用户名: 密码: 验证码:
白光LED用稀土掺杂α-SiAlON光转换材料的制备及发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用高温固相反应(SSR)和碳热还原氮化(CRN)两种工艺制备了稀土掺杂α-SiAlON光转换材料。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、荧光分光光度计对样品进行了分析,研究了稀土掺杂离子、主晶格组成、合成工艺参数等对光转换材料荧光性能的影响。研究结果表明:(1)对于高温固相反应α-SiAlON光转换材料,样品均以α-SiAlON为主晶相。Eu2+等稀土掺杂离子在α-SiAlON主晶格中实现了良好掺杂。通过改变稀土掺杂离子浓度,稳定离子种类,m值以及工艺参数,可以对光转换材料进行有效的光谱剪裁。对于Eu2+,Tb3+,Dy3+掺杂Ca-α-SiAlON在色度图上分别位于黄绿光区、绿光区和近白光区。对于Li+, Ca2+, Y3+稳定α-SiAlON:Eu2+光转换材料,Ca2+稳定的样品具有最高的发光强度。对于20at.% Eu2+掺杂Ca-α-SiAlON,主晶格组成为m=2.5的样品荧光强度最高。提高合成温度,可以改善Eu2+离子的分布均匀性。采用氢气,氮气混合气合成的Ca-α-SiAlON:Eu2+的发光强度要高于氮气气氛合成的样品。(2)对于碳热还原氮化Ca-α-SiAlON光转换材料,以SiO2作为起始材料碳热合成的样品以非晶玻璃的形式存在,而以Si3N4作为起始材料碳热合成的样品没有SiC杂相,为单相Ca-α-SiAlON,同时样品表面存在少量的在脱碳过程中生成的非晶硅酸盐。非晶玻璃样品的激发光谱范围为:~ 260nm-380 nm,发射光谱峰值波长为:~ 425nm-450 nm。随着Eu2+掺杂量的增加,荧光光谱出现了红移和猝灭现象。Si3N4碳热合成Ca-α-SiAlON光转换材料的样品,其荧光光谱有一定的蓝移,同时短波段的吸收峰消失。Si3N4碳热合成Ca-α-SiAlON:Eu2+机理分析表明,起始材料首先生成钙铝酸盐中间相。由钙铝酸盐中间相产生的低温共晶液相促进了氮化物层的形核长大。随着温度和时间的增加,氮化物层和Si3N4发生反应,最终合成Ca-α-SiAlON:Eu2+光转换材料。
Rare-earth dopedα-SiAlON phosphors were prepared by solid state reaction (SSR) and carbothermal reduction and nitridation (CRN) method, respectively. Using X-ray Diffractometer (XRD), Scanning Electron Microscope (SEM) and fluorescent spectrophotometer, the influences of different rare-earth ions, compositions and sintering process on optical properties ofα-SiAlON phosphors were studied. Experimental results show: (i) Theα-SiAlON phosphors prepared by SSR are consisted of singleα-SiAlON phase. Rare-earth ions (e.g., Eu2+) enter in the lattice ofα-SiAlON. The optical properties of phosphors can be tailored by varying the concentration and type of rare-earth ion, m value and sintering process. In chromaticity diagram, Eu2+, Tb3+ or Dy3+ doped Ca-α-SiAlON phospors show yellowish-green emitting, green emitting, and near white emitting, respectively. Ca2+ stablized samples have the highest photoluminescence (PL) intensity among Li+, Ca2+, or Y3+ stablizedα-SiAlON phospors. The phosphors with m=2.5 have the strongest PL emitting among 20 at.% Eu2+ doped Ca-α-SiAlON. Rising sintering temperature can improve the uniformity of Eu2+ ion dispersion inα-SiAlON lattice. Ca-α-SiAlON:Eu2+ phosphors synthesized in the mixture of hydrogen and nitrogen atmosphere had stronger emission intensity than that synthesized in nitrogen atmosphere. (ii) The Ca-α-SiAlON phosphors prepared by CRN are single Ca-α-SiAlON phase synthesized from Si3N4 without by-products such as SiC while amorphous glass synthesized from SiO2. The excitation spectra of amorphous glass cover the range of ~ 260nm-380 nm, and the emission bands centered at ~ 425nm-450 nm are observed in the emission spectra. Both the phenomena of red shift and concentration quenching are observed with the Eu2+ content increase. The spectra of the Ca-α-SiAlON phosphors synthesized from Si3N4 show a small blue-shift and disappearance of low wavelength absorption. A model for carbothermal synthesis was developed to interpret the mechanism of carbothermal reduction process. The intermediate Ca-aluminates formed from the starting materials favour the occurrence of eutectic liquid at relatively low temperature, whose increasing saturation with the growing species eventually enables nucleation and growth of Me3Nv layers. Further increase of temperature and time, favors the reaction between Me3Nv and Si3N4 yielding Ca-α-SiAlON:Eu2+ phosphors.
引文
[1] Shur M S, ?ukauskas A. Solid-state lighting: toward superior illumination [J]. Proceedings of the IEEE, 2005, 93(10): 1691~1703.
    [2] Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As1-xPx) junctions[J]. Applied Physics Letters, 1962, 1:82~83.
    [3] Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Applied Physics Letters, 1994, 64 (13):1687~1689.
    [4] Nakamura S, Fasol G. The blue laser diode: GaN based light emitters and lasers [M]. Berlin, Germany: Springer-Verlag, 1997.
    [5]苏锵.稀土元素——您身边的大家族[M].北京:清华大学技术出版社;广州:暨南大学出版社, 2000. 30~42.
    [6] Moine B, Pedrini C, Courtois B. Photoionization and Luminescence inBaF2:Eu2+[J]. Journal of Luminescence, 1991, 50:31~38.
    [7] Poort S H M, Blasse G. The influence of host lattice on the luminescence of divalent europium [J]. Journal of Luminescence, 1997,72:247~249.
    [8] Yamashita N. Photoluminescence spectra of the Eu2+ center in SrO:Eu [J]. Journal of Luminescence, 1994, 59:195~199.
    [9] Yamashita N. Coexistence of the Eu2+ and Eu3+ centers in the CaO:Eu powder phosphor[J]. Journal of Electrochemical Society, 1993, 140:840.
    [10] Kim J S, Jeon P E, Choi J C, et al. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor[J]. Applied Physics Letters, 2004, 84(15):2931~2933.
    [11] Kim J S, Jeon P E, Park Y H,et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor[J]. Applied Physics Letters, 2004, 85(17):3696~3698.
    [12] Kim J S, Lim K T, Jeong Y S,et al. Full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphors for white-light-emitting diodes[J]. Solid State Communications, 2005, 135:21~24.
    [13] Kim J S, Mho S W, Park Y H, et al. White-light-emitting Eu2+ and Mn2+-codoped silicate phosphors synthesized through combustion process[J]. Solid State Communications, 2005, 136:504~507.
    [14] Kim J S, Park Y H, Choi J C, et al. Color tunability of nanophosphors by changing cations for solid-state lighting[J]. Solid State Communications, 2006, 137:187~190.
    [15] Li Qiang, Gao Lian, Yan Dongsheng. The crystal structure and spectra of nano-scale YAG:Ce3+[J]. Materials Chemistry and Physics, 2000, 64:41~44.
    [16] Lu C H, Jagannathan R.Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting [J]. Applied Physics Letters, 2002, 80(19):3608~3610.
    [17] Zhou Shihong, Fu Zuoling, Zhong Jingjun, et al. Spectral properties of rare-earth ions in nanocrystalline YAG-Re (Re=Ce3+, Pr3+, Tb3+)[J]. Journal of Luminescence, 2006, 118:179~185.
    [18] Yu Zhijian, Zhuang Weidong, Zhao Chunlei, et al. Study on barium magnesium aluminate blue phosphors [J]. Journal of the Chinese Rare Earth Society, 2001, 19(6):590~593.
    [19] Blasse G, Bril A. A new phosphor for flying-spot cathode-ray tubes for color television:yellow-emitting Y3Al5O12-Ce3+[J]. Applied Physics Letters, 1967, 11(2):53~55.
    [20] Schlotter P, Schmidt R, SchneiderJ. Luminescence conversion of blue light emitting diodes [J]. Applied Physics A, 1997, 64:417~418.
    [21] Tamura T, Setomoto T, Taguchi T. Illumination characteristics of lighting array using 10 candela-class white LEDs under AC 100 V operation[J]. Journal of Luminescence, 2000, 87-89:1180~1182.
    [22] Yao Guangqing, Feng Yane, Duan Jiefei, et al. Synthesis and luminescence of gallium nitride LED blue light conversion materials [J]. Wuli Huaxue Xuebao,2003, 19(3):226~229.
    [23] Pan Yuexiao, Wu Mingmei, Su Qiang. Tailored photoluminescence of YAG-Ce phosphor through various methods [J]. Journal of Physics and Chemistry of Solids, 2004, 65:845~850.
    [24] Li Yongxiu, Min Yulin, Zhou Xuezhen, et al. Coating and stability of YAG:Ce3+ phosphor synthesized using inorganic-organic hybrid gel method [J].Chinese Journal of Inorganic Chemistry,2003, 19(11):1169~1174.
    [25] Yao Guangqing, Duan Jiefei, Ren Min, et al. Preparation and luminescence of blue light conversion material YAG:Ce [J]. Chinese Journal of Luminescence, 2001, 22:21~23.
    [26] Zhang Shusheng, Zhuang Weidong, Zhao Chunlei, et al. Influence of flux on properties of Y3Al5O12:Ce phosphor [J]. Journal of the Chinese Rare Earth Society, 2002, 20(6):605~607.
    [27] Shi Shikao, Wang Jiye. Combustion synthesis of Eu3+ activated Y3Al5O12 phosphor nanoparticles [J]. Journal of Alloys and Compounds, 2001, 327:82~86.
    [28] Zhang Junji, Ning Jinwei, Liu Xuejian, et al. Synthesis of ultrafine YAG:Tb phosphor by nitrate-citrate sol-gel combustion process [J]. Materials Research Bulletin, 2003, 38:1249~1256.
    [29] Kakade M B, Ramanathan S, Ravindran P V. Yttrium aluminum garnet powders by nitratedecomposition and nitrate-urea solution combustion reactions-a comparative study [J]. Journal of Alloys and Compounds, 2003, 350:123~129.
    [30] Xia Guodong, Zhou Shengming, Zhang Junji, et al. Structural and optical properties of YAG-Ce3+ phosphors by sol–gel combustion method [J]. Journal of Crystal Growth, 2005, 279:357~362.
    [31]石士考,刘行仁.发光体YAG的软化学方法合成[J].化学通报,1998, 4:39~40.
    [32] Chen T M, Chen S C, Yu C J. Preparation and characterization of garnet phosphor nanoparticles derived from oxalate coprecipitation [J]. Journal of Solid State Chemistry, 1999, 144:437~441.
    [33] Li J G, Ikegami T, Lee J H, et al. Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders:the effect of precipitant [J]. Journal of the European Ceramic Society, 2000, 20:2395~2405.
    [34] Miao Chunyan, Li Dongping, Liu Lifang, et al. Synthesis and luminescence properties of YAG:Ce3+[J]. Chinese Journal of Spectroscopy Laboratory, 2004, 21(3):563~565.
    [35] Kang Y C, Park S B, Lenggoro I W, et al. Preparation of non-aggregation YAG-Ce phosphor particles by spray pyrolysis[J]. Journal of Aerosol Science, 1998,29(suppl. 1):S911~S912.
    [36] Kang Y C, Lenggoro I W, Park S B, et al.YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis[J]. Materials Research Bulletin, 2000, 35:789~798.
    [37] Qi Faxin, Wang Haibo, Zhu Xianzhong. Spherical YAG:Ce3+ Phosphor particles prepared by spray pyrolysis[J]. Journal of the Chinese Rare earth society, 2005,23(5):568~571.
    [38]林君,苏锵.溶胶—凝胶法及其在稀土发光材料合成中的应用[J].稀土, 1994, 15(1):42~46.
    [39] Kang Y C, Choi J S, Park S B, et al. Preparation of CaTiO3:Pr phosphor by spray pyrolysis using filter expansion aerosol generator[J]. Journal of Aerosol Science, 1997, 28(suppl. 1):S541~S542.
    [40] Kang Y C, Lenggoro I W, Okuyama K, et al. Luminescence characteristics of Y2SiO5:Tb phosphor particles directly prepared by the spray pyrolysis method[J]. Journal of the Electrochemical Society, 1999, 146(3):1227~1230.
    [41] Sato Y, Takahashi N, Sato S. Full-color fluorescent display devices using a near-UV light-emitting diode [J]. Japanese Journal of Applied Physics, 1996, 35(7A):L838~L839.
    [42] Murakami K, Kudo H, Taguchi T, et al. Compound semiconductor lighting based on InGaN ultraviolet LED and ZnS phosphor system[C].IEEE International Symposium on Compound Semiconductors Proceedings, 2000:449~454.
    [43] Chen S H, Greeff A P, Swart H C. Degradation of ZnS:Cu,Al,Au phosphor powder in different gas mixtures[J]. Journal of Luminescence, 2004, 109:93~102.
    [44] Lu H Y, Chu S Y. The mechanism and characteristics of ZnS-based phosphor powders [J]. Journal of Crystal Growth, 2004, 265:476~481.
    [45] Manoharan S S, Goyal S, Rao M L, et al. Microwave synthesis and characterization of doped ZnS based phosphor materials [J]. Materials Research Bulletin, 2001, 36:1039~1047.
    [46] Ozawa L, Makimura M, Itoh M. Improved production of ZnS blue phosphor powder [J]. Materials Chemistry and Physics, 2005, 93:481~486.
    [47] Zhang Xinmin, Liang Lifang, Zhang Jianhui, et al. Luminescence properties of (Ca1-xSrx)Se:Eu2+ phosphors for white LEDs application[J]. Materials Letters, 2005, 59:749~753.
    [48] Mueller-Mach R, Mueller G O. White light emitting diodes for illumination [J]. Proceedings of the SPIE, 2000, 3938:30~41.
    [49] Huh Y D, Shim J H, Kim Y, et al. Optical properties of three-band white light emitting diodes [J]. Journal of the Electrochemical Society, 2003, 150:H57~H60.
    [50] Zhang J, Takahashi, M, Tokuda, Y, et al. Preparation of Eu-doped CaGa2S4-CaS composite bicolor phosphor for white light emitting diode [J]. Journal of the Ceramic Society of Japan, 2001, 112:511~513.
    [51] Jabbarov R B, Chartier C, Tagiev B G, et al. Radiative properties of Eu2+ in BaGa2S4[J]. Journal of Physics and Chemistry of Solids, 2005, 66:1049~1056.
    [52] Souriau J C, Jiang Y D, Penczek J, et al. Cathodoluminescent properties of coated SrGa2S4:Eu2+ and ZnS:Ag,Cl phosphors for field emission display applications[J]. Materials Science and Engineering, 2000, B76:165~168.
    [53] Park J K, Lim M A, KimC H, et al. White light emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties[J]. Applied Physics Letters, 2003, 82(5):683~685.
    [54] Park J K, Kim C H, Park S H, et al. Application of strontium silicate yellow phosphor for white light-emitting diodes [J]. Applied Physics Letters, 2004,84(10):1647~1649.
    [55] Park J K, Choi K J, Yeon J H, et al. Embodiment of the warm white-light-emitting diodes by using a Ba2+ codoped Sr3SiO5:Eu phosphor[J]. Applied Physics Letters, 2006,88(4):045311-1~045311-3.
    [56] Sun Xiaoyuan, Zhang Jiahua, Zhang Xia, et al. A single white phosphor suitable for near ultraviolet excitation applied to new generation white LED lighting [J]. Chinese Journal of Luminescence, 2005, 26(3):404~406.
    [57] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347:539~541.
    [58] Hide F, Kozodoy P, DenBaarsS P, et al. White light from InGaN/conjugated polymer hybrid light-emitting diodes [J]. Applied Physics Letters, 1997, 70(20):2664~2666.
    [59] Lee T W, Park O O, Cho H N, et al. White emission from a ternary polymer blend by incomplete cascade energy transfer [J]. Synthetic Metals, 2001, 122:437~441.
    [60] Jacques T, Laurent B. White emission from organic and inorganic dyes dispersed polymers excited by GaN blue LEDs [J]. Proceedings of SPIE, 1999, 3797:398~407.
    [61] Krevel J W H, Hintzen H T, Metselaar R, et al. Long wavelength Ce3+ emission in Y-Si-O-N materials [J]. Journal of Alloys and Compounds, 1998, 268:272~277.
    [62] Uheda K, Takizawa H, Endo T, et al. Synthesis and luminescent property of Eu3+-doped LaSi3N5 phosphor [J]. Journal of Luminescence, 2000, 87-89:967~969.
    [63] Hoppe H A, Lutz H, Morys P, et al. Luminescence in Eu2+-doped Ba2Si5N8:fluorescence, thermoluminescence, and upconversion [J]. Journal of Physics and Chemistry of Solids, 2000, 61:2001~2006.
    [64] Gutzov S, Lerch M, Kohls M. The luminescence of Zr-Eu-O-N materials [J]. Journal of Physics and Chemistry of Solids, 2000, 61:1301~1309.
    [65] Yamada M, Naitou T, Izuno K, et al. Red-enhanced white-light-emitting diode using a new red phosphor [J]. Japanese Journal of Applied Physics, 2003, 42(1A/B): L20~L23.
    [66] Uheda K, Hirosaki N, Yamamoto H, et al. The crystal structure and photoluminescence properties of a new red phosphor, calcium aluminum silicon nitride doped with divalent europium[C]. 206th Meeting of the Electrochemical Society, 2004:2073.
    [67] Jack K H, Wilson W I. Ceramics based on the Si-Al-O-N and related systems [J]. Nature (Physical Science), 1972, 238(80):28~29.
    [68] Oyama Y. Solid solution in the ternary system, Si3N4-AlN-Al2O3 [J]. Japanese Journal of Applied Physics, 1972, 11(5):760~761.
    [69] Riley F L. Silicon nitride and related materials [J]. Journal of American Ceramic Society, 2000, 83(2): 245~265.
    [70] Ekstrom T, Ingelstrom I. Characterization and properties of sialon ceramics[C]. In Proceedings of the International Conference Non-Oxide Technical and Engineering Ceramics, 1986:231~254.
    [71] Cao G Z, Metselaar R, Ziegler G. Microstructure and properties of mixedα-βsialons[C]. In 4th International Symposium on Ceramic Materials and Components for Engines, 1992:188.
    [72] Hwang C J, Susnitzky D W, Beaman D R. Preparation of multicationα-sialon containing strontium[J]. Journal of American Ceramic Society, 1995, 78:588~592.
    [73] Wang H, Cheng Y B, Muddle B C, et al. Preferred orientation in hot-pressed Caα-sialon ceramics [J]. Journal of Materials Science Letters, 1996, 15(16):1447~1449.
    [74] Chen I W, Rosenflanz A. A tough SiAlON ceramic based onα-Si3N4 with a whisker-like microstructure [J]. Nature, 1997, 389( 6652):701~704.
    [75] Karunaratne B S B, Lumby R J, Lewis M H. Rare-earth-dopedα-SiAlON ceramics with novel optical properties [J]. Jourmal of Materials Research, 1996, 11(11): 229~232.
    [76] Shen Z J, Nygren M, Halenius U. Absorption spectra of rare-earth-dopedα-SiAlON ceramics [J]. Journal of Materials Science Letters, 1997, 16: 263~266.
    [77] Krevel J W H, Rutten J W T, Mandal H, et al. Luminescence properties of terbium-, cerium-, or europium-dopedα-SiAlON materials[J]. Journal of Solid State Chemistry, 2002, 165:19~24.
    [78] Xie R J, Mitomo M, Uheda K, et al. Preparation and luminescence spectra of Calcium- and rare-earth (R=Eu, Tb, and Pr)-codopedα-SiAlON ceramic [J]. J. Am. Soc., 2002, 85 (5): 1229~1234.
    [79] Xie R J, Hirosaki N, Mitomo M, et al. Optical properties of Eu2+ inα-SiAlON [J]. Journal of Physics Chemistry B, 2004, 108:12027~12031.
    [80] Xie R J, Hirosaki N, Mitomo M, et al. Photoluminescence of cerium-dopedα-SiAlON materials [J]. Journal of American Ceramic Society, 2004, 87(7):1368~1370.
    [81] Xie R J, Hirosaki N, Mitomo M, et al. Strong green emission fromα-SiAlON activated by divalent ytterbium under blue light irradiation [J]. Journal of Physics Chemistry B, 2005, 109:9490~9494.
    [82] Xie R J, Hirosaki N, Mitomo M, et al. Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors [J]. Applied Physics Letters, 2006, 88(10): 101104-1~101104-3.
    [83] Suehiro T, Hirosaki N, Xie R J, et al. Powder synthesis of Ca-α′-SiAlON as a host material for phosphors [J]. Chemistry of Materials, 2005, 17:308~314.
    [84] Mitomo M, Takeuchi M, Ohmasa M. Preparation ofα-Sialon powders by carbothermal reduction and nitridation [J]. Ceram. Int., 1988, 14:43~48.
    [85] van Rutten J W T, Terpstra R A, van der Heijde J C T, et al. Carbothermal preparation and characterisation of Ca-α-sialon [J]. J. Eur. Ceram. Soc.,1995, 15(6):599~604.
    [86] Komeya K, Zhang C, Hotta M, et al. Hollow beads composed of nanosize Ca-α-SiAlON grains [J]. J. Am. Ceram.Soc., 2000,83(4):995~997.
    [87] Xu X, Nishimura T, Hirosaki N, et al. Fabrication ofβ-sialon nanoceramics by high-energymechanical milling and spark plasma sintering [J]. Nanotechnology, 2005, 16:1569~1573.
    [88] Hunt R W G. The reproduction of Color in Photography, Printing & Television. Fountain Press, London, 1987.
    [89] Hampshire S, Park H K, Thompson D P, et al.α′-SiAlON ceramic [J]. Nature (London), 1978, 274:880-882.
    [90] Russell H N, Albertson W, Davis D N. The spark spectrum of europium, Eu II [J]. Phys. Rev., 1941, 60, 641~656.
    [91] Izumi F, Mitomo M, Bando Y. Rietveld refinements for calcium and yttrium containingα-sialons [J]. J. Mater. Sci., 1984, 19:3115~3120.
    [92] Kostritskii S M, Maring D B, Tavlykaev R F, et al. Energy transfer upconversion in Er-doped LiTaO3 [J]. Applied Physics Letters, 2000, 76(16):2161~2163.
    [93] Zhang H C, Horikawa T, Hanzawa H, et al. Photoluminescence properties ofα-SiAlON:Eu2+ prepared by carbothermal reduction and nitridation method [J]. J. Electrochem. Soc., 2007, 154, J59~J104.
    [94] Fu R L, Zhou H P, Chen K X, et al. Thermodynamics and kinetic considerations behind the growth of AlN whiskers synthesized by carbothermal reduction[J]. Key Engin. Mater., 2005, 280-283:1403~1408.
    [95] Schubert H G, Schwerdtfeger K. Solubility of carbon in calcium oxide-aluminum oxide melts at 1600.deg.[J]. Arch. Eisenhuettenwes, 1974, 45(7):649~655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700