科学,2006,27(6):68~72
    [37]卢琴芬.直线同步电机的特性研究[D].浙江:浙江大学博士学位论文,2005
    [38]刘少克.德国磁悬浮列车TR07推进和制动系统[J].机电车传动,2000,3:10~12
    [39]胡兵,陶生桂,康劲松.高速磁浮列车牵引供电系统[J].电力机车与城轨车辆,2003,26(4):30~32
    [40]刘华清.德国磁悬浮列车[M].成都:电子科技大学出版社,1999
    [41]艾武,张与厚,张颖,陈幼平,金振荣.基于FAHP的永磁直线同步电动机推力波动分析与实验研究[J].微电机,2007,40(5):10~14
    [42] Attractive type electromagnet device for magnetic levitation running vehicles,US4123976
    [43] Magnetic levitation configuration incorporating:levitation, guidance and linear synchronous motor,US5253592
    [44] Masaya Inoue.An Approach to a Suitable Stator Length for Minimizing the Detent Force of Permanent Magnet Linear Synchronous Motors[J].IEEE Transactions on Magnetics,Vol.36,No.4,July 2000,1890~1893
    [45]孙雨萍,李光友.长定子直线同步电动机抑制推力脉动的新方法及及机理分析[J].电工技术学报,2006,21(8):80~82
    [46]李庆雷,王先逵,吴丹,刘成颖,石忠东.永磁同步直线电机推力波动分析及改善措施[J].清华大学学报.2000,Vol.40,No.5,33~36
    [47]陈棣湘,潘孟春,罗飞路.常导型高速磁悬浮列车中悬浮电磁铁的程序化优化设计[J].机车电动传动,2006,2:27~29
    [48] Ki-Chae Lim,Joon-Keun Woo,Gyu-Hong Kang,Jung-Pyo Hong,Gyu-Tak Kim. Detent Force Minimization Techniques in Permanent Magnet Linear Synchronous Motors[J].IEEE Transactions on Magnetics,Vol.38,No.2,March 2002,1157~1160
    [49] Seok-Myeong Jang,Sung-Ho Lee,In-Ki Yoon.Design Criteria for Detent Force Reduction of Permanent-Magnet Linear Synchronous Motors With Halbach Array[J].IEEE Transactions on Magnetics,Vol.38,No.5,September 2002,3261~ 3263
    [50] Qian Zhang, Fei Lin, Xiaojie You and Trillion Q. Zheng. A Novel Stator Section Crossing Method of Long Stator Linear Synchronous Motor for Maglev Vehicles[C]. IPEMC 2006:1~5
    [51] Cui Jiefan, Wu Hui, Sun Qing, Zhang Yi, et al. Research on Restraining Thrust Force Ripple for Permanent Magnet Linear Synchronous Motor[C] IPEMC 2006:449~452
    [52]李发海,陈汤铭,郑逢时,张麟征,朱东起[M].电机学.北京:科学出版社,1991
    [53]潘孟春.高速磁浮列车波动特性及其抑制技术研究[D].长沙:国防科学技术大学,2009
    [54]顾绳谷.电机及拖动基础[M].北京:机械工业出版社,2003
    [55]胡兵,陶生桂,康劲松.高速磁浮列车牵引供电系统[J] .电力机车与城轨车辆,2003,26(4):30~32
    [56]张辉.磁浮列车电力传动牵引控制及谐波分析[D].上海:上海交通大学硕士学位论文,2006
    [57]王建元,俞红祥,纪延超.一种新型三相逆变器及其调制技术的研究[J].电力电子技术,2003,37(4):7~9
    [58]李方园.变频器自动化工程实践[M].北京:电子工业出版社,2007
    [59]费万民,阮新波,张艳莉,居荣.多电平逆变器特定谐波消除脉宽调制方法的初值问题研究[J].中国电机工程学报,2007,27(13):87~92
    [60]徐天成,钱冬宁,张胜付.信号与系统[M].哈尔滨:哈尔滨工程大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700