用户名: 密码: 验证码:
化学复合镀镍—磷—金刚石研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨损是设备零部件失效的一个重要原因,导致的材料、能源等的浪费非常严重。因而,机械设备使用寿命期内的减摩、抗磨工作具有节能节材和充分利用资源等巨大的社会和经济效益,表面处理强化技术正是达到这一目标的有效途径。
     化学复合镀是在普通化学镀的基础上,通过加入第二相颗粒以得到具有优异性能复合镀层的一种表面处理技术,由于其具有工艺简单、镀层均匀、性能优良等特点,这些年来得到了广泛的研究。本文在化学镀层中复合金刚石微粉、爆轰金刚石黑粉和灰粉,制备出具有优异耐磨性能的金刚石复合镀层。
     前期,总体研究了化学镀液种类、金刚石种类与含量、表面活性剂种类与含量、热处理温度等对金刚石复合镀层性能的影响,发现化学镀液种类对金刚石复合镀层性能的影响较小。选定本研究所用化学镀液后,采用正交试验设计方法,分组实验研究了化学镀液中金刚石含量、表面活性剂种类与含量、热处理温度对金刚石微粉、灰粉和黑粉三种化学复合镀层性能的影响。并运用SEM、XRD、显微硬度、摩擦磨损试验等手段分析了金刚石颗粒在复合镀层中的分散分布状况、复合镀层的表面形貌、组织结构、显微硬度、摩擦系数、耐磨性能以及热处理对镀层组织结构的影响。
     实验表明:
     1.对于金刚石微粉复合镀,镀层耐磨性能的最佳工艺为:镀液中金刚石微粉含量2g/L,不另外添加表面活性剂,镀层热处理温度为400℃。
     2.对于纳米金刚石灰粉复合镀,镀层耐磨性能的最佳工艺为:镀液中金刚石灰粉含量为4g/L,添加SHP,相对含量为1:20,镀层热处理温度为400℃。
     3.对于爆轰金刚石黑粉复合镀,镀层耐磨性能的最佳工艺为:镀液中金刚石黑粉含量为8g/L,不另外添加表面活性剂,镀层热处理温度为360℃。
     并且,对这三种金刚石复合镀层进行比较,结果表明纳米金刚石黑粉复合镀层的综合性能最优。
Wear which results in serious waste of material and energy, has been a very important cause for the destroy of mechanical equipment. So the research on the friction-reduction and wear-resistance during the service life of mechanical equipment is of great social and economical benefit. And the surface treatment technology is an effective approach to get expected goals.
     Based on conventional electroless plating, electroless composite plating was developed as a new surface treatment technology by adding particles to obtain composite coatings with excellent performances. As a kind of excellent surface treatment technology with simple techniques, homogeneous and fine coatings, electroless composite plating has been widely studied. In this paper, electroless composite coatings, the performances of which are excellent, compounded with micro-sized diamond, black powder or nano-particles of explosive detonation diamond are obtained.
     Firstly, the effect of electroless plating bath, sort of diamond particle, concentration of diamond particle, surfactant and its concentration, and heat treatment parameter on the properties of coatings was studied on the whole. And it was found that the effect of sort of electroless plating bath was very little. After choosing the electroless plating bath, the influence of concentration of diamond particle, surfactant and its concentration, and heat treatment temperature on the properties of these three kinds of electroless Ni-P-diamond composite coatings were studied group by group by orthogonal experiment design method. And the distribution of diamond particles in the coating, microstructure, microhardness, friction coefficient, wear resistance, etc. of the coating were analyzed by SEM, XRD and other instruments.
     Based on the experimental results and analysis, the following conclusions have been drawn.
     1. The optimal parameters for the electroless composite plating of micro-sized diamond are: the concentration of diamond being 2g/L, the heat treatment temperature being 400℃, and not adding any surfactant.
     2. The optimal parameters for the electroless composite plating of explosive detonation nanodiamond are: adding SHP, and its mass ratio to nanodiamond being 1:20, the concentration of nanodiamond being 4g/L, and the heat treatment temperature being 400℃.
     3. The optimal parameters for the electroless composite plating of black powder are: the concentration of diamond black powder being 8g/L, the heat treatment temperature being 360℃, and not adding any surfactant.
     Moreover, according to the comparison among the different coatings, it is found that the electroless composite coating compounded with black powder has the best comprehensive properties.
引文
[1]王立平,高燕,曾志翔,等.代硬铬镍基合金镀层的研究现状.电镀与环保, 2005, 25(3):1~4.
    [2]李宁.化学镀实用技术.北京:化学工业出版社, 2004:1~217, 425~491.
    [3]姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社, 2000:1~270, 445~467.
    [4]李宁,袁国伟,黎德育.化学镀镍基合金理论与技术.哈尔滨:哈尔滨工业大学出版社, 2000:1~89, 134~203.
    [5]苗丽娟,李长虹.化学复合镀及其应用.铁道机车车辆, 2004, 24(6):36~37.
    [6]吴玉程.化学复合镀.中外技术情报, 1996, (8):34~36.
    [7]谢华,钱匡武,陈文哲. Ni-P-金刚石化学复合镀层的抗氧化性能.福州大学学报, 2002, 30(3):335~338.
    [8]谢华,钱匡武,陈文哲. Ni-P-金刚石化学复合镀层的耐磨性.机械工程材料, 2002, 26(10):19~22.
    [9]谢华,陈文哲,钱匡武. Ni-P-金刚石化学复合镀层的组织结构及性能.表面技术, 2003, 32(4):25~27.
    [10]王宙,陈伟荣,于靖华,等.化学复合镀Ni-P-石墨镀层的研究.热加工工艺, 2004, (12):43~44.
    [11]吴玉程,刘玉,魏纯金,等.化学沉积Ni-P-SiC镀层.电镀与精饰, 1990, 12(5):11~12.
    [12]陈钰秋,罗慧倩,孙培祯.工模具钢表面Ni-P化学复合镀.金属热处理, 2001, (5):40~42.
    [13]谢华. Ni-P-金刚石化学复合镀镀层的组织结构与性能. [博士学位论文],湖南长沙,中南大学, 2002.
    [14]廖强,杜楠,赵晴,等.化学复合镀镍-磷-金刚石工艺及性能的研究.材料工程, 2006,增刊1:334~337.
    [15]吴玉程,徐伟民,魏纯金,等.化学复合镀层的性能.兵器材料科学与工程, 1993, 16(4):63~69.
    [16]刘英.化学复合镀镍-磷-金刚石镀速的研究.表面技术, 2003, 32(3):25~27.
    [17] Reddy V.V.N., Ramamoorthy B., Kesavan Nair P.. A study on the wear resistance of electroless Ni-P/Diamond composite coatings. Wear, 2000, 239(1):111~116.
    [18] Wu Y.C., Hu X.Y., Wang W.F., etal. Effect of addition of polytetrafluoroethylene(PTFE) and silicon carbide(SiC) on properties of electroless nickel alloy coatings. Transactions of Materialsand Heat Treatment, 2004, 25(5):1102~1105.
    [19]高红霞,商全义,张贵州,等. Ni-P-SiC-PTFE化学复合镀层摩擦性能研究.表面技术, 2003, 32(2):31~32.
    [20]高红霞,纪莲清,王小杰.塑料模具化学复合镀工艺及摩擦性能研究.郑州轻工业学院学报, 2003, 18(4):56~58.
    [21]高红霞,纪莲清,弓金霞.塑料模具(Ni-P)-SiC-PTFE化学复合镀工艺.新技术新工艺, 2004, (2):50~52.
    [22]迟毅,范会玉,高金波.化学复合镀Ni-P-PTFE-SiC的研究.材料科学与工艺, 2003, 11(1):77~80.
    [23]吴玉程,解挺,刘玉,等.化学镀Ni-P合金复合SiC镀层的磨损性能.密封与润滑, 1997, (6):25~28.
    [24]黄新民,谢跃勤,吴玉程,等. (Ni-P)-纳米TiO2微粒化学复合镀层的摩擦特性.电镀与精饰, 2001, 23(5):1~4.
    [25]程秀,揭晓华,蔡莲淑,等. Ni-P-SiC(纳米)化学复合镀层的组织与性能.材料工程, 2006, (1):43~46.
    [26]靖爱,程秀,揭晓华. Ni-P-SiO2(纳米)化学复合镀研究.热加工工艺, 2004, (10):35~36.
    [27]吴玉程,魏纯金,邓宗钢.镍磷合金及其复合镀层的摩擦学性能研究.宇航材料工艺, 1990, (1):34~39.
    [28]黄新民,吴玉程,郑玉春.纳米颗粒对复合镀层性能的影响.兵器材料科学与工程, 1999, 22(6):11~14.
    [29]高加强,刘磊,沈彬,等.超细SiC对Ni-P化学合金镀层组织结构的影响.机械工程材料, 2006, 30(7):33~36.
    [30]汪新衡,匡建新.纳米金刚石粉复合镀层耐磨性能及应用.润滑与密封, 2006, (6):102~104.
    [31]陈文哲,谢华,李勇,等. Ni-P-纳米金刚石化学复合镀新技术研究.材料导报, 2004, 18(8A):71~273.
    [32]丁红燕,周广宏.镍-磷-纳米Al2O3复合镀层的摩擦学性能.机械工程材料, 2005, 29(4):54~57.
    [33]董世云,徐滨士,马世宁.纳米颗粒复合刷镀层性能研究及其强化机理探讨.中国表面工程, 2003, (3):17~21.
    [34]阳范文. Ni-P-SiC化学复合镀研究.桂林工学院学报, 1998, 18(2):25~27.
    [35]张凤桥,季孟波,李兰兰,等.纳米粒子复合镀的研究现状.电镀与精饰, 2005, 27(6):18~23.
    [36]宿辉,曹茂盛,王正平.纳米粒子化学复合镀的研究进展.电镀与精饰, 2004, 26(2):12~15.
    [37]章仪,陈文哲,李勇. Ni-P-超细金刚石化学复合镀层的组织结构.福建师范大学学报, 2000, 16(2):67~70.
    [38]相英伟,张晋远,金成海.化学复合镀纳米金刚石粉的研究.材料工程, 2000, (4):22~27.
    [39]顾宝珊,纪晓春,张启富.化学镀镍-磷-超微金刚石复合镀层初探.电镀与精饰, 1999, 21(5):9~11.
    [40]杨战争,吕广庶,蔡刚毅. Ni-P-纳米金刚石化学复合镀研究.电镀与涂饰, 2006, 25(10):5~7.
    [41]郑筱梅,李自林,童洁,等.镍基纳米氧化铝化学复合镀研究.表面技术, 2003, 23(5):23~25.
    [42]周广宏,丁红燕,章跃. Ni-P-Nano-Al2O3化学复合镀层的磨损机理.金属热处理, 2004, 29(7):38~40.
    [43]禇庆国,黄燕滨,刘菲菲,等. Ni-P/n-Al2O3化学复合镀镀液及工艺研究.电镀与涂饰, 2005, 24(9):17~19.
    [44]王芳,俞宏英,孙冬柏,等. Ni-P-纳米Al2O3复合镀层耐磨性能研究.电镀与涂饰, 2007, 26(3):1~4.
    [45]穆欣,凌国平.钢铁表面纳米Al2O3复合化学镀镍的研究.表面技术, 2006, 35(2):43~45.
    [46]蔡莲淑,程秀,揭晓华,等. Ni-P-SiC(纳米)化学复合镀层工艺的研究.表面技术, 2003, 32(5):38~40.
    [47]胡文彬,仵亚婷.化学复合镀及其应用.中国腐蚀与防护学会和耐蚀金属材料专业委员会,第七届全国化学镀会议论文集,北京,中国腐蚀与防护学会, 2004:20~29.
    [48]张信义,邓宗钢.化学复合镀Ni-P-金刚石工艺及性能.表面技术, 1996, 25(1):13~15.
    [49]赵国鹏,于欣伟,顾正秋. Ni-B-SiC化学复合镀层的结构及其摩擦磨损性能研究.摩擦学学报, 1993, 13(3):218~227.
    [50] Staia M.H., Enriquez C., Puchi E.S.. Influence of the heat treatment on the abrasive wear resistance of electroless Ni-P. Surface & Coatings Technology, 1997, 94-95(1-3):542~548.
    [51] Wu Y.C., Li G.H., Zhang L.D., etal. Investigation on the constitution and mechanical characteristic of composite containing silicon-carbide produced by electroless co-deposition. Journal of Materials Engineering and Performance, 2000, 9(4):379~385.
    [52] Grosjean A., Rezrazi M., Takadoum J., etal. Hardness, friction and wear characteristics of nickel-SiC electroless composite deposits. Surface & Coatings Technology, 2001, 137(1):92~96.
    [53] Apachitei I., Tichelaar F.D., Duszczyk J., etal. The effect of heat treatment on the structure and abrasive wear resistance of autocatalytic NiP and NiP-SiC coatings. Surface & Coatings Technology, 2002, 149(2-3):263~278.
    [54] Gao J.Q., Liu L., Wu Y.T., etal. Electroless Ni-P-SiC composite coatings with superfine particles. Surface & Coatings Technology, 2006, 200(20-21):5836~5842.
    [55] Zhang S.S., Han K.J., Cheng L.. The effect of SiC particles added in electroless Ni-P plating solution on the properties of composite coatings. Surface & Coatings Technology, 2008(12), 202:2807~2812.
    [56]吴玉程,徐伟民,刘玉,等.化学复合镀层的镀覆工艺.兵器材料科学与工程, 1993, 16(1):47~52.
    [57]仵亚婷,沈彬,刘磊,等.化学复合镀的研究现状及镀层的应用.电镀与涂饰, 2004, 24(1):58~64.
    [58] Apachitei I., Duszczyk J., Katgerman L., etal. Electroless Ni-P composite coatings: the effect of heat treatment on the microhardness of substrate and coatings. Scripta Materialia, 1998, 38(9):1347~1353.
    [59] Balaraju J.N., Kalavati, Rajam K.S.. Influence of particle size on the microstructure, hardness and corrosion resistance of electroless Ni-P-Al2O3 composite coatings. Surface & Coatings Technology, 2006, 200(12-13):3933~3941.
    [60] Grosjean A., Rezrazi M., Bercot P.. Some morphological characteristics of the incorporation of silicon carbide(SiC) particles into electroless nickel deposits. Surface & Coatings Technology, 2000, 130(2-3):252~256.
    [61]王正,任晨星,徐向俊.金刚石复合镀层的研究.腐蚀与防护, 2001, 22(7):283~286.
    [62]刘英,张振国.化学复合镀镍-磷-金刚石镀层性能的研究.热加工技术, 2004, (3):26~27.
    [63]刘英,张瑞杰.金刚石复合镀层的工艺研究.热加工工艺, 2006, 35(4):48~50.
    [64] Alirezaei S., Monirvaghefi S.M., Salehi M., etal. Effect of alumina content on surface morphology and hardness of Ni-P-Al2O3(α) electroless composite coatings. Surface & Coatings Technology, 2004, 184(2-3):170~175.
    [65]曲彦平,宋影伟,李德高,等. Ni-P-TiO2(纳米)化学复合镀工艺和性能研究.材料保护, 2003, 36(4):38~40.
    [66]黄新民,吴玉程,谢跃勤,等. Ni-P-纳米TiO2化学复合镀层.中国表面工程, 2001, 3:30~32.
    [67] Xu H., Yang Z., Li M.K., etal. Synthesis and properties of electroless Ni-P-Nanometer Diamondcomposite coatings. Surface & Coatings Technology, 2005, 191(2-3):161~165.
    [68] Staia M.H., Castillo E.J., Puchi E.S., etal. Wear performance and mechanism of electroless Ni-P coating. Surface & Coatings Technology, 1996, 86-87(1-3):598~602.
    [69]王国刚.纳米粒子化学复合镀层的制备工艺研究. [硕士学位论文],北京,北京工业大学, 2003.
    [70] Matsubara H., Abe Y., Chiba Y., etal. Co-deposition mechanism of nanodiamond with electrolessly plated nickel films. Electrochimica Acta, 2007, 52(9):3047~3052.
    [71]王柏春,朱永伟,许向阳,等. Ni-P基化学复合镀的研究与应用.材料导报, 2005, 19(6):71~74.
    [72]胡会利,李宁,于元春,等.纳米粉体在化学复合镀中的应用.电镀与涂饰, 2005, 24(2):36~39.
    [73]吕正茂,李成明,吕反修.金刚石复合镀层的研究现状.表面技术, 2003, 32(6):1~3.
    [74]王柏春,朱永伟,许向阳,等.含纳米金刚石的复合镀研究.材料导报, 2003, 17(10):51~54.
    [75]李佳民. Ni-P-纳米SiC化学复合镀分散工艺的试验研究. [硕士学位论文],黑龙江哈尔滨,东北农业大学, 2006.
    [76]张胡海. Ni-P-纳米粒子化学复合镀层功能特性研究. [硕士学位论文],安徽合肥,合肥工业大学, 2006.
    [77]田秋.镍-磷-纳米粒子复合镀工艺研究. [硕士学位论文],黑龙江哈尔滨,哈尔滨工程大学, 2003.
    [78]黄新民,吴玉程,郑玉春,等.分散方法对纳米颗粒化学复合镀层组织及性能的影响.电镀与精饰, 1999, 21(5):12~15.
    [79]朱永伟,王柏春,陈立舫,等.纳米金刚石的应用现状及发展前景.材料导报, 2002, 16(12):27~30.
    [80]许向阳,王柏春,朱永伟,等.表面活性剂组合使用对纳米金刚石在水介质中分散行为的影响.矿冶工程, 2003, 23(3):60~64.
    [81]许向阳,朱永伟,王柏春,等.水介质中纳米金刚石表面改性研究.中国粉体技术, 2003, 9(4):30~34.
    [82] Xu X.Y., Yu Z.M., Zhu Y.W., etal. Effect of sodium oleate adsorption on the colloidal stability and zeta potential of detonation synthesized diamond particles in aqueous solutions. Diamond & Related Materials, 2005, 14(2):206~212.
    [83] Xu X.Y., Zhu Y.W., Wang B.C., etal. Mechanochemical dispersion of nanodiamond aggregates inaqueous media. Journal of Materials Science & Technology, 2005, 21(1):109~112.
    [84] Xu X.Y., Zhu Y.W., Wang B.C., etal. Surface modification of nanodiamond in aqueous medium. Transactions of the Nonferrous Metals Society of China, 2003, 13(6):1415~1418.
    [85] Xu K., Xue Q.J.. Deaggregation of ultradispersed diamond from explosive detonation by a graphitization-oxidation method and by hydroiodic acid treatment. Diamond & Related Materials, 2007, 16(2):277~282.
    [86]张振华,郭忠诚.复合镀中纳米粉体分散的研究.精细与专用化学品, 2007, 15(2):9~13.
    [87]许向阳.纳米金刚石的解团聚与稳定分散研究. [博士学位论文],湖南长沙,中南大学, 2007.
    [88]王波. Ni-P-纳米TiO2复合化学镀层的制备与性能. [硕士学位论文],北京,北京化工大学, 2006.
    [89]穆欣.纳米Al2O3碱性化学复合镀镍的研究. [硕士学位论文],浙江杭州,浙江大学, 2006.
    [90]毛建锋.纳米金刚石分散及应用研究. [硕士学位论文],山西太原,中北大学, 2005.
    [91]王柏春,朱永伟,许向阳,等.复合镀用纳米金刚石悬浮液制备和复合镀铬研究.表面技术, 2004, 33(3):4~6.
    [92]孙勇,李佳民,张兆国. Ni-P-纳米SiC化学复合镀层的显微组织结构分析.中国科技成果, 2006, (13):44~45.
    [93]卜金纬,黄根良.复合化学镀几个关键工艺因素研究.表面技术, 2006, 35(4):48~49.
    [94]钱利华,黄新民,吴玉程,等. Ni-P-SiO2/TiO2化学复合镀工艺研究.电镀与涂饰, 2004, 23(2):4~8.
    [95] Shrestha N.K., Hamal D.B., Saji T.. Composite plating of Ni-P-Al2O3 in two steps and its anti-wear performance. Surface & Coatings Technology, 2004, 183(2-3):247~253.
    [96] Besra L., Liu M.L.. A review on fundamentals and applications of electrophoretic deposition(EPD). Progress in Metrials Science, 2007, 52(1):1~61.
    [97]胡桂丽,谢广文.原位聚合法制备Ni-P-纳米TiO2化学复合镀层.青岛科技大学学报, 2005, 26(1):44~46.
    [98]郑晓华,宋仁国,姚建华.镍-磷-纳米氧化铝化学镀层的激光热处理及其摩擦磨损性能.中国激光, 2008, 35(4):610~614.
    [99] Bozzini B., Boniardi M., Fanigliulo A., etal. Tribological properties of electroless Ni-P/diamond composite films. Materials Research Bulletin, 2001, 36(11):1889~1902.
    [100]陈鹏万,恽寿榕,黄风雷,等.爆轰合成纳米超微金刚石的提纯方法研究.功能材料, 2000, 31(1):56~57.
    [101]吴丙芳,征本銮,翟廷海,等.炸药爆轰法合成纳米级金刚石的初步研究.煤矿爆破, 1997, (1):22~24.
    [102]王光祖(编译).在提取与净化纳米金刚石分散过程中其试样所显现的物理化学性质.珠宝科技, 2004, 16(3):12~15.
    [103]邹建平,贺子凯,黄鑫.自润滑复合镀层的研究现状及进展.电镀与涂饰, 2003, 22(4):29~33.
    [104]阎逢元,张绪寿,薛群基.一种新型的减摩耐磨复合电镀层.材料研究学报, 1994, 8(6):573~576.
    [105]王艳辉,王明智,臧建兵.纳米金刚石的减摩耐磨作用.工业金刚石, 2001, (3):6~8.
    [106]王光祖,张运生,郭留希,等.纳米金刚石的应用.金刚石与磨料磨具工程, 2003, (4):41~44.
    [107]邹芹,王明智,王艳辉.纳米金刚石的性能与应用前景.金刚石与磨料磨具工程, 2003, (2):54~58.
    [108]佟晓辉,张志军,郑仲瑜,等.纳米金刚石在耐磨镀层中的应用研究.国外金属热处理, 2003, 24(1):10~11.
    [109]陈鹏万,恽寿榕,黄风雷,等.爆轰合成超细金刚石的性质及应用.超硬材料与工程, 1997, (3):1~5.
    [110]胡正兵.新型耐磨复合镀层的制备及形成机理研究. [硕士学位论文],江苏镇江,江苏大学, 2005.
    [111]闫洪.化学复合镀的应用与发展.国际表面处理, 1998, (44):32~37.
    [112]黄新民,钱利华,徐金霞.镍-磷-纳米颗粒化学复合镀的研究现状及发展.电镀与涂饰, 2002, 21(6):12~16.
    [113]张燕红.化学复合镀及其应用.稀有金属, 1998, 22(6):439~443.
    [114]万家瑰,李淑华.表面活性剂在Ni-P化学复合镀中的应用.电镀与涂饰, 2006, 25(11):46~48.
    [115]周细应,王伟,钱士强,等.纳米耐磨和减摩复合镀层的研究.新工艺新技术, 2005, (7):61~63.
    [116]闫康平,陈匡民,贾文,等.表面活性剂在Ni-P-PTFE复合镀中作用研究.表面技术, 1995, 24(3):6~7.
    [117]丁红燕,周广宏. (Ni-P)-Al2O3纳米微粒化学复合镀—表面活性剂对镀层组织的影响.电镀与精饰, 2005, 27(1):4~7.
    [118] Chen C.S., Chen X.H., Yang Z., etal. Effect of multi-walled carbon nanotubes as reinforcedfibres on tribological behaviour of Ni-P electroless coatings. Diammond & Related Materials, 2006, 15(1):151~156.
    [119]梁平.镍基自润滑复合镀层的研究进展.电镀与环保, 2007, 27(1):1~5.
    [120]蒋斌,徐滨士,董世运,等.纳米复合镀层的研究现状.材料保护, 2002, 35(6):1~3.
    [121]曲志涛.化学镀镍磷合金“配位催化机理”探讨.电镀与环保, 2007, 27(5):19~22.
    [122] Zhou Y., Zhang H., Qian B.. Friction and wear properties of the co-deposited Ni-SiC nanocomposite coating. Applied Surface Science, 2007, 253(20):8335~8339.
    [123]钱丽华.化学沉积合金/纳米粒子化学复合涂层. [硕士学位论文],安徽合肥,合肥工业大学, 2003.
    [124]黄应钦,成晓玲,向晓军,等.表面活性剂在超细粉体制备和分散中的应用.日用化学工业, 2006, 36(1):30~33.
    [125]任俊,沈健,卢寿慈.颗粒分散科学与技术.北京:化学工业出版社, 2005: 1~212.
    [126]于雁武.纳米金刚石应用研究. [硕士学位论文],山西太原,中北大学, 2006.
    [127]沈涪.镀液搅拌—化学镀镍过程中一个重要的工艺条件.机电元件, 2004, (4):23~24.
    [128]刘菲菲,黄燕滨,赵艺伟.空气搅拌对n-Al2O3/Ni-P化学复合镀层性能的研究.电镀与涂饰, 2007, 26(4):5~7.
    [129] Grosjean A., Rezrazi M., Tachez M.. Study of the surface charge of silicon carbide(SiC) particles for electroless composite deposits: nickel-SiC. Surface & Coatings Technology, 1997, 96(2-3):300~304.
    [130]黄新民,吴玉程,郑玉春,等.表面活性剂对复合镀层中TiO2纳米颗粒分散性的影响.表面技术, 1999, 28(6):10~12.
    [131]周啸,尚慧性,杜文义.基体表面状况、表面活性剂浓度对Ni-P-PTFE化学复合镀层结构的影响.材料保护, 2000, 33(6):1~3.
    [132]徐方超,胡三媛,李长林,等.化学复合镀Ni-P-MoS2工艺的试验研究.中国农业大学学报, 2004, 9(3):49~52.
    [133]刘少友,唐文华,周志,等.表面活性剂与芳香反离子对化学镀镍的影响.日用化学工业, 2006, 36(3):151~154.
    [134]高叔轩.超声波辅助下化学复合镀工艺研究. [硕士学位论文],辽宁大连,大连理工大学, 2004.
    [135]王秀芝,于爱兵.超声波对镍镀层硬度的影响.电镀与精饰, 2007, 29(3):18~20.
    [136]何婷婷,王玲.超声波对化学镀镍工艺性能的影响.中国腐蚀与防护学会和耐蚀金属材料专业委员会,第七届全国化学镀会议论文集,北京,中国腐蚀与防护学会, 2004:107~112.
    [137]程敬泉,姚素薇.超声波在电化学中的应用.电镀与精饰, 2005, 27(1):16~19.
    [138]陈华茂,吴华强.超声波在电镀中的应用.化学世界, 2003, (2):97~99.
    [139]王秦生,杨丽荣,方占江.超声波强化电镀过程及改善镀层质量的机理.金刚石与磨料磨具工程, 2003, (4):30~32.
    [140]刘铁虎,朱洪江.化学复合镀Ni-P-Cr2O3工艺及镀层性能的研究.化工机械, 2002, 29(5):262~265.
    [141]曾鹏,李金华.热处理工艺对Ni-P-Cr2O3化学复合镀层组织和性能的影响.金属热处理, 1998, (3):17~19.
    [142]封雪松. Ni-P-PTFE复合化学沉积机理研究.四川轻化工学院学报, 2003, 16(4):5~6.
    [143] Guo Z., Keong K.G., Sha W.. Crystallisation and phase transformation behaviour of electroless nickel phosphorus platings during continuous heating. Journal of Alloys and Compounds, 2003, 358(25):112~119.
    [144]曾鹏. Ni-P-Al2O3双层化学复合镀的工艺及性能.新技术新工艺, 1998, (2):34~35.
    [145]李云雁,胡传荣.试验设计与数据处理.北京:化学工业出版社, 2008:20~112.
    [146]吴玉程,魏纯金.镍磷复合镀层的组织与磨损性能.表面技术, 1991, 20(5):14~20.
    [147]张清霄.镀液中SiC含量和粒径对Ni-P-SiC复合化学镀层性能的影响.材料开发与应用, 2002, 17(4):8~11.
    [148] Jappes J.T. Winowlin, Ramamoorthy B., Nair P. Kesavan. A study on the influence of process parameters on efficiency and crystallinity of electroless Ni-P deposits. Journal of Materials Processing Technology, 2005, 169(2):308~313.
    [149] Keong K.G., Sha W., Malinov S.. Crystallisation kinetics and phase transformation behaviour of electroless nickel-phosphorus deposits with high phosphorus content. Journal of Alloys and Compounds, 2002, 334(28):192~199.
    [150] Baskaran I., Narayanan T.S.N. Sankara, Stephen A.. Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni-P deposits. Materials Chemistry and Physics, 2006, 99(1):117~126.
    [151] Lin K.L., Chang Y.L., Huang C.C., etal. Microstructure evolution of electroless Ni-P and Ni-Cu-P deposits on Cu in the presence of additives. Applied Surface Science, 2001, 181(1-2):166~172.
    [152] Li H.X., Chen H.Y., Dong S.Z., etal. Study on the crystallization process of Ni-P amorphous alloy. Applied Surface Science, 1998, 125(1):115~119.
    [153]沟引宁,周上祺,黄楠,等.非晶态镍磷合金晶化过程的研究.表面技术, 2006, 35(1):50~52.
    [154]沈彬,胡文彬,刘磊,等. Ni-P复合镀层摩擦磨损性能的研究.电镀与环保, 2001, 21(5):9~13.
    [155] Cheong W.J., Luan Ben L., Shoesmith David W.. The effects of stabilizers on the bath stability of electroless Ni deposition and the deposit. Applied Surface Science, 2004, 229(1-4): 282~300.
    [156]应华根,罗伟,严密. NH4F对化学镀镍液的作用机理及镀层性能的影响.无机化学学报, 2007, 23(2):295~299.
    [157]蒲艳丽,杜敏,高荣杰,等.化学镀Ni-P合金工艺的优化.电镀与精饰, 2004, 26(3): 25~29.
    [158] Xiao Z.Y., Wang W.J., Ye L.Y., etal. Effect of Cd2+ as a stabilizer in the electroless nickel plating system. Surface & Coatings Technology, 2008, 202(20):5008~5011.
    [159] Huang Y.S., Cui F.Z.. Effect of complexing agent on the morphology and microstructure of electroless deposited Ni-P alloy. Surface & Coatings Technology, 2007, 201(9-11):5416~5418.
    [160]于淑敏,俞素芬,范庆阳,等.钨对化学镀镍钨磷合金镀层耐蚀性及组织结构的影响.汽车工艺与材料, 2004, (9):14~18.
    [161] Yu X.H., Wang H.Y., Yang Z.R., etal. XPS and AES investigation of two electroless composite coatings. Applied Surface Science, 2000, 158(3):335~339.
    [162] Novakovic J., Vassiliou P., Samara K., etal. Electroless NiP-TiO2 composite coatings: Their production and properties. Surface & Coatings Technology, 2006, 201(3-4):895~901.
    [163] Wu Y.T., Lei L., Shen B., etal. Investigation in electroless Ni-P-Cg(graphite)-SiC composite coatings. Surface & Coatings Technology, 2006, 201(1-2):441~445.
    [164] Apachitei I., Duszczyk J., Katgerman L., etal. Particles co-deposition by electroless nickel. Scripta Materialia, 1998, 38(9):1383~1389.
    [165] Song Y.W., Shan D.Y., Han E.H.. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys. Electrochimica Acta, 2008, 53(5):2135~2143.
    [166]周晖,张伟文,温庆平,等. Ni-P-PTFE复合镀层结构及性能的研究.真空与低温, 2002, 8(1):22~27.
    [167]于升学,邵光杰.热处理对Ni-P-PTFE化学复合镀层性能的影响.金属热处理, 2000, (7):12~13.
    [168] Prasanta Sahoo. Wear behaviour of electroless Ni-P coatings and optimization of process parameters using Taguchi method. Materials & Design, 2009, 30(4):1341~1349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700