用户名: 密码: 验证码:
高韧性环氧树脂灌浆修复混凝土楼板温度收缩裂缝的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土楼板温度收缩裂缝对结构的整体性、耐久性和使用功能构成了严重的危害,作为一种成因较为复杂且处理困难的建筑通病,广泛发生于各种混凝土结构中。为了保障建筑的安全和正常使用,必须从多方面采取有效的措施控制混凝土温度应力和收缩应力,预防裂缝的发生。由于温度裂缝不断变化的特点,若采用刚性灌缝材料,容易引起再次拉裂。而柔性灌缝材料可随裂缝变化,修补效果更好。所以对已经出现的裂缝,应该在恰当的时间、选用合适的高韧性环氧树脂灌浆材料和正确的化学灌浆修复技术妥善加以处理。
     本文对现浇混凝土楼板温度收缩裂缝的控制、灌浆修复和高韧性环氧树脂灌浆材料的性能和制备进行了研究,得出了以下结论:
     1.研究了混凝土收缩、徐变、结构配筋、混凝土水化热温升和约束因素对混凝土温度收缩应力的影响,提出了防止混凝土楼板裂缝的若干技术措施。同时,总结归纳化学灌浆裂缝修复的技术要点。
     2.根据热传导基本原理,考虑实际工程的边界条件和影响温度收缩裂缝的各种因素,建立混凝土楼板温度应力计算模型。经理论推导,得出了混凝土楼板温度应力计算公式。
     3.通过环氧浆材固结体的抗压、抗拉、抗折强度试验来研究聚氨酯增韧改性配方。试验研究表明:聚氨酯增韧剂对环氧树脂的增韧效果明显。聚氨酯中氨基与环氧树脂中的环氧基发生开环反应,异氰酸酯基团和环氧树脂中的羟基或开环反应生成的羟基发生反应,把聚氨酯中醚键引进到原环氧树脂交联网络中,生成了弹性固化物,增强了浆材的韧性。随着聚氨酯加入量的增加,抗压、抗拉、抗折强度有不同程度的下降,断裂伸长率随之增大。需要选择适宜的加入量,以同时满足各项力学性能的要求。当聚氨酯的加入量达到20g时,约为环氧树脂量(A剂)的20%时,抗压强度为67MPa,抗拉强度为22.4MPa,抗折粘结强度大于8.4MPa(高于砂浆本体的粘结强度),断裂伸长率达到23%,各项物理力学指标完全满足规范要求,达到配制高韧性环氧树脂灌浆材料的试验目的,是较为理想的高韧性环氧树脂灌浆材料。
     4.通过对实际工程楼板裂缝情况的调查,得出楼板裂缝产生的主要原因是混凝土收缩、季节性温差作用和应力集中。利用实验室配制的聚氨酯增韧的高韧性环氧树脂对该工程温度收缩裂缝进行化学灌浆修复,裂缝处理效果良好。为混凝土工程施工提出了一些合理的裂缝预防措施。
     5.以实际工程作为算例,通过计算地下室底板、楼板贯穿裂缝和斜裂缝的温度收缩应力,得出了温度收缩应力的数值解,为楼板裂缝的原因分析、地下室后浇带的设置提供了理论依据和有益的参考。
Temperature-shrinkage cracks in reinforced concrete slabs are harmful to structure’s integrity, durability and service function. As for the building quality problems, the reason of forming these cracks is rather complicated and difficult to deal with. In order to ensure that buildings are safe and are used properly, temperature-shrinkage stress must be controlled by effective prevention measures in many aspects. As for temperature-shrinkage cracks that have taken place on reinforced concrete slabs, due to that the temperature-shrinkage cracks have ever-changing features, if the grout is rigid the slabs are easy to crack repetitively. But the flexible gout can change with the cracks and will work better. In-time chemical grouting with the appropriate material can mend the cracks.
     This paper carries out studies on prevention of the temperature-shrinkage cracks in cast-in-place reinforced concrete slabs, grouting restoration, and preparation and properties of high-toughness epoxy resin material. Some conclusions are reached:
     1. Through analyzing influence of several factors such as contraction, creep, steel bars in concrete, the temperature rise of concrete due to hydration heat, and constraint on temperature-shrinkage stress, some technical measures to prevent cracks in R.C. slabs are put forward. Main technical points in chemical grouting restoration of cracks have been summarized.
     2. According to basic principles of heat conduction, boundary conditions of practical engineering and main factors forming temperature-shrinkage cracks, a new calculation model is established. Through theoretical analysis, the calculation formulae of mass concrete temperature stress in R.C. slabs are presented.
     3. The formula of toughness-modified epoxy resin adding a certain amount of flexibilizer polyurethane has been studied by experiments of compressive strength, tensile strength, and bending strength of epoxy resin grout coagulum. The toughness of epoxy resin is greatly improved by using flexibilizer polyurethane. The chemical reaction products between polyurethane and epoxy resin improve the toughness of the grout. With the increase of polyurethane amount, the toughness of the grout and elongation at break of coagulum increase, but at the same time the compressive strength, tensile strength, and bending strength decrease in varying degrees. We need to choose the appropriate amount of polyurethane in order to meet the requirements of mechanical properties. The appropriate amount of polyurethane to the high-toughness epoxy grouting material is 20g, i.e. about 20% of epoxy resin. The compressive and tensile strength are 67MPa and 22.4MPa respectively. The bending strength is greater than 8.4MPa (greater than the adhesive strength of mortar) and the elongation at break of coagulum is 23%. All the indices satisfy the requirements of codes. The relatively ideal high-toughness epoxy resin grouting material is made up and the experiment is successful.
     4. Through investigating and analyzing cracks in R.C. slabs of some typical engineering projects, it is concluded that the primary causes of forming cracks are concrete shrinkage, action of the seasonal difference in temperature, and stress concentration. High-toughness epoxy resin flexibilized with polyurethane is applied to restoring cracks in R.C. slabs. The restoration effect is perfect. Some reasonable suggestions were raised to improve the follow-up construction of mass reinforced concrete structure.
     5. High-toughness epoxy resin grouting restoration technology is applied to the practical engineering project. Through calculating temperature-shrinkage stress of through and diagonal cracks in basement and floor slabs, numerical solutions of temperature-shrinkage stress are obtained. These conclusions are helpful and beneficial to the arrangement of late poured R.C. bands and analyzing the forming reason of cracks in R.C. slabs.
引文
[1]卜良桃.高性能复合砂浆钢筋网(HPF)加固混凝土结构新技术[M].北京:中国建筑工业出版社,2007
    [2]柳春图.疲劳与断裂[M].北京:气象出版社,2000.148~151
    [3]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出社,1997.106~117
    [4]混凝土结构加固设计规范(GB 50367-2006)[M].北京:建筑工业出版社,2006
    [5]热固性环氧树脂复合材料及其应用[M].北京:化学工业出版社,2006.97~110
    [6]混凝土结构设计规范(GB 50010-2002)[M].北京:建筑工业出版社,2002
    [7]建筑结构荷载规范(GB 50009—2001)[M].北京:建筑工业出版社,2006
    [8]高层建筑混凝土结构技术规程(JGJ 3-2002)[M].北京:建筑工业出版社,2002
    [9]王铁梦.工业及民用建筑温度伸缩缝许可间距的研究.中国《土木工程学报》[J],1960.No.2
    [10]徐荣年等.工程结构裂缝控制——“王铁梦法”应用实例集[M].北京:中国建筑工业出版社,2005
    [11]冯乃谦,顾晴霞,郝挺宇.混凝土结构的裂缝与对策[M].北京:机械工业出版社,2006
    [12]梁军.建筑物检测分析与加固处理[M].北京:中国建材工业出版社,2001
    [13]蒋正武.国外混凝土裂缝的自修复技术.建筑技术[J], 2003(4)
    [14]工业构筑物抗震鉴定标准(GBJ 117-88)[M].北京:建筑工业出版社,1988
    [15]民用建筑可靠性鉴定标准(GB 50292-1999)[M].北京:建筑工业出版社,1999
    [16]建筑抗震设计规范(GB 50011-2001)[M].北京:建筑工业出版社,2001
    [17]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991
    [18]龚召熊.水工混凝土的温控与防裂[M].北京:中国水利水电出版社,1999
    [19]王铁梦.工程结构裂缝控制.“抗与放”的设计原则在“跳仓法”施工中的应用[M].北京:中国建筑工业出版社,2007.1~160.
    [20]熊厚金,邝显光等.现代灌浆技术与艺术述评——应用于不良地层加固及基础处理工程中的现代灌浆工艺.地基处理[J], 1991(9)
    [21] R.T. Alien, S.C. Edward. Repair of Concrete Structure. Blackie& Son Ltd.1987
    [22] Victor C U,Yun Mook Lim ,Yin Wen Chan. Feasibility study of a passive smart self- healing cementitious composite, Composite part B 29B(1998). 819~827
    [23] S,R.White,N.R,Sottos ,P.H,Moore etc. Autonomic healing of polymer composites.Nsture, 409(2001). 794~797
    [24]余天庆.混凝土的分段线性损伤模型.岩石、混凝土断裂与强度[J],1985.14~16
    [25] Dragon A,Mroz Z .A continuum model for plastic-brittle behavior of rock and concrete. ACI Materials Journal,1988.Vol.29.No.1,49~66.
    [26] Krajcinovic D,Fonseka GU. Continuous damage theory of brittle materials (part 1 and 2)[J] Appl. Mech,1981.Vol.48.809~824.
    [27] Krajcinovic D. Continuous damage mechanics. Appl. Mech Rev[J],1984.37
    [28] Krajcinovic D.Constitutive equations for damage materials.ASME J Appl. Mech,1983.Vol.50,355~360
    [29] Ladeveze P.On an anisotropic damage theory. Proc CNRS Int Colloquium on Failure Criteria of Structural Media,1983
    [30] Ladeveze P, Lemaitre J. Damage effective stress in quasi-unilateral material conditions. Iutam congress,Lyngby,Den-mark,1984.
    [31]第八届化学灌浆会议论文专辑[J].长江科学院院报,2000(6)
    [32]全国基岩与混凝土裂缝化学灌浆处理学术研讨会论文集[J].中国科学院广州化学研究所主办:广州化学,2002.Vol. 27
    [33]第十次全国化学灌浆会议论文集[J].湖南大学学报(自然科学版增刊),2004.第31卷
    [34]蒋硕忠.我国化学灌浆技术发展与展望[J].长江科学院院报,2003(5)
    [35]中国水利学会化学灌浆分会编[J].中国化学灌浆的现状与未来—首届中国化学灌浆论坛论文集.武汉:长江出版社,2005
    [36] Mazars J. A model of a unilateral elastic damageable material and its application to concrete. Fracture toughness and fracture energy of concrete (ed Wittman FH).Mcgraw- Hill,New York,1986,300~306.
    [37]混凝土裂缝用环氧树脂灌浆材料(JC/T1041-2007)[M].北京:建筑工业出版社,2007
    [38]碳纤维片材加固混凝土结构技术规程(CECS 146:2003)[M].北京:中国计划出版社,2003
    [39]吴其晔,冯莺.高分子材料概论[M].北京:机械工业出版社,2004
    [40]张玉龙,王化银.胶粘剂改性技术[M].北京:机械工业出版社,2006
    [41]蒋硕忠,李长生,谭日升.化学灌浆与环境保护[J].长江科学院院报,2000(6)
    [42]蒋硕忠.我国化学灌浆的发展与近期展望[J],湖南大学学报,2004(4)
    [43] Tan Risheng.A Study of Eliminating the Toxicity of Chemical Grouting with Antagonism. Grouting and Deep Mixing. A.A.Balkema/Rotterdam/Brookfield,1996
    [44]叶铭勋. MU无溶剂化学灌浆材料的性能与应用[J].南京水利科学研究院水利水运科学研究,1998
    [45]石菊红,张亚峰.一种新型水溶性环氧树脂灌浆材料的制备及性能[J].湖南大学学报,2004(增刊4)
    [46]蒋硕忠.水工建筑PUE化学灌浆与环境保护[J].环境科学与技术,1984(4)
    [47] Prediction of creep,shrinkage and temperature effects in concrete structure.ACI Committee 209 report,1982
    [48] Suaris W,Ouyang C,Fernando V.Damage model for cyclic loading of concrete [J] Engrg Mech.ASCE,1990.Vol.116,No.5.1020~1034.
    [49]何星华,高小旺.建筑工程裂缝防治指南[M].北京:中国建筑工业出版社,2006
    [50]阎培渝,钱觉时,王立久等.结构混凝土的评估.寿命预测.修复[M]。重庆:重庆大学出版社,2007
    [51] Z.P.Bazant&L.Panula,New Model for Practical and Shrinkage,ACI SP76-2,1980
    [52] Thomas E.Malyszko. A Review of Creep Prediction Method.Canadian Society of Civil Engineering Proceeding,1983(June)
    [53]李国雄.浅析混凝土结构加固技术现状与展望[J].国外建材科技,2006.27(3).65~68
    [54]张号军刘兰. FRP加固技术研究新进展[J].中国铁道学,2006.27~42
    [55]李田,刘西拉.砼结构的耐久性设计[J].土木工程学报,1994(02)
    [56]都文化,叶裕明,刘春山等.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.75~111.
    [57]余天庆,钱济成.损伤理论及其应用[M].国防工业出版社,1993.
    [58]冯善彪,刘元津.化学灌浆技术[M].北京:化学工业出版社,1996
    [59]蒋志明.住宅建筑现浇楼板角部料向裂缝的实例分析[J].上海师范大学学报(自科学版),2003(4).18-20
    [60]丁仁锦.钢筋混凝土楼板非荷载产生的结构裂缝研究及其控制[D].上海:同济大学,2001.91~98.
    [61]许雪峰,韩小雷.钢筋混凝土结构板角斜裂缝分析[J].广州大学学报(自然科学版),2003(01).36~37.
    [62]郝朋.钢筋混凝土楼板温度收缩裂缝的控制研究:[硕士学位论文].天津:天津大学
    [63]黄金明.环氧树脂灌浆材料的配制及其改性研究与应用:[硕士学位论文].湖北:湖南大学
    [64]李绍雄等.聚氨酯胶粘剂[M].北京:化学工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700