用户名: 密码: 验证码:
张弦双层网壳结构环向拉索预应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力网壳结构已成为现代钢结构工程中最具有发展潜力的结构体系之一,钢拉索是此种结构的核心构件。通过张拉预应力索在结构中引入初始应力,扩大了构件的弹性工作范围,提高结构的承载力和刚度,使结构产生与荷载作用相反的变形,可以改善结构的受力性能。拉索引入的初始应力值的确定是非常重要的。但在进行结构分析时,拉索的预拉力值不易控制,本文就如何有效地控制拉索预拉力值做了以下研究。
     分别用等效荷载法、初始应变法和降温法对网壳结构的拉索预应力值进行了分析研究,提出了等效荷载法忽略拉索单元刚度矩阵对结构整体刚度矩阵的贡献,不能有效的反映结构的真实受力情况;初始应变法和降温法分析网壳结构时,拉索单元和网壳杆件始终作为整体进行非线性分析,能真实反映结构的受力情况。预应力网壳结构应用初始应变法和降温法分析拉索预拉力值是比较适合的。
     结合张弦双层预应力网壳结构的实际工程,采用初始应变法、降温法对拉索预拉力值进行了分析研究。采用初始应变法时,只要改变拉索单元中以实常数定义的初始应变量就可以使索内力值趋近设计预拉力值;采用降温法确定拉索预拉力值时,计算精度不如初始应变法高,且在受外荷载作用时,分析过程比较复杂。两种方法比较用初始应变法来确定预拉力控制值效果更好。
     指出初始应变法确定拉索预拉力控制值仍存在不足之处,主要体现在计算量大,循环迭代次数较多。为了解决减少计算量和迭代次数的问题,本文提出了一种新的控制拉索预拉力值的方法,即改进的初始应变法。运用数值分析的方法,结合史蒂芬森(Steffensen)迭代法将初始应变法的迭代公式改进,给出了改进后的初始应变法的迭代公式,并运用牛顿差值公式,近似模拟出一条简单的拉索索内力与索应变关系函数,并代入迭代公式,可以得出满足工程精度的预拉力控制值。与未改进的初始应变法作分析比较,改进方法可以实现确定拉索预拉力控制值的方法从电算向手算转移,而且这方法有更好的收敛性,运算效率更高。
Nowadays the prestressed lattice steel structure is one of the most popular and potential structures, and in this kind of structure cable is the important construction member. After prestressed lattice applied in structure, prestressing could improve its flexible scope, increase its capacity and stiffness, cause a reverse deformation, and improve its stress state. Determination of the prestress value applied by lattice is very important. Carrying out structural analysis, the value of pre-tension lattice is often difficult to determine, revolving how to correctly determine the value of pre-tension lattice, following works are put forward.
     Several methods of determination the prestressed value are researched, the paper puts forward that using the equivalent forces method lattice element stiffness matrix is ignored, the station of the real force on the structure can not be effectively reflected, that using the initial strain method and the reducing temperature method to analyze the prestressed structures, the cable unit and shell bar is always analyzed as a whole, and the whole process can be conducted by a unified non-linear analysis, the station of the real force on the structure can be truly reflected, these two methods are better methods to analyze the value of pre-tension lattice.
     Combining Large-scale Reticulated Shell Structure, value of pre-tension lattice can be determined using the initial strain method and the reducing temperature method. Using the initial strain method, as long as the real constant defined by the initial strain is changed, internal force of lattice is increasingly closer to the design value of pre-tension lattice; Using the reducing temperature method, calculation accuracy is not high comparatively. Subject to external loads, the analysis process is more complicated. Comparison of two methods,using the initial strain method to determine the value of pre-tension lattice is better.
     Some deficiency which is a large quantity of calculation and loop iterations is pointed out using the initial strain method. In order to solve the problem, a new method to determine value of pre-tension lattice is put forward, That is, improved the initial strain method. Combination of Stephenson iterative method, the iterative formula of initial strain method is improved, the new the iterative formula is put forward. Using Newton's formula, a simple Function of relationship with internal force and tension strain is analogously simulated. Putting this function into the new iterative formula, the value of pre-tension lattice meeting the engineering precision is obtained. Comparing with the results before; this method has good computational efficiency and convergence.
引文
[1]陆赐麟.预应力空间钢结构的现状和发展[J].空间结构,1995(1).
    [2]陆赐麟,尹思明,刘赐良.现代预应力钢结构[M].人民交通出版社.2006.11.
    [3]车伟娴,李丽娟.空间网壳结构的理论研究[J].山西建筑,2005.12,31(24):54-55.
    [4] Ahmed El-Sheikh. Development of a New Space Truss System. J. Construct. Steel Res.Vol.37, No.3, pp. 205-227, 1996.
    [5] Makowski, Z.S., Space structures of today and tomorrow. Third Int. Conf. on Space Structures, surrey, UK, September 1984, pp.1-8.
    [6] M.A.Crisfield. An arc length method including line searches and accelerations, International Journal of numerical methods in Engineering, V01,19,1983.
    [7]薛素铎.几种新型空间结构体系的发展[J].工业建筑,2004:20-23.
    [8]刘锡良.现代空间结构的新发展[J].科技论坛,2004:16-17.
    [9] El-Sheikh, A.I.& McConnel, R.E., Experimental study of behavior of composite space trusses. J.Struct.Engng, ASCE,119(1993) 747-766.
    [10] Wang, B. B., Cable-strut systems-revolutions in space structures, prepared for publication.
    [11]董石麟,赵阳,周岱.我国空间钢结构发展中的新技术、新结构[J].土木工程学报,1998,(6).
    [12] Wang, B. B., A new type of self-stressed equilibrium cable-strut system made of Reciprocal prisms. International Journal of Space Structures, 1996, 11(4), 351– 356.
    [13]李围. ANSYS土木工程应用实例[M].北京:中国水利水电出版社, 2005: 270-272.
    [14]王新敏. ANSYS工程结构数值分析[M].北京:人民交通出版社, 2007: 463-464.
    [15]邓华.拉索预应力空间网格结构的理论研究和优化设计[D].杭州:浙江大学,1997.
    [16]陆赐麟.预应力钢结构学科的新成就及其在我国的工程实践[J].土木工程学报,1999,32(3):1-10.
    [17] William R spiIIers,Robert Levy. Truss design:two loading conditions with prestress[J]. Journal of Structural Engineering,1984,110(4).
    [18]陆赐麟.预应力钢结构空间结构体系[J].钢结构,2000,15(3):64-67.
    [19] Ahmed El-Sheikh. Development of a new space truss system. J.Construct. Steel Res. Vol,37,No,3,pp.205-227.
    [20]张明山,董石麟,张志宏.弦支穹顶初始预应力分布的确定及稳定分析[J].空间结构,2004,10(2):8-12.
    [21]薛小强,张磊,肖小铃.用等效荷载法计算预应力钢筋混凝土连续梁[J].四川建筑,2004.6,24(3):64-65.
    [22]龚曙光. ANSYS基础应用及范例解析[M].机械工业出版社,2003.4.
    [23]文明,赵文雁. ANSYS下单层椭圆抛物面网壳自动建模方法[J].南昌大学学报(工科版),2008.6,30(2):197-200.
    [24]王建峰.预应力空间钢结构的理论分析与应用研究[D].东南大学,2003.
    [25]唐红,蔡元奇.张弦式网壳结构中的拉索预应力值设计方法的应用研究[J].武汉大学学报(工学版),2006.4,39(2):119-122.
    [26]殷志祥,郭影.拉索预应力双层柱面网壳结构布索方案研究[J],建筑钢结构进展,2005.8,7(4):47-49.
    [27]张春玉.预应力空间钢结构性能研究[D].哈尔滨工程大学,2004.
    [28]杨宗放.预应力技术在钢结构与空间结构中的应用与发展[J].建筑技术, 2001,(12):800-802.
    [29]金玉.预应力拱支网壳的理论分析与研究[D].贵州大学,2007.
    [30]黄豪,唐小兵,张开银,等.竖向预应力作用效果的数值模拟与预应力的试验研究[J].武汉理工大学学报(交通科学与工程版),2007.10,31(5):922-924.
    [31]曲晓宁.预应力空间钢结构索张拉控制算法及实验研究[D].浙江大学,2008.
    [32]郭影.拉索预应力双层柱面网壳结构的静力及稳定研究[D].辽宁工程技术大学,2004.
    [33]张翀.带拉索预应力钢结构受力全过程的计算程序编制与分析研究[D].东南大学,2005.
    [34]周臻.预应力空间网格结构的分析理论与优化设计研究[D].东南大学,2007.
    [35]徐英雷.新型拉索-单层柱面网壳结构性能研究[D].兰州理工大学,2008.
    [36]顾磊.叉筒网壳的结构形式、受力特性及预应力技术应用的研究[D].浙江大学,2000.
    [37]吴迅,李毅.一种新方法模拟空间预应力.山西建筑,2008.1,34(2):88-89.
    [38]卓新,毛海军,董石麟.预应力空间结构施工控制张力的逆向计算法[J].施工技术,2004.11,33(11):4-6.
    [39]董石麟,邓华.预应力网架结构的简介计算法及施工张拉全过程分析[J].建筑结构学报,2001.4,22(2):18-22.
    [40]邓华,董石麟.拉索预应力空间网格结构全过程设计的分析方法[J].建筑结构学报,1999,(4).
    [41]吴祖咸,高子瑁.用等效降温法模拟预应力来实现张弦梁结构找形[J].浙江工业大学学报,2008.10,36(5):587-590.
    [42]齐永胜,刘爱华,周军文.张弦梁结构预应力张拉有限元模拟方法比较[J].山西建筑,2005.5,31(9):3-4.
    [43]陈玉峰.用ANSYS进行预应力加载时解决的方法[J].四川建筑,2004,24(6):1O6~1O8.
    [44]李维滨,施骏,郭正兴.大跨度张弦桁架预应力张拉控制研究[J].东南大学学报(自然科学版),2003.9,33(5):594-596.
    [45] Saiton M. Study on mechanical characteristics of a light-weight complex structure composed of a membrane and a beam string structure[A]. In: Pro of the IASS-ACSE Int [C].New York, USA: ASCE, 1994.633 641.
    [46] Kato S, Nakazawa S, Matsue Y, etc. Active control of axial forces in beam string space frames, spatial lattice and tension structure [A]. In:Pro of the IASS-ACSE Int[C]. New York, USA: ASCE, 1994. 664-673.
    [47]顾磊,董石麟.单层叉简网壳的预应力研究[J].空间结构,2006.12,12(4):17-23.
    [48]崔晓强,郭彦林,叶可明.大跨度钢结构施工过程的结构分析方法研究[J].工程力学, 2006, 23(5):83-88.
    [49]周泓,齐永胜.初应变法模拟预应力张拉解决张弦梁结构找形问题的方法[J].江苏建筑,2005(1):26-27.
    [50] J.C.Marechal, Thermal Conductivity and Thermal Expansion Coefficients of Concrete as a Function of Temperature and Humidity.ACI Special Publications,Detroit,1872,SP-34:405-503.
    [51]孔庆凯,万鹏.钢绞线的基本力学性能及其有限元方法模拟[J].工程结构,2003.2,23(1):20-22.
    [52]李律,钱济章,李敦.基于ANSYS的预应力筋数值模拟[J].公路工程,2007.8,32(4):178-180.
    [53]李宁.拉索膨胀系数及预应力钢结构在温度作用下性能研究[D].天津大学,2006.
    [54]中国工程建设标准化协会标准.《预应力钢结构技术规程》.北京,2005.9.
    [55] John W.Leonard, Tension Structures Behavior&Analysis. McGraw-HiII, Inc., New York,1988.
    [56] American Institute of Steel Construction. Code of Standard Practice for Steel Buildings and Bridges. Chicago, Illinois. 2001
    [57] Schrefler, B.A. and S.Odorizz. A Total Lagrangian Geometrically Nonlinear Analysis of Combined Beam and Cable Structures. Computers and Structures, 1983, nl:p115-127.
    [58] Stanilav Kamet, Zuzana Kokoruduva. Nonlinear Analytical Solution for Cable Truss. [J]. Journal of Engineering Mechanics, ASCE, V01.132, No.1, pp:119-1 23. Jan 2006.
    [59]李庆扬,王能超,易大义.数值分析.清华大学出版社[M],施普林格出版社,2004.
    [60] Bruce W.R.Forde and Siegfried F.stiemer. Improved Arc-Length or thogonality Methodes for Nonlinear Finite Element Analysis. Comp. struct. Vol.
    [61] Tatemichi,L. Vibration Tests on Full-size Suspen Dome Structuer[J], International Journal of Space Structures, Vol.12,1997,217-224.
    [62] W.R.Spillers and R.Levy, Truss Design: Two Loading Conditions with Prestress [J],J.Struct.Engng ,1984,11(4),677-687.
    [63]唐建民等,拉索弯顶结构非线性分析的混合有限元增量法[J].计算力学学报,2000, 17(1),81-88.
    [64] Z.S.Makowski, Analysis, design and Construction of Braced Domes[M], Elsevier AppliedScience Publisher,1984.
    [65] Z.S.Makowski. Analysis, design and Construction of Barrel Vaults[M], Elsevier Applied Science Publisher, 1984.
    [66] Siu-Lai Chan, Gan-ping Shu, Zhi-tao Lu. Stability analysis and parametric study of pre-stressed stayed columns. Engineering Structure, 24(2002):115-24.
    [67] Zoltan Agocs , Jan Brodniansky. Cable structures. J.Construct.Steel Res. Vol.46, Nos,1-3, pp:488-286,1998.
    [68] Q.S.Li ,J.M.Chen. Nonlinear elastoplastic dynamic analysis of single-layer Reticulated shells subjected to earthquake excitation. Computers&Stuctures , 2002.
    [69]卓新,董石麟.张力松弛法及其在预应力空间结构中的应用[J].第二届全国现代结构工程学术研讨会论文集,2002.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700