用户名: 密码: 验证码:
新型六方层状钙钛矿化合物的合成、结构及NiFe_2O_4掺杂TiO_2光催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要包括两部分内容,第一部分是新型六方层状钙钛矿化合物的合成及结构研究,内容包括论文第一至第四章;第二部分内容为铁酸镍掺杂对TiO_2结构及光催化性能的影响。
     采用柠檬酸盐热解法制备前驱物,以固相烧结工艺探索了六方层状钙钛矿化合物La_4Ba_(2.6)Ca_(2.4)Mn_4O_(19)中锰元素的取代,在掺杂过程中发现了由Ba、Ca、Mn、O组成的新物相,通过反复探索合成条件合成了新的化合物。利用多晶X射线衍射、电子衍射等方法研究了该化合物的结构;通过SEM观察并分析了样品的表面形貌。主要研究结果如下:
     1.通过一系列实验发现,在我们所选取的实验条件下,化合物La_4Ba_(2.6)Ca_(2.4)Mn_4O_(19)中Mn元素可以被少量的Cu、Co取代,随着Cu、Co相对含量的增加,化合物中出现了其它的物相,当Cu、Co的相对含量达到一定值时,化合物的结构平衡被破坏,形成了另外的物相;用Fe、Ni取代La_4Ba_(2.6)Ca_(2.4)Mn_4O_(19)中的Mn,在掺入量较少时,样品中有第二相存在,取代量较多时,化合物原有的结构平衡被打破,形成了未知的新物相。
     2.在研究新物相时,我们发现了一个由Ba、Ca、Mn、O四种元素共同构成的新化合物,通过实验合成了该化合物的纯相,此化合物组成为Ba2.4Ca0.6MnO5.125。该化合物属于六方晶系,晶胞参数为a=5.83460?,c=8.218982?,v=242.3097?3。化合物的结构是利用粉末X射线衍射数据和直接法推测出的,结构拟合使用了X射线衍射数据。结构可能是由3H型六方钙钛矿结构单元和[Ba2O2]层交替排列形成。在六方钙钛矿结构单元中,Mn离子和Ca离子分别占据八面体格位,八面体分别通过共面或共顶点连接,Ca离子占据了1/3的八面体格位,钙钛矿结构单元层中的A位离子格位由Ba离子占据。在[Ba2O2]层中,10%的Ba原子被Ca取代。SEM图像显示此化合物为层状结构,这与结构解析结果是一致的。在该化合物中Mn平均氧化态为+4.25。
     通过掺杂铁酸镍控制二氧化钛相变以提高其光催化性能的主要研究如下:分别采用共沉淀法和溶胶-凝胶法制备铁酸镍和二氧化钛纳米粉体,探讨了铁酸镍纳米掺杂对二氧化钛“锐钛矿”→“金红石”的晶体结构转变及其光催化活性的影响。结果表明,铁酸镍的掺杂可抑制二氧化钛由“锐钛矿”到“金红石”的结构相变,显著提高其光催化活性,在最佳掺杂浓度时,其光催化降解曙红的效率可提高约2倍。
This dissertation includes two sections, the first section is mainly related to synthesis and structure of hexagonal perovskite-intergrowth compounds, details of this section is described from Chapter1 to 4; Influence of NiFe_2O_4 doping on the crystal structure and photocatalytic activity of TiO_2 is discussed in the second section.
     Partial substitution of Mn in La_4Ba_(2.6)Ca_(2.4)Mn_4O_(19) with other transition metals (TM= Fe, Co, Ni, Cu) was studied by solid state reaction using citrate sol-gel precursors. A new compound has been identified, the structure was established by ab initial method and refined with Rietveld method on X-ray powder diffraction data, microstructure was observed using SEM. The main findings are as follows:
     1. Under the conditions we used, Mn in La_4Ba_(2.6)Ca_(2.4)Mn_4O_(19) compound could only be substituted by other transition metals (TM= Co, Cu) with very small amount, when the substitution amount got larger or using Fe/ Ni to substitute the Mn, the structure changed greatly. A new phase was found during experiments.
     2. A new manganese oxide Ba2.4Ca0.6MnO5.125 was synthesized by a series of experiments. It crystallizes in the hexagonal space group with a=5.83460?,c=8.218982?,cell volume of 242.3097?3. The structure might be described as alternate stacking of 3H-type hexagonal perovskite blocks and [Ba2O2] sheets. In the hexagonal perovskite block, Mn and Ca cations occupy the octahedral sites of the face-shearing or corner-shearing octahedra, respectively. Images of SEM proved that this compound is layer-structured. The average oxidation state of manganese in this compound is +4.25.
     In the second part, results related to increasing the photocatalytic activity by controlling TiO_2 phase transformation using NiFe_2O_4 dopant are as follows:
     NiFe_2O_4, TiO_2 and NiFe_2O_4 doping TiO_2 nanoparticles were prepared by chemical precipitation and sol-gel method, respectively. Samples prepared were characterized with X-ray diffraction. Also studied were the influence of NiFe_2O_4 dopant on the anatase to rutile phase transformation of TiO_2 and the photocatalytic activity of NiFe_2O_4 doped TiO_2 nanopowders by eosin degradation under sunlight irradiation. The results showed that the phase transformation of titania from anatase to rutile were restrained by NiFe_2O_4 doping. In addition, the photocatalytic activity of TiO_2 doping with appropriate NiFe_2O_4 content could be improved obviously, and an increase in the activity by a factor of 2 relative to pure TiO_2 nanomaterials was obtained under the optimal conditions.
引文
[1] Bednorz JG, Muller KA. Possible high-Tc superconductivity in the Ba-La-Cu-O System [J]. Zeitschrift Fur Physik B-Condensed Matter, 1986, 64(2): 189-193.
    [2] Wu MK, Ashburn JR, Torng CJ, et al. Superconductivity at 93-K in a new mixed-phase Y-Ba-Cu-O system at ambient pressure [J]. Physical Review Letters ,1987,58(9): 908-910.
    [3] Helmolt RV, Wecker J, Holzapfel B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic Films [J]. Physical Review Letters ,1993,71(14): 2331-2333.
    [4] Homes CC, Vogt T, Shapiro SM, et al. Optical response of high-dielectric-constant perovskite-related oxide [J]. Science, 2001, 293(5530): 673-676.
    [5] Ma GL, Zhang F, Zhu JL,et al.Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-α[J]. Chemistry of Materials, 2006,18(25):6006-6011.
    [6] Tsujimoto Y, Tassel C, Hayashi N, et al. Infinite-layer iron oxide with a square-planar coordination [J]. Nature, 2007, 450(7172): 1062-U8.
    [7] Wang YH, Gu B, Xu GD, et al. Nonlinear optical properties of neodymium-doped bismuth titanate thin films using Z-scan technique [J]. Applied Physics Letters, 2004, 84(10):1686-1688.
    [8] Gillet P. Mineral Physics, Mantle mineralogy and mantle dynamics [J]. Comptes Rendus de l Academie des Sciences Serie II, 1995, 320(5): 341-356.
    [9] Wang ZL, Kang ZC. Functional and Smart Materials: Structural evolution and structure analysis [M]. New York: Plenum Press, 1998.
    [10] Schiffer P, Ramirez AP, Bao W, et al. Low-temperature magnetoresistance and the magnetic phase-Diagram of La1-xCaxMnO3 [J]. Physical Review Letters,1995,75(18): 3336-3339
    [11] Rao CNR, Gopalakrishnan J. New Directions in Solid State Chemistry [M]. Cambridge: Cambridge University Press, 1997.
    [12]钱逸泰.结晶化学导论[M].合肥:中国科学技术大学出版社,1999.
    [13] Kendall KR, Navas C, Thomas JK.et al. Recent developments in perovskite-based oxide ion conductors [J]. Solid State Ionics, 1995, 82(3-4): 215-223
    [14] Seikh MM, Simon C, Caignaert V, et al. New magnetic transitions in the ordered oxygen-deficient perovskite LnBaCo2O5.50+δ[J]. Chemistry of Materials, 2008,20(1):231-238.
    [15] Green MA, Neumann DA . Synthesis, structure, and electronic properties of LaCa2Mn2O7[J]. Chemistry of Materials, 2000, 12(1): 90-97.
    [16] Isobe M, Kimoto K, Takayama-Muromachi E. Oxygen-deficiency effect on properties for the ordered-perovskite cuprate, Sr2Cu(Re0.69Ca0.31)Oy (y=6.0-5.4) [J]. Journal of Magnetism and Magnetic Materials,2007,312(1):91-98.
    [17] Rabenau A, Eckerlin P. Die K2NiF4-stuuctur beim La2NiO4 [J]. Acta Crystallographica, 1958, 11(4):304-306.
    [18] Bie LJ, Wang YX, Lin JH, et al. Synthesis and structure of n= 5 member of the An+1MnnO3n+3(A2O)series [J]. Chemistry of Materials, 2002, 15(2): 516-512.
    [19] Aurivillius B. Mixed bismuth oxides with layer lattices I. the structure type of CaNb2Bi2O9, Arkiv for Kemi [J]. 1949, 1(48): 463-480.
    [20] Cava RJ, Vandover RB, Batlogg B, et al. Bulk Superconductivity at in La1.8Sr0.2CuO4 [J]. Physical Review Letters, 1987, 58(4): 408-410.
    [21] Uchida S, Takagi H, Kitazawa K, et al. High Tc superconductivity of La-Ba-Cu oxides, Japanese Journal of Applied Physics Part 2-Letters, 1987, 26(1): L1-L2.
    [22]赵忠贤,陈立泉,崔长庚,等. Sr(Ba)-La-Cu氧化物的高临界温度超导电性[J].科学通报, 1987, 32(3): 177-179.
    [23] Chu CW, Hor PH, Meng RL, et al. Superconductivity at 52.5 K in the lanthanum-barium-copper- oxide system [J]. Science, 1987, 235(4788):567-569.
    [24]赵忠贤,陈立泉,杨乾声,等. Ba-Y-Cu氧化物液氮温区的超导电性[J].科学通报, 1987, 32(6): 412-414.
    [25] Maeda H, Tanaka Y, Fukutomi M, et al. A new high-Tc oxide superconductor without a rare-earth element [J]. Japanese Journal of Applied Physics Part 2-Letters ,1988, 27(2): L209-L210.
    [26] Sheng ZZ, Henman M. Bulk Superconductivity at 120-K in the Tl-Ca-Ba-Cu-O System[J]. Nature, 1988, 332(6160): 138-139.
    [27] He T, Huang Q, Ramirez AP, et al. Superconductivity in the non-oxide perovskite MgCNi3 [J]. Nature, 2001, 411(6833):54-56.
    [28]梁敬魁,车广灿,陈小龙.高Tc氧化物超导体系的相关系和晶体结构[M].北京:科学出版社, 1994.
    [29] Pipprd AB. Magnetoresistance in Metals[M]. Gambridge: Cambridge University Press, 1989.
    [30] Baibich MN, Broto JM, Chazelas J, et al. Giant magnetoresistance of (001)Fe/ (001)Cr magnetic superlattices [J]. Physical Review Letters, 1988, 61(21): 2472-2475.
    [31] Jin S, Tiefel TH, Chen LH, et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films [J]. Science, 1994, 264(5157): 413-415
    [32] Xiong GC, Li Q, Ju HL, et al. Giant magnetoresistance in epitaxial Nd0.7Sr0.3MnO3–δthin films [J]. Applied Physics Letters, 1995, 66(11): 1427-1429.
    [33] Nie YM, Hu X . Possible half metallic antiferromagnet in a hole-doped perovskite cuprate predicted by first-principles calculations [J]. Physical Review Letters, 2008, 100(11):117203.
    [34] Sarma DD, Ray S, Tanaka K, et al. Intergranular magnetoresistance in Sr2FeMoO6 from a magnetic tunnel barrier mechanism across grain boundaries [J]. Physical Review Letters, 2007, 98(15):157205.
    [35] Wu J, Lynn JW, Glinka CJ, et al. Intergranular giant magnetoresistance in a spontaneously phase separated perovskite oxide [J]. Physical Review Letters, 2005, 94(3):037201.
    [36] Raveau B, Maignan A, Martin C, et al. Colossal magnetoresistance manganite perovskites: relations between crystal chemistry and properties [J]. Chemistry of Materials, 1998, 10(10): 2641-2652.
    [37] Cardona R, Teellez DAL, Rodriguez JA, et al. Structural and magnetic properties of double-perovskite Ba2MnMoO6 by density functional theory [J]. Journal of Magnetism And Magnetic Materials, 2008, 320(14): E85-E87.
    [38] Li LW, Nishimura K, Fujii M, et al. Effect of Mn-site Si substitution on magnetic, transport properties and colossal magnetoresistance in La2/3Ca1/3Mn1-xSixO3 (x=0.05-0.25) system [J]. Solid State Commu nications, 2007, 144(1-2): 10-14.
    [39] Xiang HP, Liu XJ, Wu ZJ, et al. Influence of Mn-O-Mn bond angle on the magnetic and electronic properties in YBaMn2O5 [J]. Journal of Physical Chemistry B, 2006, 110(6): 2606-2610.
    [40] Morales L, Allub R, Alascio B, et al. Structural and magnetotransport properties of LaMn1-xCrxO3.00 (0 <= x <= 0.15): Evidence of Mn3+-O-Cr3+ double-exchange interaction [J]. Physical Review B, 2005, 72(14): 144415..
    [41] Nakajima T, Ueda Y. 1000% colossal magnetoresistance at room temperature in the A-site ordered perovskite manganites, Sm1-xLax+yBa1-yMn2O6 [J]. Journal of Applied Physics, 2005, 98(4): 046108.
    [42] Moritomo Y, Asamitsu A, Kuwahara H, et al. Giant magnetoresistance of manganese oxides with a layered perovskite structure [J]. Nature, 1996, 380 (6570): 141-144.
    [43] Basith MA, Hoque SM, Shahparan M, et al. Temperature features of magnetoresistance of layered manganite La2Sm0.4Sr0.6Mn2O7 [J]. Physica B, 2007, 395(1-2): 126-129.
    [44] Moreno NO, Pagliuso PG, Rettori C, et al. Extrinsic and intrinsic features above TC in layered manganite: La1.2Sr1.8Mn2O7 [J]. Physica B, 2000, 292(1-2): 1-8.
    [45] Schupp B, Dorr K, Ruck K, et al. Preparation, crystal structure and magnetic properties of Ruddlesden -Popper phases La1.2Sr1.8Mn2-xRuxO7 (X=0, 0.05, 0.1, 0.2, 0.5) [J]. Solid State Sciences, 2005, 7(1): 17 -23.
    [46] Lee KT, Manthiram A . LaSr3Fe3-yCoyO10-δ(0≤y≤1.5) intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells [J]. Chemistry of Materials, 2006, 18(6): 1621-1626.
    [47] Tealdi C, Malavasi L, Gozzo F, et al. Correlation between transport properties and lattice effects in the NdCoO3-based catalysts and sensor materials [J]. Chemistry of Materials, 2007, 19(19):4741-4750.
    [48] Baettig P, Schelle CF, LeSar R, et al. Theoretical prediction of new high-performance lead-free piezoelectrics [J]. Chemistry of Materials, 2005, 17(6): 1376-1380.
    [49] Lufaso MW, Hopkins E, Bell SM, et al.Crystal chemistry and microwave dielectric properties of Ba3MNb2-xSbxO9 (M = Mg, Ni, Zn) [J]. Chemistry of Materials, 2005, 17(16): 4250-4255.
    [50] Wang YX, Du Y, Lin JH, et al. Phase equilibrium of the La–Ca–Mn–O system [J]. Journal of Solid State Chemistry, 2001, 156(1): 237-241.
    [51] Wang YX, Lin JH, Du Y, et al. A hexagonal perovskite intergrowth compound: La2Ca2MnO7 [J]. Angewandte Chemie International Edition, 2000, 39(15): 2730- 2732.
    [52] Bie LJ, Lin JH, Wang YX, et al. N=2 member of the hexagonal perovskite-intergrowth manganate family An+1MnnO3n+3(Ca2O) [J]. Inorganic Chemistry Communications, 2002, 5(11): 966-970.
    [53] Mugavero SJ, Smith MD, zur Loye HC. La2.5K1.5IrO7: an example of an n=2 Member of the [AnBn-1O3n][A2′O] family of perovskite-related oxides [J]. Journal of Solid State Chemistry, 2005, 178(10): 3176-3182.
    [54] Floros N, Michel C, Hervieu M, et al. A new Hexagonal 16L perovskite-related structure: Ba4Ca1-x Mn3+xO12-δ[J]. Chemistry of Materials, 2000, 12(10): 3197-3201.
    [55] Floros N, Michel C, Hervieu M, et al. The n=2 Member of the new layered structural family Ba5+nCa2Mn3+nO3n+14 derived from the hexagonal perovskite: Ba7Ca2Mn5O20 [J]. Journal of Solid State Chemistry, 2002, 168(1): 11-17.
    [56] Pelloquin D, Perez O, Martinet G, et al. The oxide Ba6Ga2Co11O26: a new close-packed stacking derive ed from the hexagonal perovskite [J]. Chemistry of Materials, 2007, 19(10): 2658-2662.
    [57] Kuang XJ, Allix M, Ibberson RM, et al. Oxygen vacancy ordering phenomena in the mixed-conducti ng hexagonal perovskite Ba7Y2Mn3Ti2O20 [J]. Chemistry of Materials, 2007, 19(11): 2884-2893.
    [58]王颖霞,别利剑,林建华,等.三方层状钙钛矿化合物-结构化学原理及其应用[J].自然科学进展,2002,12(5):449-455.
    [59] Kuang XJ, Jing XP, Loong CK, et al. A new hexagonal 12-layer perovskite-related structure: Ba6R2 Ti4O17 (R=Nd and Y)[J].Chemistry of Materials,2002,14 (10):4359-4363.
    [60] Mallinson P, Claridge JB, Iddles D, et al. New 10-layer hexagonal perovskites: relationship between cation and vacancy ordering and microwave dielectric loss[J]. Chemistry of Materials, 2006, 18(26): 6227-6238.
    [61] Zhao F, Yue ZY, Li LT, et al. Improvement on the temperature coefficient of resonant frequency of hexagonal perovskites through intergrowth structures[J]. Applied Physics Letter, 2006, 89(20): 202901(1-3).
    [62] Phillip MM, Mathieu MBA, John BC, et al. Ba8CoNb6O24: A d0 dielectric oxide host containing ordered d7 cation layers 1.88 nm apart [J]. Angewandte Chemie International Edition, 2005, 44(47): 7733–7736.
    [63]别利剑.六方钙钛矿化合物系列An+1MnnO3n+3(A2O)合成与结构研究[D].北京:北京大学化学与分子工程学院,2002.
    [64] Boulahya K, Parras M, Gonzalez-Calbet JM. New commensurate phases in the family (A3Co2O6)α(A3Co3O9)β(A= Ca, Sr, Ba) [J].Chemistry of Materials, 2000, 12(1): 25-32.
    [65]冯端,金属物理学第一卷[M].北京:科学出版社,1987.
    [66] [美] West AR.固体化学及其应用[M].苏勉曾,谢高阳,申泮文,等译.上海:复旦大学出版社, 1989.
    [67]熊兆贤.无机材料研究方法?合成制备、分析表征与性能检测[M].厦门:厦门大学出版社,2001.
    [68] Marcilly C, Courty P, Delmon B. Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous organic precursors[J]. Journal of the American Ceramic Society,1970,53(1):56-57.
    [69]梁敬魁.相图与相结构?相图的理论、实验和应用[M].北京:科学出版社,1993.
    [70]叶于浦.顾菡珍,郑朝贵,等.无机物相平衡[M].北京:科学出版社,1997.
    [71] Geysen HM, Meloen RH, Barteling SJ. Use of peptide-synthesis to probe viral-antigens For epitopes to a resolution of a single amino-acid[J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences,1984,81(13):3998-4002.
    [72]周同惠,汪尔康,陆婉,等.分析化学手册第二分册[M].北京:化学工业出版社,1997.
    [73]张铁坦,程泉寿,张仕斌.化验员手册[M].北京:水利电力出版社,1985.
    [74] Dong C. PowderX: Windows-95-based program for powder X-ray diffraction data processing [J]. Journal of Applied Crystallography,1999,32(4):838-838.
    [75] Dong C, Chen H, Wu F. A new Cu Kα2-elimination algorithm [J]. Journal of Applied Crystallo graphy,1999, 32(2):168-173.
    [76] Altomare A, Burla MC, Cascarano G, et al. Extra: a program for extracting structure-factor amplitudes from powder diffraction Data [J]. Journal of Applied Crystallography,1995, 28(6):842-846.
    [77] Altomare A, Burla MC, Cascarano G, et al. Sirpow.92-a program for automatic solution of crystal structures by direct methods optimized for powder data [J]. Journal of Applied Crystallo graphy,1994,27(3):435-436.
    [78] Larson C, Von Dreele RB. General structure analysis system(GSAS) [J]. Los Alamos : Los Alamos National Laboratory,1985.
    [79]印永嘉.《物理化学简明手册》[M].北京:高等教育出版,1988.
    [80] Gallagher PK, Johnson DW, Vogel EM. Preparation, structure, and selected catalytic properties of the system LaMn1-xCuxO3-y [J]. Journal of The American Ceramic Society, 1977, 60(1-2):28-31.
    [81] Katsuyoshi K, Shingo M, Kousei H, et al. Cathodic characteristics of (La0.6Sr0.4)(Mn1?xMx) O3?δM= Co, Ni) for use in a solid oxide fuel cell with a (Ba0.3Sr0.2La0.5)InO2.75 electrolyte [J].Solid State Ionics, 2006, 177(19-25): 2159–2164.
    [82] Tong W, Zhang B,Tan S, et al. Probability of double exchange between Mn and Fe in LaMn1?x Fex O3 [J]. Physical Review B, 2004, 70(1): 014422(1-6).
    [83] Gutierrez J, Pena A, Barandiaran JM, et al. Structural, magnetic and magnetotransport properties of La0.7Pb0.3Mn0.9TM0.1O3 (TM = Fe, Co, Ni) CMR perovskites [J]. Journal of Physics-Condensed Matter, 2000, 12(50): 10523- 10534.
    [84] Adkin JJ, Hayward M A. BaMnO3-x revisited: a structural and magnetic study [J]. Chemistry of Materials, 2007, 19(4):755-762.
    [85] Keith GM, Kirk C A, Sarma K, et al. Synthesis, crystal structure, and characterization of Ba(Ti0.5 Mn0.5)O3 : A high permittivity 12R-type hexagonal perovskite[J]. Chemistry of Materials, 2004, 16(10): 2007–2015.
    [86] Jordan NA, Battle PD. Structural chemistry and magnetic properties of hexagonal perovskites BaIrx Mn1–xO3, x = 0.3, 0.4, 0.5 [J]. Journal of Materials Chemistry, 2003, 13(9): 2220–2226.
    [87] Fuentes AF, Boulahya K, Amador U, Novel rare-earth-containing manganites Ba4REMn3O12 (RE=Ce, Pr) with 12R structure [J]. Journal of Solid State Chemistry, 2004,177(3): 714–720.
    [88] Kuang XJ, Bridges C, Allix M, et al. Internal barrier layer capacitance effect in hexagonal perovskite Ba4YMn3O11.5 ceramics [J]. Chemistry of Materials, 2006, 18(21): 5130–5136.
    [89] Créon N, Michel C, Hervieu M, et al. Cationic ordering in hexagonal perovskite derivatives: 12R-orde red polytype oxides, Ba12Ca3Mo3Mn6O36 and Ba12In3Mn9O34.5 [J]. Solid State Sciences, 2003, 5(1): 243–248.
    [90] Yin CL, Li GB, Lin JH, et al. Synthesis, structure, and characterization of the hexagonal perovskite Ba5In0.93Mn4O14.40 [J]. Chemistry of Materials, 2008, 20(6): 2110–2116
    [91] Miranda L, Ramírez-Castellanos J, Varela A, et al. Structural chemistry and magnetic properties of the BaMn0.4Co0.6O2.83 hexagonal perovskite [J]. Chemistry of Materials, 2007, 19(6): 1503–1508.
    [92] Laura M, Antonio F, Derek CS, et al. Study of the structural, magnetic, and electrical properties of the 5H hexagonal-type perovskite BaMn0.2Co0.8O2.80 [J]. Chemistry of Materials, 2008, 20(8): 2818–2828.
    [93] Laura M, Khalid B, Aurea V, et al. Structure-property relationships of the 10H hexagonal-type perov- skite BaMn0.4Fe0.6O2.73 [J]. Chemistry of Materials, 2007, 19(14): 3425-3432.
    [94] Boulahya K, Parras M, Gonza′lez-Calbet J M. et al. synthesis and structural characterization of Ba6 Mn5O16: the first layered oxide isostructural to Cs6Ni5F16[J]. Chemistry of Materials, 2002, 14 (10):4006-4008.
    [95] Bazuev G V, Zaitseva N A, Kellerman D G. New complex oxides of the A3n+3mA′nB3m+nO9m+6n family: Ba6A′Mn4O15 (A′=Mg, Ni) [J]. Solid State Sciences 2003, 5(11-12): 1465-1470.
    [96] Edmund J C, Jaap F V, Peter D B. Neutron diffraction study of Ba6Mn4MO15 (M=Cu, Zn): long-range magnetic Order in pseudo-1D materials [J]. Journal of the American Chemistry Society, 1999, 121(16): 3958-3967.
    [97] Darriet J, Drillon M, Villeneuve G, et al. Interactions magnétiques dans des groupements binucléaires du ruthénium +V [J]. Journal of Solid State Chemistry, 1976, 19(3): 213-220.
    [98] Zandbergen HW,Ijdo DJW. Barium strontium niobate and barium strontium tantalate, Ba3SrNb2O9 and Ba3SrTa2O9, a Rietveld refinement of neutron powder diffraction Data [J]. Acta Crystallographica Section C, 1983, 39(7): 829- 832.
    [99] Fujishma A, Honda K, Electrochemical Photolysis of Water at a Semiconductor Electrode [J].Nature, 1972,238(5358):37.
    [100] Testino A, Bellobono IR, Buscaglia V, et al. Optimizing the photocatalytic properties of hydrother mal TiO2 by the control of phase composition and particle morphology. A systematic approach [J]. Journal of the Aerican Chemical Society, 2007, 129(12): 3564-3575.
    [101] Soni SS, Henderson MJ, Bardeau JF, et al. Visible-Light Photocatalysis in Titania-Based Mesoporous Thin Films [J]. Advanced Materials, 2008, 20(8): 1493-1498.
    [102] Janczyk A, Krakowska E, Stochel G, et al. Singlet oxygen photogeneration at surface modified titani um dioxide [J]. Journal of the Aerican Chemical Society, 2006, 128(49): 15574-15575.
    [103] Rodrigues S, Ranjit KT, Uma S, et al. Single-Step Synthesis of a Highly Active Visible-Light Photoca talyst for Oxidation of a Common Indoor Air Pollutant: Acetaldehyde [J]. Advanced Materials, 2005, 17(20): 2467-2471.
    [104] Herrmann JM, Guillard C, Disdier J, et al. New industrial titania photocatalysts for the solar detoxification of water containing various pollutants [J]. Applied Catylysis B-Environmental, 2002, 35 (4): 281-294.
    [105] Burdett JK, Hughbands T, Gordon JM, et al. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K[J]. Journal of The American Chemical Society ,1987,109(12):3639-3646.
    [106] Fahmi A, Minot C, Silvi B, et al. Theoretical analysis of the structures of titanium dioxide crystals[J].Physical Review B, 1993, 47(18):11717-11724.
    [107]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [108]沈伟韧,赵文宽,贺飞,等.TiO2光催化反应及其在废水处理中的应用[J].化学进展, 1998, 10(4):349-361.
    [109] Aramendia MA, Colmenares JC, Marinas A, et al. Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: Effect of particle size, noble metal and support [J]. Catalysis Today,2007, 129(3-4): 421-427.
    [110] Huang Y, Ho WK, Lee SC, et al. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx [J]. Langmuir, 2008, 24(7): 3510-3516.
    [111] Zhao D, Chen CC, Wang YF, et al. Surface modification of TiO2 by phosphate: Effect on photocatalytic activity and mechanism implication [J]. Journal of Physical Chemistry C, 2008, 112(15): 5993-6001.
    [112]韩世同,习海玲,史瑞雪,等.半导体光催化研究进展与展望[J].化学物理学报,2003,16(5):339-349.
    [113]申玉芳,龙飞,邹正光.半导体光催化技术研究进展[J].材料导报,2006, 20(6): 28-31.
    [114] Ding HM, Sun H, Shan YK. Preparation and characterization of mesoporous SBA-15 supported dye- sensitized TiO2 photocatalyst [J]. Journal of Photochemistry and Photobiology A-Chemistry, 2005,169 (1): 101-107.
    [115] Vinodgopal K, Wynkop D E, Kamat P V, Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile Azo Dye, Acid Orange 7, on TiO2 particles using visible light [J]. Environmental Science & Technology, 1996, 30(5): 1660-1666.
    [116] Martin S T, Morrison C L, Hoffmann M R , Photochemical mechanism of size-quantized vanadium-doped TiO2 particles [J].The Journal of Physical Chemistry,1994, 98(51):13695-13704.
    [117] Mills A, Davies R H, Worsley D , Water purification by semiconductor photocatalysis [J]. Chemical Society Reviews, 1993, 22 (6):417-425.
    [118] Li Q, Xie R, Mintz EA, et al. Enhanced visible-light photocatalytic degradation of humic acid by palladium-modified nitrogen-doped titanium oxide [J]. Journal of the American Ceramic Society, 2007, 90(12): 3863-3868.
    [119] Wu L, Yu JC, Fu XZ. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation [J]. Journal of Molecular Catalysis A-Chmical, 2006, 244 (1-2): 25-32.
    [120] Lee JC, Sung YM, Kim TG, et al. TiO2-CdSe nanowire arrays showing visible-range light absorption [J]. Applied Physics Letters, 2007, 91(11): 113104.
    [121] Yuan ZH, Zhang LD. Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite [J]. Journal of Materials Chemistry, 2001, 11(4): 1265-1268.
    [122] Fu WY, Yang HB, Li MH, et al. Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst [J]. Materials Letters, 2005, 59(27):3530-3534.
    [123] Liu GG, Zhang XZ, Xu YJ, et al. Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2 [J]. Chemosphere, 2004, 55(9): 1287-1291.
    [124] Sato T, Haneda K, Seki M, et al. Morphology and magnetic properties of ultrafine ZnFe2O4 particles [J]. Applied Physics A: Materials Science & Processing,1990,50:13-16
    [125] Yuan Z H, Zhang L D, Influence of ZnO + Fe2O3 additives on the anatase-to-rutile transformation of nanometer TiO2 powders[J]. Nanostructured Materials,1998,10:1127 -1133.
    [126]袁志好,张立德,掺锌的TiO2纳米粉的结构相变及发光性质[J].高等学校化学学报,1999,20(7): 1007-1011.
    [127] Hoffmann MR, Martin ST, Choi WY, et al. Environmental Applications of Semiconductor Photocata lysis[J]. Chemical Reviews, 1995, 95(1):69-96.
    [128] Berry R J, Muller M R, Photocatalytic decomposition of crude oil slicks using TiO2 on a floating substrate [J]. Microchemical Journal,1994,50:28-32.
    [129] Spurr R A, Myers H , Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer[J]. Anaytical Chemistry,1957, 29(5):760-762.
    [130] Yuan ZH, Wang J, Sun YC, et al. Sunlight-activated AlFeO3/TiO2 photocatalyst [J]. Science in China Series B-Chemistry, 2006, 49(1): 67-74.
    [131] Moser J, Gr?tzel M, Gallay R , Inhibition of electron-hole recombination in substitutionally doped colloidal semiconductor crystallites [J]. Helvetica Chimica Acta, 1987, 70(6):1596-1604.
    [132] Choi W, Termin A, Hoffmann M R. The Role of metal-ion dopants in quantum-sized TiO2: correlati- on between photoreactivity and charge-carrier recombination dynamics [J]. Journal of Physical Chem istry, 1994, 98(51): 13669-13679.
    [133] Zhang Z H, Wang C C, Zakaria R, et al . Role of particle size in nanocrystalline TiO2-based photocata lysts[J]. The Journal of Physical Chemistry B, 1998, 102 (52):10871-10878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700